| /* Shadow page table operations. |
| * Copyright (C) Rusty Russell IBM Corporation 2006. |
| * GPL v2 and any later version */ |
| #include <linux/mm.h> |
| #include <linux/types.h> |
| #include <linux/spinlock.h> |
| #include <linux/random.h> |
| #include <linux/percpu.h> |
| #include <asm/tlbflush.h> |
| #include "lg.h" |
| |
| #define PTES_PER_PAGE_SHIFT 10 |
| #define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT) |
| #define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1) |
| |
| static DEFINE_PER_CPU(spte_t *, switcher_pte_pages); |
| #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu) |
| |
| static unsigned vaddr_to_pgd_index(unsigned long vaddr) |
| { |
| return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); |
| } |
| |
| /* These access the shadow versions (ie. the ones used by the CPU). */ |
| static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr) |
| { |
| unsigned int index = vaddr_to_pgd_index(vaddr); |
| |
| if (index >= SWITCHER_PGD_INDEX) { |
| kill_guest(lg, "attempt to access switcher pages"); |
| index = 0; |
| } |
| return &lg->pgdirs[i].pgdir[index]; |
| } |
| |
| static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr) |
| { |
| spte_t *page = __va(spgd.pfn << PAGE_SHIFT); |
| BUG_ON(!(spgd.flags & _PAGE_PRESENT)); |
| return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE]; |
| } |
| |
| /* These access the guest versions. */ |
| static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr) |
| { |
| unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); |
| return lg->pgdirs[lg->pgdidx].cr3 + index * sizeof(gpgd_t); |
| } |
| |
| static unsigned long gpte_addr(struct lguest *lg, |
| gpgd_t gpgd, unsigned long vaddr) |
| { |
| unsigned long gpage = gpgd.pfn << PAGE_SHIFT; |
| BUG_ON(!(gpgd.flags & _PAGE_PRESENT)); |
| return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t); |
| } |
| |
| /* Do a virtual -> physical mapping on a user page. */ |
| static unsigned long get_pfn(unsigned long virtpfn, int write) |
| { |
| struct page *page; |
| unsigned long ret = -1UL; |
| |
| down_read(¤t->mm->mmap_sem); |
| if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT, |
| 1, write, 1, &page, NULL) == 1) |
| ret = page_to_pfn(page); |
| up_read(¤t->mm->mmap_sem); |
| return ret; |
| } |
| |
| static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write) |
| { |
| spte_t spte; |
| unsigned long pfn; |
| |
| /* We ignore the global flag. */ |
| spte.flags = (gpte.flags & ~_PAGE_GLOBAL); |
| pfn = get_pfn(gpte.pfn, write); |
| if (pfn == -1UL) { |
| kill_guest(lg, "failed to get page %u", gpte.pfn); |
| /* Must not put_page() bogus page on cleanup. */ |
| spte.flags = 0; |
| } |
| spte.pfn = pfn; |
| return spte; |
| } |
| |
| static void release_pte(spte_t pte) |
| { |
| if (pte.flags & _PAGE_PRESENT) |
| put_page(pfn_to_page(pte.pfn)); |
| } |
| |
| static void check_gpte(struct lguest *lg, gpte_t gpte) |
| { |
| if ((gpte.flags & (_PAGE_PWT|_PAGE_PSE)) || gpte.pfn >= lg->pfn_limit) |
| kill_guest(lg, "bad page table entry"); |
| } |
| |
| static void check_gpgd(struct lguest *lg, gpgd_t gpgd) |
| { |
| if ((gpgd.flags & ~_PAGE_TABLE) || gpgd.pfn >= lg->pfn_limit) |
| kill_guest(lg, "bad page directory entry"); |
| } |
| |
| /* FIXME: We hold reference to pages, which prevents them from being |
| swapped. It'd be nice to have a callback when Linux wants to swap out. */ |
| |
| /* We fault pages in, which allows us to update accessed/dirty bits. |
| * Return true if we got page. */ |
| int demand_page(struct lguest *lg, unsigned long vaddr, int errcode) |
| { |
| gpgd_t gpgd; |
| spgd_t *spgd; |
| unsigned long gpte_ptr; |
| gpte_t gpte; |
| spte_t *spte; |
| |
| gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr))); |
| if (!(gpgd.flags & _PAGE_PRESENT)) |
| return 0; |
| |
| spgd = spgd_addr(lg, lg->pgdidx, vaddr); |
| if (!(spgd->flags & _PAGE_PRESENT)) { |
| /* Get a page of PTEs for them. */ |
| unsigned long ptepage = get_zeroed_page(GFP_KERNEL); |
