| /* |
| * xHCI host controller driver |
| * |
| * Copyright (C) 2008 Intel Corp. |
| * |
| * Author: Sarah Sharp |
| * Some code borrowed from the Linux EHCI driver. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software Foundation, |
| * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/irq.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| |
| #include "xhci.h" |
| |
| #define DRIVER_AUTHOR "Sarah Sharp" |
| #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" |
| |
| /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ |
| static int link_quirk; |
| module_param(link_quirk, int, S_IRUGO | S_IWUSR); |
| MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); |
| |
| /* TODO: copied from ehci-hcd.c - can this be refactored? */ |
| /* |
| * handshake - spin reading hc until handshake completes or fails |
| * @ptr: address of hc register to be read |
| * @mask: bits to look at in result of read |
| * @done: value of those bits when handshake succeeds |
| * @usec: timeout in microseconds |
| * |
| * Returns negative errno, or zero on success |
| * |
| * Success happens when the "mask" bits have the specified value (hardware |
| * handshake done). There are two failure modes: "usec" have passed (major |
| * hardware flakeout), or the register reads as all-ones (hardware removed). |
| */ |
| static int handshake(struct xhci_hcd *xhci, void __iomem *ptr, |
| u32 mask, u32 done, int usec) |
| { |
| u32 result; |
| |
| do { |
| result = xhci_readl(xhci, ptr); |
| if (result == ~(u32)0) /* card removed */ |
| return -ENODEV; |
| result &= mask; |
| if (result == done) |
| return 0; |
| udelay(1); |
| usec--; |
| } while (usec > 0); |
| return -ETIMEDOUT; |
| } |
| |
| /* |
| * Force HC into halt state. |
| * |
| * Disable any IRQs and clear the run/stop bit. |
| * HC will complete any current and actively pipelined transactions, and |
| * should halt within 16 microframes of the run/stop bit being cleared. |
| * Read HC Halted bit in the status register to see when the HC is finished. |
| * XXX: shouldn't we set HC_STATE_HALT here somewhere? |
| */ |
| int xhci_halt(struct xhci_hcd *xhci) |
| { |
| u32 halted; |
| u32 cmd; |
| u32 mask; |
| |
| xhci_dbg(xhci, "// Halt the HC\n"); |
| /* Disable all interrupts from the host controller */ |
| mask = ~(XHCI_IRQS); |
| halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; |
| if (!halted) |
| mask &= ~CMD_RUN; |
| |
| cmd = xhci_readl(xhci, &xhci->op_regs->command); |
| cmd &= mask; |
| xhci_writel(xhci, cmd, &xhci->op_regs->command); |
| |
| return handshake(xhci, &xhci->op_regs->status, |
| STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); |
| } |
| |
| /* |
| * Reset a halted HC, and set the internal HC state to HC_STATE_HALT. |
| * |
| * This resets pipelines, timers, counters, state machines, etc. |
| * Transactions will be terminated immediately, and operational registers |
| * will be set to their defaults. |
| */ |
| int xhci_reset(struct xhci_hcd *xhci) |
| { |
| u32 command; |
| u32 state; |
| |
| state = xhci_readl(xhci, &xhci->op_regs->status); |
| if ((state & STS_HALT) == 0) { |
| xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); |
| return 0; |
| } |
| |
| xhci_dbg(xhci, "// Reset the HC\n"); |
| command = xhci_readl(xhci, &xhci->op_regs->command); |
| command |= CMD_RESET; |
| xhci_writel(xhci, command, &xhci->op_regs->command); |
| /* XXX: Why does EHCI set this here? Shouldn't other code do this? */ |
| xhci_to_hcd(xhci)->state = HC_STATE_HALT; |
| |
| return handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 250 * 1000); |
| } |
| |
| /* |
| * Stop the HC from processing the endpoint queues. |
| */ |
| static void xhci_quiesce(struct xhci_hcd *xhci) |
| { |
| /* |
| * Queues are per endpoint, so we need to disable an endpoint or slot. |
| * |
| * To disable a slot, we need to insert a disable slot command on the |
| * command ring and ring the doorbell. This will also free any internal |
| * resources associated with the slot (which might not be what we want). |
| * |
| * A Release Endpoint command sounds better - doesn't free internal HC |
| * memory, but removes the endpoints from the schedule and releases the |
| * bandwidth, disables the doorbells, and clears the endpoint enable |
| * flag. Usually used prior to a set interface command. |
| * |
| * TODO: Implement after command ring code is done. |
| */ |
| BUG_ON(!HC_IS_RUNNING(xhci_to_hcd(xhci)->state)); |
| xhci_dbg(xhci, "Finished quiescing -- code not written yet\n"); |
| } |
| |
| #if 0 |
| /* Set up MSI-X table for entry 0 (may claim other entries later) */ |
| static int xhci_setup_msix(struct xhci_hcd *xhci) |
| { |
| int ret; |
| struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); |
| |
| xhci->msix_count = 0; |
| /* XXX: did I do this right? ixgbe does kcalloc for more than one */ |
| xhci->msix_entries = kmalloc(sizeof(struct msix_entry), GFP_KERNEL); |
| if (!xhci->msix_entries) { |
| xhci_err(xhci, "Failed to allocate MSI-X entries\n"); |
| return -ENOMEM; |
| } |
| xhci->msix_entries[0].entry = 0; |
| |
| ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); |
| if (ret) { |
| xhci_err(xhci, "Failed to enable MSI-X\n"); |
| goto free_entries; |
| } |
| |
| /* |
| * Pass the xhci pointer value as the request_irq "cookie". |
| * If more irqs are added, this will need to be unique for each one. |
| */ |
| ret = request_irq(xhci->msix_entries[0].vector, &xhci_irq, 0, |
| "xHCI", xhci_to_hcd(xhci)); |
| if (ret) { |
| xhci_err(xhci, "Failed to allocate MSI-X interrupt\n"); |
| goto disable_msix; |
| } |
| xhci_dbg(xhci, "Finished setting up MSI-X\n"); |
| return 0; |
| |
| disable_msix: |
| pci_disable_msix(pdev); |
| free_entries: |
| kfree(xhci->msix_entries); |
| xhci->msix_entries = NULL; |
| return ret; |
| } |
| |
| /* XXX: code duplication; can xhci_setup_msix call this? */ |
| /* Free any IRQs and disable MSI-X */ |
| static void xhci_cleanup_msix(struct xhci_hcd *xhci) |
| { |
| struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); |
| if (!xhci->msix_entries) |
| return; |
| |
| free_irq(xhci->msix_entries[0].vector, xhci); |
| pci_disable_msix(pdev); |
| kfree(xhci->msix_entries); |
| xhci->msix_entries = NULL; |
| xhci_dbg(xhci, "Finished cleaning up MSI-X\n"); |
| } |
| #endif |
| |
| /* |
| * Initialize memory for HCD and xHC (one-time init). |
| * |
| * Program the PAGESIZE register, initialize the device context array, create |
| * device contexts (?), set up a command ring segment (or two?), create event |
| * ring (one for now). |
| */ |
| int xhci_init(struct usb_hcd *hcd) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| int retval = 0; |
| |
| xhci_dbg(xhci, "xhci_init\n"); |
| spin_lock_init(&xhci->lock); |
| if (link_quirk) { |
| xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); |
| xhci->quirks |= XHCI_LINK_TRB_QUIRK; |
| } else { |
| xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); |
| } |
| retval = xhci_mem_init(xhci, GFP_KERNEL); |
| xhci_dbg(xhci, "Finished xhci_init\n"); |
| |
| return retval; |
| } |
| |
| /* |
| * Called in interrupt context when there might be work |
| * queued on the event ring |
| * |
| * xhci->lock must be held by caller. |
| */ |
| static void xhci_work(struct xhci_hcd *xhci) |
| { |
| u32 temp; |
| u64 temp_64; |
| |
| /* |
| * Clear the op reg interrupt status first, |
| * so we can receive interrupts from other MSI-X interrupters. |
| * Write 1 to clear the interrupt status. |
| */ |
| temp = xhci_readl(xhci, &xhci->op_regs->status); |
| temp |= STS_EINT; |
| xhci_writel(xhci, temp, &xhci->op_regs->status); |
| /* FIXME when MSI-X is supported and there are multiple vectors */ |
| /* Clear the MSI-X event interrupt status */ |
| |
| /* Acknowledge the interrupt */ |
| temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); |
| temp |= 0x3; |
| xhci_writel(xhci, temp, &xhci->ir_set->irq_pending); |
| /* Flush posted writes */ |
| xhci_readl(xhci, &xhci->ir_set->irq_pending); |
| |
| /* FIXME this should be a delayed service routine that clears the EHB */ |
| xhci_handle_event(xhci); |
| |
| /* Clear the event handler busy flag (RW1C); the event ring should be empty. */ |
| temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); |
| xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue); |
| /* Flush posted writes -- FIXME is this necessary? */ |
| xhci_readl(xhci, &xhci->ir_set->irq_pending); |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /* |
| * xHCI spec says we can get an interrupt, and if the HC has an error condition, |
| * we might get bad data out of the event ring. Section 4.10.2.7 has a list of |
| * indicators of an event TRB error, but we check the status *first* to be safe. |
| */ |
| irqreturn_t xhci_irq(struct usb_hcd *hcd) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| u32 temp, temp2; |
| union xhci_trb *trb; |
| |
| spin_lock(&xhci->lock); |
| trb = xhci->event_ring->dequeue; |
| /* Check if the xHC generated the interrupt, or the irq is shared */ |
| temp = xhci_readl(xhci, &xhci->op_regs->status); |
| temp2 = xhci_readl(xhci, &xhci->ir_set->irq_pending); |
| if (temp == 0xffffffff && temp2 == 0xffffffff) |
| goto hw_died; |
| |
| if (!(temp & STS_EINT) && !ER_IRQ_PENDING(temp2)) { |
| spin_unlock(&xhci->lock); |
| return IRQ_NONE; |
| } |
| xhci_dbg(xhci, "op reg status = %08x\n", temp); |
| xhci_dbg(xhci, "ir set irq_pending = %08x\n", temp2); |
| xhci_dbg(xhci, "Event ring dequeue ptr:\n"); |
| xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n", |
| (unsigned long long)xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb), |
| lower_32_bits(trb->link.segment_ptr), |
| upper_32_bits(trb->link.segment_ptr), |
| (unsigned int) trb->link.intr_target, |
| (unsigned int) trb->link.control); |
| |
| if (temp & STS_FATAL) { |
| xhci_warn(xhci, "WARNING: Host System Error\n"); |
| xhci_halt(xhci); |
| hw_died: |
| xhci_to_hcd(xhci)->state = HC_STATE_HALT; |
| spin_unlock(&xhci->lock); |
| return -ESHUTDOWN; |
| } |
| |
| xhci_work(xhci); |
| spin_unlock(&xhci->lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING |
| void xhci_event_ring_work(unsigned long arg) |
| { |
| unsigned long flags; |
| int temp; |
| u64 temp_64; |
| struct xhci_hcd *xhci = (struct xhci_hcd *) arg; |
| int i, j; |
| |
| xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); |
| |
| spin_lock_irqsave(&xhci->lock, flags); |
| temp = xhci_readl(xhci, &xhci->op_regs->status); |
| xhci_dbg(xhci, "op reg status = 0x%x\n", temp); |
| temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); |
| xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); |
| xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled); |
| xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); |
| xhci->error_bitmask = 0; |
| xhci_dbg(xhci, "Event ring:\n"); |
| xhci_debug_segment(xhci, xhci->event_ring->deq_seg); |
| xhci_dbg_ring_ptrs(xhci, xhci->event_ring); |
| temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); |
| temp_64 &= ~ERST_PTR_MASK; |
| xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); |
| xhci_dbg(xhci, "Command ring:\n"); |
| xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); |
| xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); |
| xhci_dbg_cmd_ptrs(xhci); |
| for (i = 0; i < MAX_HC_SLOTS; ++i) { |
| if (!xhci->devs[i]) |
| continue; |
| for (j = 0; j < 31; ++j) { |
| struct xhci_ring *ring = xhci->devs[i]->eps[j].ring; |
| if (!ring) |
| continue; |
| xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", i, j); |
| xhci_debug_segment(xhci, ring->deq_seg); |
| } |
| } |
| |
| if (xhci->noops_submitted != NUM_TEST_NOOPS) |
| if (xhci_setup_one_noop(xhci)) |
| xhci_ring_cmd_db(xhci); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| |
| if (!xhci->zombie) |
| mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); |
| else |
| xhci_dbg(xhci, "Quit polling the event ring.\n"); |
| } |
| #endif |
| |
| /* |
| * Start the HC after it was halted. |
| * |
| * This function is called by the USB core when the HC driver is added. |
| * Its opposite is xhci_stop(). |
| * |
| * xhci_init() must be called once before this function can be called. |
| * Reset the HC, enable device slot contexts, program DCBAAP, and |
| * set command ring pointer and event ring pointer. |
| * |
| * Setup MSI-X vectors and enable interrupts. |
| */ |
| int xhci_run(struct usb_hcd *hcd) |
| { |
| u32 temp; |
| u64 temp_64; |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| void (*doorbell)(struct xhci_hcd *) = NULL; |
| |
| hcd->uses_new_polling = 1; |
| hcd->poll_rh = 0; |
| |
| xhci_dbg(xhci, "xhci_run\n"); |
| #if 0 /* FIXME: MSI not setup yet */ |
| /* Do this at the very last minute */ |
| ret = xhci_setup_msix(xhci); |
| if (!ret) |
| return ret; |
| |
| return -ENOSYS; |
| #endif |
| #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING |
| init_timer(&xhci->event_ring_timer); |
| xhci->event_ring_timer.data = (unsigned long) xhci; |
| xhci->event_ring_timer.function = xhci_event_ring_work; |