| /* FIXME: Steal from self in this case? */ |
| if (!ptepage) { |
| kill_guest(lg, "out of memory allocating pte page"); |
| return 0; |
| } |
| check_gpgd(lg, gpgd); |
| spgd->raw.val = (__pa(ptepage) | gpgd.flags); |
| } |
| |
| gpte_ptr = gpte_addr(lg, gpgd, vaddr); |
| gpte = mkgpte(lgread_u32(lg, gpte_ptr)); |
| |
| /* No page? */ |
| if (!(gpte.flags & _PAGE_PRESENT)) |
| return 0; |
| |
| /* Write to read-only page? */ |
| if ((errcode & 2) && !(gpte.flags & _PAGE_RW)) |
| return 0; |
| |
| /* User access to a non-user page? */ |
| if ((errcode & 4) && !(gpte.flags & _PAGE_USER)) |
| return 0; |
| |
| check_gpte(lg, gpte); |
| gpte.flags |= _PAGE_ACCESSED; |
| if (errcode & 2) |
| gpte.flags |= _PAGE_DIRTY; |
| |
| /* We're done with the old pte. */ |
| spte = spte_addr(lg, *spgd, vaddr); |
| release_pte(*spte); |
| |
| /* We don't make it writable if this isn't a write: later |
| * write will fault so we can set dirty bit in guest. */ |
| if (gpte.flags & _PAGE_DIRTY) |
| *spte = gpte_to_spte(lg, gpte, 1); |
| else { |
| gpte_t ro_gpte = gpte; |
| ro_gpte.flags &= ~_PAGE_RW; |
| *spte = gpte_to_spte(lg, ro_gpte, 0); |
| } |
| |
| /* Now we update dirty/accessed on guest. */ |
| lgwrite_u32(lg, gpte_ptr, gpte.raw.val); |
| return 1; |
| } |
| |
| /* This is much faster than the full demand_page logic. */ |
| static int page_writable(struct lguest *lg, unsigned long vaddr) |
| { |
| spgd_t *spgd; |
| unsigned long flags; |
| |
| spgd = spgd_addr(lg, lg->pgdidx, vaddr); |
| if (!(spgd->flags & _PAGE_PRESENT)) |
| return 0; |
| |
| flags = spte_addr(lg, *spgd, vaddr)->flags; |
| return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); |
| } |
| |
| void pin_page(struct lguest *lg, unsigned long vaddr) |
| { |
| if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2)) |
| kill_guest(lg, "bad stack page %#lx", vaddr); |
| } |
| |
| static void release_pgd(struct lguest *lg, spgd_t *spgd) |
| { |
| if (spgd->flags & _PAGE_PRESENT) { |
| unsigned int i; |
| spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT); |
| for (i = 0; i < PTES_PER_PAGE; i++) |
| release_pte(ptepage[i]); |
| free_page((long)ptepage); |
| spgd->raw.val = 0; |
| } |
| } |
| |
| static void flush_user_mappings(struct lguest *lg, int idx) |
| { |
| unsigned int i; |
| for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++) |
| release_pgd(lg, lg->pgdirs[idx].pgdir + i); |
| } |
| |
| void guest_pagetable_flush_user(struct lguest *lg) |
| { |
| flush_user_mappings(lg, lg->pgdidx); |
| } |
| |
| static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) |
| { |
| unsigned int i; |
| for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) |
| if (lg->pgdirs[i].cr3 == pgtable) |
| break; |
| return i; |
| } |
| |
| static unsigned int new_pgdir(struct lguest *lg, |
| unsigned long cr3, |
| int *blank_pgdir) |
| { |
| unsigned int next; |
| |
| next = random32() % ARRAY_SIZE(lg->pgdirs); |
| if (!lg->pgdirs[next].pgdir) { |
| lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL); |
| if (!lg->pgdirs[next].pgdir) |
| next = lg->pgdidx; |
| else |
| /* There are no mappings: you'll need to re-pin */ |
| *blank_pgdir = 1; |
| } |
| lg->pgdirs[next].cr3 = cr3; |
| /* Release all the non-kernel mappings. */ |
| flush_user_mappings(lg, next); |
| |
| return next; |
| } |
| |
| void guest_new_pagetable(struct lguest *lg, unsigned long pgtable) |
| { |
| int newpgdir, repin = 0; |
| |
| newpgdir = find_pgdir(lg, pgtable); |
| if (newpgdir == ARRAY_SIZE(lg->pgdirs)) |
| newpgdir = new_pgdir(lg, pgtable, &repin); |
| lg->pgdidx = newpgdir; |
| if (repin) |
| pin_stack_pages(lg); |
| } |
| |
| static void release_all_pagetables(struct lguest *lg) |
| { |
| unsigned int i, j; |
| |
| for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) |
| if (lg->pgdirs[i].pgdir) |
| for (j = 0; j < SWITCHER_PGD_INDEX; j++) |
| release_pgd(lg, lg->pgdirs[i].pgdir + j); |
| } |
| |
| void guest_pagetable_clear_all(struct lguest *lg) |
| { |