| /* Poll the event ring */ |
| xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; |
| xhci->zombie = 0; |
| xhci_dbg(xhci, "Setting event ring polling timer\n"); |
| add_timer(&xhci->event_ring_timer); |
| #endif |
| |
| xhci_dbg(xhci, "Command ring memory map follows:\n"); |
| xhci_debug_ring(xhci, xhci->cmd_ring); |
| xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); |
| xhci_dbg_cmd_ptrs(xhci); |
| |
| xhci_dbg(xhci, "ERST memory map follows:\n"); |
| xhci_dbg_erst(xhci, &xhci->erst); |
| xhci_dbg(xhci, "Event ring:\n"); |
| xhci_debug_ring(xhci, xhci->event_ring); |
| xhci_dbg_ring_ptrs(xhci, xhci->event_ring); |
| temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); |
| temp_64 &= ~ERST_PTR_MASK; |
| xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); |
| |
| xhci_dbg(xhci, "// Set the interrupt modulation register\n"); |
| temp = xhci_readl(xhci, &xhci->ir_set->irq_control); |
| temp &= ~ER_IRQ_INTERVAL_MASK; |
| temp |= (u32) 160; |
| xhci_writel(xhci, temp, &xhci->ir_set->irq_control); |
| |
| /* Set the HCD state before we enable the irqs */ |
| hcd->state = HC_STATE_RUNNING; |
| temp = xhci_readl(xhci, &xhci->op_regs->command); |
| temp |= (CMD_EIE); |
| xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", |
| temp); |
| xhci_writel(xhci, temp, &xhci->op_regs->command); |
| |
| temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); |
| xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", |
| xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); |
| xhci_writel(xhci, ER_IRQ_ENABLE(temp), |
| &xhci->ir_set->irq_pending); |
| xhci_print_ir_set(xhci, xhci->ir_set, 0); |
| |
| if (NUM_TEST_NOOPS > 0) |
| doorbell = xhci_setup_one_noop(xhci); |
| |
| temp = xhci_readl(xhci, &xhci->op_regs->command); |
| temp |= (CMD_RUN); |
| xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", |
| temp); |
| xhci_writel(xhci, temp, &xhci->op_regs->command); |
| /* Flush PCI posted writes */ |
| temp = xhci_readl(xhci, &xhci->op_regs->command); |
| xhci_dbg(xhci, "// @%p = 0x%x\n", &xhci->op_regs->command, temp); |
| if (doorbell) |
| (*doorbell)(xhci); |
| |
| xhci_dbg(xhci, "Finished xhci_run\n"); |
| return 0; |
| } |
| |
| /* |
| * Stop xHCI driver. |
| * |
| * This function is called by the USB core when the HC driver is removed. |
| * Its opposite is xhci_run(). |
| * |
| * Disable device contexts, disable IRQs, and quiesce the HC. |
| * Reset the HC, finish any completed transactions, and cleanup memory. |
| */ |
| void xhci_stop(struct usb_hcd *hcd) |
| { |
| u32 temp; |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| |
| spin_lock_irq(&xhci->lock); |
| if (HC_IS_RUNNING(hcd->state)) |
| xhci_quiesce(xhci); |
| xhci_halt(xhci); |
| xhci_reset(xhci); |
| spin_unlock_irq(&xhci->lock); |
| |
| #if 0 /* No MSI yet */ |
| xhci_cleanup_msix(xhci); |
| #endif |
| #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING |
| /* Tell the event ring poll function not to reschedule */ |
| xhci->zombie = 1; |
| del_timer_sync(&xhci->event_ring_timer); |
| #endif |
| |
| xhci_dbg(xhci, "// Disabling event ring interrupts\n"); |
| temp = xhci_readl(xhci, &xhci->op_regs->status); |
| xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); |
| temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); |
| xhci_writel(xhci, ER_IRQ_DISABLE(temp), |
| &xhci->ir_set->irq_pending); |
| xhci_print_ir_set(xhci, xhci->ir_set, 0); |
| |
| xhci_dbg(xhci, "cleaning up memory\n"); |
| xhci_mem_cleanup(xhci); |
| xhci_dbg(xhci, "xhci_stop completed - status = %x\n", |
| xhci_readl(xhci, &xhci->op_regs->status)); |
| } |
| |
| /* |
| * Shutdown HC (not bus-specific) |
| * |
| * This is called when the machine is rebooting or halting. We assume that the |
| * machine will be powered off, and the HC's internal state will be reset. |
| * Don't bother to free memory. |
| */ |
| void xhci_shutdown(struct usb_hcd *hcd) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| |
| spin_lock_irq(&xhci->lock); |
| xhci_halt(xhci); |
| spin_unlock_irq(&xhci->lock); |
| |
| #if 0 |
| xhci_cleanup_msix(xhci); |
| #endif |
| |
| xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", |
| xhci_readl(xhci, &xhci->op_regs->status)); |
| } |
| |
| /*-------------------------------------------------------------------------*/ |
| |
| /** |
| * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and |
| * HCDs. Find the index for an endpoint given its descriptor. Use the return |
| * value to right shift 1 for the bitmask. |
| * |
| * Index = (epnum * 2) + direction - 1, |
| * where direction = 0 for OUT, 1 for IN. |
| * For control endpoints, the IN index is used (OUT index is unused), so |
| * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) |
| */ |
| unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) |
| { |
| unsigned int index; |
| if (usb_endpoint_xfer_control(desc)) |
| index = (unsigned int) (usb_endpoint_num(desc)*2); |
| else |
| index = (unsigned int) (usb_endpoint_num(desc)*2) + |
| (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; |
| return index; |
| } |
| |
| /* Find the flag for this endpoint (for use in the control context). Use the |
| * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is |
| * bit 1, etc. |
| */ |
| unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) |
| { |
| return 1 << (xhci_get_endpoint_index(desc) + 1); |
| } |
| |
| /* Find the flag for this endpoint (for use in the control context). Use the |
| * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is |
| * bit 1, etc. |
| */ |
| unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) |
| { |
| return 1 << (ep_index + 1); |
| } |
| |
| /* Compute the last valid endpoint context index. Basically, this is the |
| * endpoint index plus one. For slot contexts with more than valid endpoint, |
| * we find the most significant bit set in the added contexts flags. |
| * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 |
| * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. |
| */ |
| unsigned int xhci_last_valid_endpoint(u32 added_ctxs) |
| { |
| return fls(added_ctxs) - 1; |
| } |
| |
| /* Returns 1 if the arguments are OK; |
| * returns 0 this is a root hub; returns -EINVAL for NULL pointers. |
| */ |
| int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, |
| struct usb_host_endpoint *ep, int check_ep, const char *func) { |
| if (!hcd || (check_ep && !ep) || !udev) { |
| printk(KERN_DEBUG "xHCI %s called with invalid args\n", |
| func); |
| return -EINVAL; |
| } |
| if (!udev->parent) { |
| printk(KERN_DEBUG "xHCI %s called for root hub\n", |
| func); |
| return 0; |
| } |
| if (!udev->slot_id) { |
| printk(KERN_DEBUG "xHCI %s called with unaddressed device\n", |
| func); |
| return -EINVAL; |
| } |
| return 1; |
| } |
| |
| static int xhci_configure_endpoint(struct xhci_hcd *xhci, |
| struct usb_device *udev, struct xhci_command *command, |
| bool ctx_change, bool must_succeed); |
| |
| /* |
| * Full speed devices may have a max packet size greater than 8 bytes, but the |
| * USB core doesn't know that until it reads the first 8 bytes of the |
| * descriptor. If the usb_device's max packet size changes after that point, |
| * we need to issue an evaluate context command and wait on it. |
| */ |
| static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, |
| unsigned int ep_index, struct urb *urb) |
| { |
| struct xhci_container_ctx *in_ctx; |
| struct xhci_container_ctx *out_ctx; |
| struct xhci_input_control_ctx *ctrl_ctx; |
| struct xhci_ep_ctx *ep_ctx; |
| int max_packet_size; |
| int hw_max_packet_size; |
| int ret = 0; |
| |
| out_ctx = xhci->devs[slot_id]->out_ctx; |
| ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); |
| hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2); |
| max_packet_size = urb->dev->ep0.desc.wMaxPacketSize; |
| if (hw_max_packet_size != max_packet_size) { |
| xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); |
| xhci_dbg(xhci, "Max packet size in usb_device = %d\n", |
| max_packet_size); |
| xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", |
| hw_max_packet_size); |
| xhci_dbg(xhci, "Issuing evaluate context command.\n"); |
| |
| /* Set up the modified control endpoint 0 */ |
| xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, |
| xhci->devs[slot_id]->out_ctx, ep_index); |
| in_ctx = xhci->devs[slot_id]->in_ctx; |
| ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); |
| ep_ctx->ep_info2 &= ~MAX_PACKET_MASK; |
| ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size); |
| |
| /* Set up the input context flags for the command */ |
| /* FIXME: This won't work if a non-default control endpoint |
| * changes max packet sizes. |
| */ |
| ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); |
| ctrl_ctx->add_flags = EP0_FLAG; |
| ctrl_ctx->drop_flags = 0; |
| |
| xhci_dbg(xhci, "Slot %d input context\n", slot_id); |
| xhci_dbg_ctx(xhci, in_ctx, ep_index); |
| xhci_dbg(xhci, "Slot %d output context\n", slot_id); |
| xhci_dbg_ctx(xhci, out_ctx, ep_index); |
| |
| ret = xhci_configure_endpoint(xhci, urb->dev, NULL, |
| true, false); |
| |
| /* Clean up the input context for later use by bandwidth |
| * functions. |
| */ |
| ctrl_ctx->add_flags = SLOT_FLAG; |
| } |
| return ret; |
| } |
| |
| /* |
| * non-error returns are a promise to giveback() the urb later |
| * we drop ownership so next owner (or urb unlink) can get it |
| */ |
| int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| unsigned long flags; |
| int ret = 0; |
| unsigned int slot_id, ep_index; |
| |
| |
| if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0) |
| return -EINVAL; |
| |
| slot_id = urb->dev->slot_id; |
| ep_index = xhci_get_endpoint_index(&urb->ep->desc); |
| |
| if (!xhci->devs || !xhci->devs[slot_id]) { |
| if (!in_interrupt()) |
| dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n"); |
| ret = -EINVAL; |
| goto exit; |
| } |
| if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) { |
| if (!in_interrupt()) |
| xhci_dbg(xhci, "urb submitted during PCI suspend\n"); |
| ret = -ESHUTDOWN; |
| goto exit; |
| } |
| if (usb_endpoint_xfer_control(&urb->ep->desc)) { |
| /* Check to see if the max packet size for the default control |
| * endpoint changed during FS device enumeration |
| */ |
| if (urb->dev->speed == USB_SPEED_FULL) { |
| ret = xhci_check_maxpacket(xhci, slot_id, |
| ep_index, urb); |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* We have a spinlock and interrupts disabled, so we must pass |
| * atomic context to this function, which may allocate memory. |
| */ |
| spin_lock_irqsave(&xhci->lock, flags); |
| ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, |
| slot_id, ep_index); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { |
| spin_lock_irqsave(&xhci->lock, flags); |
| ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, |
| slot_id, ep_index); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { |
| spin_lock_irqsave(&xhci->lock, flags); |
| ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, |
| slot_id, ep_index); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| } else { |
| ret = -EINVAL; |
| } |
| exit: |
| return ret; |
| } |
| |
| /* |
| * Remove the URB's TD from the endpoint ring. This may cause the HC to stop |
| * USB transfers, potentially stopping in the middle of a TRB buffer. The HC |
| * should pick up where it left off in the TD, unless a Set Transfer Ring |
| * Dequeue Pointer is issued. |
| * |
| * The TRBs that make up the buffers for the canceled URB will be "removed" from |
| * the ring. Since the ring is a contiguous structure, they can't be physically |
| * removed. Instead, there are two options: |
| * |
| * 1) If the HC is in the middle of processing the URB to be canceled, we |
| * simply move the ring's dequeue pointer past those TRBs using the Set |
| * Transfer Ring Dequeue Pointer command. This will be the common case, |
| * when drivers timeout on the last submitted URB and attempt to cancel. |
| * |
| * 2) If the HC is in the middle of a different TD, we turn the TRBs into a |
| * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The |
| * HC will need to invalidate the any TRBs it has cached after the stop |
| * endpoint command, as noted in the xHCI 0.95 errata. |
| * |
| * 3) The TD may have completed by the time the Stop Endpoint Command |
| * completes, so software needs to handle that case too. |
| * |
| * This function should protect against the TD enqueueing code ringing the |
| * doorbell while this code is waiting for a Stop Endpoint command to complete. |
| * It also needs to account for multiple cancellations on happening at the same |
| * time for the same endpoint. |
| * |
| * Note that this function can be called in any context, or so says |
| * usb_hcd_unlink_urb() |
| */ |
| int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) |
| { |
| unsigned long flags; |
| int ret; |
| struct xhci_hcd *xhci; |
| struct xhci_td *td; |
| unsigned int ep_index; |