| release_all_pagetables(lg); |
| pin_stack_pages(lg); |
| } |
| |
| static void do_set_pte(struct lguest *lg, int idx, |
| unsigned long vaddr, gpte_t gpte) |
| { |
| spgd_t *spgd = spgd_addr(lg, idx, vaddr); |
| if (spgd->flags & _PAGE_PRESENT) { |
| spte_t *spte = spte_addr(lg, *spgd, vaddr); |
| release_pte(*spte); |
| if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) { |
| check_gpte(lg, gpte); |
| *spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY); |
| } else |
| spte->raw.val = 0; |
| } |
| } |
| |
| void guest_set_pte(struct lguest *lg, |
| unsigned long cr3, unsigned long vaddr, gpte_t gpte) |
| { |
| /* Kernel mappings must be changed on all top levels. */ |
| if (vaddr >= lg->page_offset) { |
| unsigned int i; |
| for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) |
| if (lg->pgdirs[i].pgdir) |
| do_set_pte(lg, i, vaddr, gpte); |
| } else { |
| int pgdir = find_pgdir(lg, cr3); |
| if (pgdir != ARRAY_SIZE(lg->pgdirs)) |
| do_set_pte(lg, pgdir, vaddr, gpte); |
| } |
| } |
| |
| void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx) |
| { |
| int pgdir; |
| |
| if (idx >= SWITCHER_PGD_INDEX) |
| return; |
| |
| pgdir = find_pgdir(lg, cr3); |
| if (pgdir < ARRAY_SIZE(lg->pgdirs)) |
| release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx); |
| } |
| |
| int init_guest_pagetable(struct lguest *lg, unsigned long pgtable) |
| { |
| /* We assume this in flush_user_mappings, so check now */ |
| if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX) |
| return -EINVAL; |
| lg->pgdidx = 0; |
| lg->pgdirs[lg->pgdidx].cr3 = pgtable; |
| lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL); |
| if (!lg->pgdirs[lg->pgdidx].pgdir) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void free_guest_pagetable(struct lguest *lg) |
| { |
| unsigned int i; |
| |
| release_all_pagetables(lg); |
| for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) |
| free_page((long)lg->pgdirs[i].pgdir); |
| } |
| |
| /* Caller must be preempt-safe */ |
| void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages) |
| { |
| spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); |
| spgd_t switcher_pgd; |
| spte_t regs_pte; |
| |
| /* Since switcher less that 4MB, we simply mug top pte page. */ |
| switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT; |
| switcher_pgd.flags = _PAGE_KERNEL; |
| lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; |
| |
| /* Map our regs page over stack page. */ |
| regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT; |
| regs_pte.flags = _PAGE_KERNEL; |
| switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE] |
| = regs_pte; |
| } |
| |
| static void free_switcher_pte_pages(void) |
| { |
| unsigned int i; |
| |
| for_each_possible_cpu(i) |
| free_page((long)switcher_pte_page(i)); |
| } |
| |
| static __init void populate_switcher_pte_page(unsigned int cpu, |
| struct page *switcher_page[], |
| unsigned int pages) |
| { |
| unsigned int i; |
| spte_t *pte = switcher_pte_page(cpu); |
| |
| for (i = 0; i < pages; i++) { |
| pte[i].pfn = page_to_pfn(switcher_page[i]); |
| pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED; |
| } |
| |
| /* We only map this CPU's pages, so guest can't see others. */ |
| i = pages + cpu*2; |
| |
| /* First page (regs) is rw, second (state) is ro. */ |
| pte[i].pfn = page_to_pfn(switcher_page[i]); |
| pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW; |
| pte[i+1].pfn = page_to_pfn(switcher_page[i+1]); |
| pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED; |
| } |
| |
| __init int init_pagetables(struct page **switcher_page, unsigned int pages) |
| { |
| unsigned int i; |
| |
| for_each_possible_cpu(i) { |
| switcher_pte_page(i) = (spte_t *)get_zeroed_page(GFP_KERNEL); |
| if (!switcher_pte_page(i)) { |
| free_switcher_pte_pages(); |
| return -ENOMEM; |
| } |
| populate_switcher_pte_page(i, switcher_page, pages); |
| } |
| return 0; |
| } |
| |
| void free_pagetables(void) |
| { |
| free_switcher_pte_pages(); |
| } |