| struct xhci_ring *ep_ring; |
| struct xhci_virt_ep *ep; |
| |
| xhci = hcd_to_xhci(hcd); |
| spin_lock_irqsave(&xhci->lock, flags); |
| /* Make sure the URB hasn't completed or been unlinked already */ |
| ret = usb_hcd_check_unlink_urb(hcd, urb, status); |
| if (ret || !urb->hcpriv) |
| goto done; |
| |
| xhci_dbg(xhci, "Cancel URB %p\n", urb); |
| xhci_dbg(xhci, "Event ring:\n"); |
| xhci_debug_ring(xhci, xhci->event_ring); |
| ep_index = xhci_get_endpoint_index(&urb->ep->desc); |
| ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; |
| ep_ring = ep->ring; |
| xhci_dbg(xhci, "Endpoint ring:\n"); |
| xhci_debug_ring(xhci, ep_ring); |
| td = (struct xhci_td *) urb->hcpriv; |
| |
| ep->cancels_pending++; |
| list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); |
| /* Queue a stop endpoint command, but only if this is |
| * the first cancellation to be handled. |
| */ |
| if (ep->cancels_pending == 1) { |
| xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index); |
| xhci_ring_cmd_db(xhci); |
| } |
| done: |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| return ret; |
| } |
| |
| /* Drop an endpoint from a new bandwidth configuration for this device. |
| * Only one call to this function is allowed per endpoint before |
| * check_bandwidth() or reset_bandwidth() must be called. |
| * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will |
| * add the endpoint to the schedule with possibly new parameters denoted by a |
| * different endpoint descriptor in usb_host_endpoint. |
| * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is |
| * not allowed. |
| * |
| * The USB core will not allow URBs to be queued to an endpoint that is being |
| * disabled, so there's no need for mutual exclusion to protect |
| * the xhci->devs[slot_id] structure. |
| */ |
| int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| struct xhci_hcd *xhci; |
| struct xhci_container_ctx *in_ctx, *out_ctx; |
| struct xhci_input_control_ctx *ctrl_ctx; |
| struct xhci_slot_ctx *slot_ctx; |
| unsigned int last_ctx; |
| unsigned int ep_index; |
| struct xhci_ep_ctx *ep_ctx; |
| u32 drop_flag; |
| u32 new_add_flags, new_drop_flags, new_slot_info; |
| int ret; |
| |
| ret = xhci_check_args(hcd, udev, ep, 1, __func__); |
| if (ret <= 0) |
| return ret; |
| xhci = hcd_to_xhci(hcd); |
| xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); |
| |
| drop_flag = xhci_get_endpoint_flag(&ep->desc); |
| if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { |
| xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", |
| __func__, drop_flag); |
| return 0; |
| } |
| |
| if (!xhci->devs || !xhci->devs[udev->slot_id]) { |
| xhci_warn(xhci, "xHCI %s called with unaddressed device\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| in_ctx = xhci->devs[udev->slot_id]->in_ctx; |
| out_ctx = xhci->devs[udev->slot_id]->out_ctx; |
| ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); |
| ep_index = xhci_get_endpoint_index(&ep->desc); |
| ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); |
| /* If the HC already knows the endpoint is disabled, |
| * or the HCD has noted it is disabled, ignore this request |
| */ |
| if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED || |
| ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) { |
| xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", |
| __func__, ep); |
| return 0; |
| } |
| |
| ctrl_ctx->drop_flags |= drop_flag; |
| new_drop_flags = ctrl_ctx->drop_flags; |
| |
| ctrl_ctx->add_flags = ~drop_flag; |
| new_add_flags = ctrl_ctx->add_flags; |
| |
| last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags); |
| slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); |
| /* Update the last valid endpoint context, if we deleted the last one */ |
| if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) { |
| slot_ctx->dev_info &= ~LAST_CTX_MASK; |
| slot_ctx->dev_info |= LAST_CTX(last_ctx); |
| } |
| new_slot_info = slot_ctx->dev_info; |
| |
| xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); |
| |
| xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", |
| (unsigned int) ep->desc.bEndpointAddress, |
| udev->slot_id, |
| (unsigned int) new_drop_flags, |
| (unsigned int) new_add_flags, |
| (unsigned int) new_slot_info); |
| return 0; |
| } |
| |
| /* Add an endpoint to a new possible bandwidth configuration for this device. |
| * Only one call to this function is allowed per endpoint before |
| * check_bandwidth() or reset_bandwidth() must be called. |
| * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will |
| * add the endpoint to the schedule with possibly new parameters denoted by a |
| * different endpoint descriptor in usb_host_endpoint. |
| * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is |
| * not allowed. |
| * |
| * The USB core will not allow URBs to be queued to an endpoint until the |
| * configuration or alt setting is installed in the device, so there's no need |
| * for mutual exclusion to protect the xhci->devs[slot_id] structure. |
| */ |
| int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| struct xhci_hcd *xhci; |
| struct xhci_container_ctx *in_ctx, *out_ctx; |
| unsigned int ep_index; |
| struct xhci_ep_ctx *ep_ctx; |
| struct xhci_slot_ctx *slot_ctx; |
| struct xhci_input_control_ctx *ctrl_ctx; |
| u32 added_ctxs; |
| unsigned int last_ctx; |
| u32 new_add_flags, new_drop_flags, new_slot_info; |
| int ret = 0; |
| |
| ret = xhci_check_args(hcd, udev, ep, 1, __func__); |
| if (ret <= 0) { |
| /* So we won't queue a reset ep command for a root hub */ |
| ep->hcpriv = NULL; |
| return ret; |
| } |
| xhci = hcd_to_xhci(hcd); |
| |
| added_ctxs = xhci_get_endpoint_flag(&ep->desc); |
| last_ctx = xhci_last_valid_endpoint(added_ctxs); |
| if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { |
| /* FIXME when we have to issue an evaluate endpoint command to |
| * deal with ep0 max packet size changing once we get the |
| * descriptors |
| */ |
| xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", |
| __func__, added_ctxs); |
| return 0; |
| } |
| |
| if (!xhci->devs || !xhci->devs[udev->slot_id]) { |
| xhci_warn(xhci, "xHCI %s called with unaddressed device\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| in_ctx = xhci->devs[udev->slot_id]->in_ctx; |
| out_ctx = xhci->devs[udev->slot_id]->out_ctx; |
| ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); |
| ep_index = xhci_get_endpoint_index(&ep->desc); |
| ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); |
| /* If the HCD has already noted the endpoint is enabled, |
| * ignore this request. |
| */ |
| if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) { |
| xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", |
| __func__, ep); |
| return 0; |
| } |
| |
| /* |
| * Configuration and alternate setting changes must be done in |
| * process context, not interrupt context (or so documenation |
| * for usb_set_interface() and usb_set_configuration() claim). |
| */ |
| if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id], |
| udev, ep, GFP_KERNEL) < 0) { |
| dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", |
| __func__, ep->desc.bEndpointAddress); |
| return -ENOMEM; |
| } |
| |
| ctrl_ctx->add_flags |= added_ctxs; |
| new_add_flags = ctrl_ctx->add_flags; |
| |
| /* If xhci_endpoint_disable() was called for this endpoint, but the |
| * xHC hasn't been notified yet through the check_bandwidth() call, |
| * this re-adds a new state for the endpoint from the new endpoint |
| * descriptors. We must drop and re-add this endpoint, so we leave the |
| * drop flags alone. |
| */ |
| new_drop_flags = ctrl_ctx->drop_flags; |
| |
| slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); |
| /* Update the last valid endpoint context, if we just added one past */ |
| if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) { |
| slot_ctx->dev_info &= ~LAST_CTX_MASK; |
| slot_ctx->dev_info |= LAST_CTX(last_ctx); |
| } |
| new_slot_info = slot_ctx->dev_info; |
| |
| /* Store the usb_device pointer for later use */ |
| ep->hcpriv = udev; |
| |
| xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", |
| (unsigned int) ep->desc.bEndpointAddress, |
| udev->slot_id, |
| (unsigned int) new_drop_flags, |
| (unsigned int) new_add_flags, |
| (unsigned int) new_slot_info); |
| return 0; |
| } |
| |
| static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) |
| { |
| struct xhci_input_control_ctx *ctrl_ctx; |
| struct xhci_ep_ctx *ep_ctx; |
| struct xhci_slot_ctx *slot_ctx; |
| int i; |
| |
| /* When a device's add flag and drop flag are zero, any subsequent |
| * configure endpoint command will leave that endpoint's state |
| * untouched. Make sure we don't leave any old state in the input |
| * endpoint contexts. |
| */ |
| ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); |
| ctrl_ctx->drop_flags = 0; |
| ctrl_ctx->add_flags = 0; |
| slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); |
| slot_ctx->dev_info &= ~LAST_CTX_MASK; |
| /* Endpoint 0 is always valid */ |
| slot_ctx->dev_info |= LAST_CTX(1); |
| for (i = 1; i < 31; ++i) { |
| ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); |
| ep_ctx->ep_info = 0; |
| ep_ctx->ep_info2 = 0; |
| ep_ctx->deq = 0; |
| ep_ctx->tx_info = 0; |
| } |
| } |
| |
| static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, |
| struct usb_device *udev, int *cmd_status) |
| { |
| int ret; |
| |
| switch (*cmd_status) { |
| case COMP_ENOMEM: |
| dev_warn(&udev->dev, "Not enough host controller resources " |
| "for new device state.\n"); |
| ret = -ENOMEM; |
| /* FIXME: can we allocate more resources for the HC? */ |
| break; |
| case COMP_BW_ERR: |
| dev_warn(&udev->dev, "Not enough bandwidth " |
| "for new device state.\n"); |
| ret = -ENOSPC; |
| /* FIXME: can we go back to the old state? */ |
| break; |
| case COMP_TRB_ERR: |
| /* the HCD set up something wrong */ |
| dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " |
| "add flag = 1, " |
| "and endpoint is not disabled.\n"); |
| ret = -EINVAL; |
| break; |
| case COMP_SUCCESS: |
| dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); |
| ret = 0; |
| break; |
| default: |
| xhci_err(xhci, "ERROR: unexpected command completion " |
| "code 0x%x.\n", *cmd_status); |
| ret = -EINVAL; |
| break; |
| } |
| return ret; |
| } |
| |
| static int xhci_evaluate_context_result(struct xhci_hcd *xhci, |
| struct usb_device *udev, int *cmd_status) |
| { |
| int ret; |
| struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; |
| |
| switch (*cmd_status) { |
| case COMP_EINVAL: |
| dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " |
| "context command.\n"); |
| ret = -EINVAL; |
| break; |
| case COMP_EBADSLT: |
| dev_warn(&udev->dev, "WARN: slot not enabled for" |
| "evaluate context command.\n"); |
| case COMP_CTX_STATE: |
| dev_warn(&udev->dev, "WARN: invalid context state for " |
| "evaluate context command.\n"); |
| xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); |
| ret = -EINVAL; |
| break; |
| case COMP_SUCCESS: |
| dev_dbg(&udev->dev, "Successful evaluate context command\n"); |
| ret = 0; |
| break; |
| default: |
| xhci_err(xhci, "ERROR: unexpected command completion " |
| "code 0x%x.\n", *cmd_status); |
| ret = -EINVAL; |
| break; |
| } |
| return ret; |
| } |
| |
| /* Issue a configure endpoint command or evaluate context command |
| * and wait for it to finish. |
| */ |
| static int xhci_configure_endpoint(struct xhci_hcd *xhci, |
| struct usb_device *udev, |
| struct xhci_command *command, |
| bool ctx_change, bool must_succeed) |
| { |
| int ret; |
| int timeleft; |
| unsigned long flags; |
| struct xhci_container_ctx *in_ctx; |
| struct completion *cmd_completion; |
| int *cmd_status; |
| struct xhci_virt_device *virt_dev; |
| |
| spin_lock_irqsave(&xhci->lock, flags); |
| virt_dev = xhci->devs[udev->slot_id]; |
| if (command) { |
| in_ctx = command->in_ctx; |
| cmd_completion = command->completion; |
| cmd_status = &command->status; |
| command->command_trb = xhci->cmd_ring->enqueue; |
| list_add_tail(&command->cmd_list, &virt_dev->cmd_list); |
| } else { |
| in_ctx = virt_dev->in_ctx; |
| cmd_completion = &virt_dev->cmd_completion; |
| cmd_status = &virt_dev->cmd_status; |
| } |
| |
| if (!ctx_change) |
| ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, |
| udev->slot_id, must_succeed); |
| else |
| ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, |
| udev->slot_id); |
| if (ret < 0) { |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); |
| return -ENOMEM; |
| } |
| xhci_ring_cmd_db(xhci); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| |
| /* Wait for the configure endpoint command to complete */ |
| timeleft = wait_for_completion_interruptible_timeout( |
| cmd_completion, |
| USB_CTRL_SET_TIMEOUT); |
| if (timeleft <= 0) { |
| xhci_warn(xhci, "%s while waiting for %s command\n", |
| timeleft == 0 ? "Timeout" : "Signal", |
| ctx_change == 0 ? |
| "configure endpoint" : |
| "evaluate context"); |
| /* FIXME cancel the configure endpoint command */ |
| return -ETIME; |
| } |
| |
| if (!ctx_change) |
| return xhci_configure_endpoint_result(xhci, udev, cmd_status); |
| return xhci_evaluate_context_result(xhci, udev, cmd_status); |
| } |
| |
| /* Called after one or more calls to xhci_add_endpoint() or |
| * xhci_drop_endpoint(). If this call fails, the USB core is expected |
| * to call xhci_reset_bandwidth(). |
| * |
| * Since we are in the middle of changing either configuration or |
| * installing a new alt setting, the USB core won't allow URBs to be |
| * enqueued for any endpoint on the old config or interface. Nothing |
| * else should be touching the xhci->devs[slot_id] structure, so we |
| * don't need to take the xhci->lock for manipulating that. |
| */ |
| int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) |
| { |
| int i; |
| int ret = 0; |
| struct xhci_hcd *xhci; |
| struct xhci_virt_device *virt_dev; |
| struct xhci_input_control_ctx *ctrl_ctx; |
| struct xhci_slot_ctx *slot_ctx; |
| |
| ret = xhci_check_args(hcd, udev, NULL, 0, __func__); |
| if (ret <= 0) |
| return ret; |
| xhci = hcd_to_xhci(hcd); |
| |
| if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) { |
| xhci_warn(xhci, "xHCI %s called with unaddressed device\n", |
| __func__); |
| return -EINVAL; |
| } |
| xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); |
| virt_dev = xhci->devs[udev->slot_id]; |
| |
| /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ |
| ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); |
| ctrl_ctx->add_flags |= SLOT_FLAG; |
| ctrl_ctx->add_flags &= ~EP0_FLAG; |
| ctrl_ctx->drop_flags &= ~SLOT_FLAG; |
| ctrl_ctx->drop_flags &= ~EP0_FLAG; |
| xhci_dbg(xhci, "New Input Control Context:\n"); |
| slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); |
| xhci_dbg_ctx(xhci, virt_dev->in_ctx, |
| LAST_CTX_TO_EP_NUM(slot_ctx->dev_info)); |
| |
| ret = xhci_configure_endpoint(xhci, udev, NULL, |
| false, false); |
| if (ret) { |
| /* Callee should call reset_bandwidth() */ |
| return ret; |
| } |
| |
| xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); |
| xhci_dbg_ctx(xhci, virt_dev->out_ctx, |
| LAST_CTX_TO_EP_NUM(slot_ctx->dev_info)); |
| |
| xhci_zero_in_ctx(xhci, virt_dev); |
| /* Free any old rings */ |
| for (i = 1; i < 31; ++i) { |
| if (virt_dev->eps[i].new_ring) { |
| xhci_ring_free(xhci, virt_dev->eps[i].ring); |
| virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; |
| virt_dev->eps[i].new_ring = NULL; |
| } |
| } |
| |
| return ret; |
| } |
| |
| void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) |
| { |
| struct xhci_hcd *xhci; |
| struct xhci_virt_device *virt_dev; |
| int i, ret; |
| |
| ret = xhci_check_args(hcd, udev, NULL, 0, __func__); |
| if (ret <= 0) |
| return; |
| xhci = hcd_to_xhci(hcd); |
| |
| if (!xhci->devs || !xhci->devs[udev->slot_id]) { |
| xhci_warn(xhci, "xHCI %s called with unaddressed device\n", |
| __func__); |
| return; |
| } |
| xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); |
| virt_dev = xhci->devs[udev->slot_id]; |
| /* Free any rings allocated for added endpoints */ |
| for (i = 0; i < 31; ++i) { |
| if (virt_dev->eps[i].new_ring) { |
| xhci_ring_free(xhci, virt_dev->eps[i].new_ring); |
| virt_dev->eps[i].new_ring = NULL; |
| } |
| } |
| xhci_zero_in_ctx(xhci, virt_dev); |
| } |
| |
| static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, |
| struct xhci_container_ctx *in_ctx, |
| struct xhci_container_ctx *out_ctx, |
| u32 add_flags, u32 drop_flags) |
| { |
| struct xhci_input_control_ctx *ctrl_ctx; |
| ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); |
| ctrl_ctx->add_flags = add_flags; |
| ctrl_ctx->drop_flags = drop_flags; |
| xhci_slot_copy(xhci, in_ctx, out_ctx); |
| ctrl_ctx->add_flags |= SLOT_FLAG; |
| |
| xhci_dbg(xhci, "Input Context:\n"); |
| xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); |
| } |
| |
| void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, |
| unsigned int slot_id, unsigned int ep_index, |
| struct xhci_dequeue_state *deq_state) |
| { |
| struct xhci_container_ctx *in_ctx; |
| struct xhci_ep_ctx *ep_ctx; |
| u32 added_ctxs; |
| dma_addr_t addr; |
| |
| xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, |
| xhci->devs[slot_id]->out_ctx, ep_index); |
| in_ctx = xhci->devs[slot_id]->in_ctx; |
| ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); |
| addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, |
| deq_state->new_deq_ptr); |
| if (addr == 0) { |
| xhci_warn(xhci, "WARN Cannot submit config ep after " |
| "reset ep command\n"); |
| xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", |
| deq_state->new_deq_seg, |
| deq_state->new_deq_ptr); |
| return; |
| } |
| ep_ctx->deq = addr | deq_state->new_cycle_state; |
| |
| added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); |
| xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, |
| xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); |
| } |
| |
| void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, |
| struct usb_device *udev, unsigned int ep_index) |
| { |
| struct xhci_dequeue_state deq_state; |
| struct xhci_virt_ep *ep; |
| |
| xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); |
| ep = &xhci->devs[udev->slot_id]->eps[ep_index]; |
| /* We need to move the HW's dequeue pointer past this TD, |
| * or it will attempt to resend it on the next doorbell ring. |
| */ |
| xhci_find_new_dequeue_state(xhci, udev->slot_id, |
| ep_index, ep->stopped_td, |
| &deq_state); |
| |
| /* HW with the reset endpoint quirk will use the saved dequeue state to |
| * issue a configure endpoint command later. |
| */ |
| if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { |
| xhci_dbg(xhci, "Queueing new dequeue state\n"); |
| xhci_queue_new_dequeue_state(xhci, udev->slot_id, |
| ep_index, &deq_state); |
| } else { |
| /* Better hope no one uses the input context between now and the |
| * reset endpoint completion! |
| */ |
| xhci_dbg(xhci, "Setting up input context for " |
| "configure endpoint command\n"); |
| xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, |
| ep_index, &deq_state); |
| } |
| } |
| |
| /* Deal with stalled endpoints. The core should have sent the control message |
| * to clear the halt condition. However, we need to make the xHCI hardware |
| * reset its sequence number, since a device will expect a sequence number of |
| * zero after the halt condition is cleared. |
| * Context: in_interrupt |
| */ |
| void xhci_endpoint_reset(struct usb_hcd *hcd, |
| struct usb_host_endpoint *ep) |
| { |
| struct xhci_hcd *xhci; |
| struct usb_device *udev; |
| unsigned int ep_index; |
| unsigned long flags; |
| int ret; |
| struct xhci_virt_ep *virt_ep; |
| |
| xhci = hcd_to_xhci(hcd); |
| udev = (struct usb_device *) ep->hcpriv; |
| /* Called with a root hub endpoint (or an endpoint that wasn't added |
| * with xhci_add_endpoint() |
| */ |
| if (!ep->hcpriv) |
| return; |
| ep_index = xhci_get_endpoint_index(&ep->desc); |
| virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; |
| if (!virt_ep->stopped_td) { |
| xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", |
| ep->desc.bEndpointAddress); |
| return; |
| } |
| if (usb_endpoint_xfer_control(&ep->desc)) { |
| xhci_dbg(xhci, "Control endpoint stall already handled.\n"); |
| return; |
| } |
| |
| xhci_dbg(xhci, "Queueing reset endpoint command\n"); |
| spin_lock_irqsave(&xhci->lock, flags); |
| ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); |
| /* |
| * Can't change the ring dequeue pointer until it's transitioned to the |
| * stopped state, which is only upon a successful reset endpoint |
| * command. Better hope that last command worked! |
| */ |
| if (!ret) { |
| xhci_cleanup_stalled_ring(xhci, udev, ep_index); |
| kfree(virt_ep->stopped_td); |
| xhci_ring_cmd_db(xhci); |
| } |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| |
| if (ret) |
| xhci_warn(xhci, "FIXME allocate a new ring segment\n"); |
| } |
| |
| /* |
| * At this point, the struct usb_device is about to go away, the device has |
| * disconnected, and all traffic has been stopped and the endpoints have been |
| * disabled. Free any HC data structures associated with that device. |
| */ |
| void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| unsigned long flags; |
| |
| if (udev->slot_id == 0) |
| return; |
| |
| spin_lock_irqsave(&xhci->lock, flags); |
| if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); |
| return; |
| } |
| xhci_ring_cmd_db(xhci); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| /* |
| * Event command completion handler will free any data structures |
| * associated with the slot. XXX Can free sleep? |
| */ |
| } |
| |
| /* |
| * Returns 0 if the xHC ran out of device slots, the Enable Slot command |
| * timed out, or allocating memory failed. Returns 1 on success. |
| */ |
| int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| unsigned long flags; |
| int timeleft; |
| int ret; |
| |
| spin_lock_irqsave(&xhci->lock, flags); |
| ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); |
| if (ret) { |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); |
| return 0; |
| } |
| xhci_ring_cmd_db(xhci); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| |
| /* XXX: how much time for xHC slot assignment? */ |
| timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, |
| USB_CTRL_SET_TIMEOUT); |
| if (timeleft <= 0) { |
| xhci_warn(xhci, "%s while waiting for a slot\n", |
| timeleft == 0 ? "Timeout" : "Signal"); |
| /* FIXME cancel the enable slot request */ |
| return 0; |
| } |
| |
| if (!xhci->slot_id) { |
| xhci_err(xhci, "Error while assigning device slot ID\n"); |
| return 0; |
| } |
| /* xhci_alloc_virt_device() does not touch rings; no need to lock */ |
| if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) { |
| /* Disable slot, if we can do it without mem alloc */ |
| xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); |
| spin_lock_irqsave(&xhci->lock, flags); |
| if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) |
| xhci_ring_cmd_db(xhci); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| return 0; |
| } |
| udev->slot_id = xhci->slot_id; |
| /* Is this a LS or FS device under a HS hub? */ |
| /* Hub or peripherial? */ |
| return 1; |
| } |
| |
| /* |
| * Issue an Address Device command (which will issue a SetAddress request to |
| * the device). |
| * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so |
| * we should only issue and wait on one address command at the same time. |
| * |
| * We add one to the device address issued by the hardware because the USB core |
| * uses address 1 for the root hubs (even though they're not really devices). |
| */ |
| int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) |
| { |
| unsigned long flags; |
| int timeleft; |
| struct xhci_virt_device *virt_dev; |
| int ret = 0; |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| struct xhci_slot_ctx *slot_ctx; |
| struct xhci_input_control_ctx *ctrl_ctx; |
| u64 temp_64; |
| |
| if (!udev->slot_id) { |
| xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); |
| return -EINVAL; |
| } |
| |
| virt_dev = xhci->devs[udev->slot_id]; |
| |
| /* If this is a Set Address to an unconfigured device, setup ep 0 */ |
| if (!udev->config) |
| xhci_setup_addressable_virt_dev(xhci, udev); |
| /* Otherwise, assume the core has the device configured how it wants */ |
| xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); |
| xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); |
| |
| spin_lock_irqsave(&xhci->lock, flags); |
| ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, |
| udev->slot_id); |
| if (ret) { |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); |
| return ret; |
| } |
| xhci_ring_cmd_db(xhci); |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| |
| /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ |
| timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, |
| USB_CTRL_SET_TIMEOUT); |
| /* FIXME: From section 4.3.4: "Software shall be responsible for timing |
| * the SetAddress() "recovery interval" required by USB and aborting the |
| * command on a timeout. |
| */ |
| if (timeleft <= 0) { |
| xhci_warn(xhci, "%s while waiting for a slot\n", |
| timeleft == 0 ? "Timeout" : "Signal"); |
| /* FIXME cancel the address device command */ |
| return -ETIME; |
| } |
| |
| switch (virt_dev->cmd_status) { |
| case COMP_CTX_STATE: |
| case COMP_EBADSLT: |
| xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", |
| udev->slot_id); |
| ret = -EINVAL; |
| break; |
| case COMP_TX_ERR: |
| dev_warn(&udev->dev, "Device not responding to set address.\n"); |
| ret = -EPROTO; |
| break; |
| case COMP_SUCCESS: |
| xhci_dbg(xhci, "Successful Address Device command\n"); |
| break; |
| default: |
| xhci_err(xhci, "ERROR: unexpected command completion " |
| "code 0x%x.\n", virt_dev->cmd_status); |
| xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); |
| xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); |
| ret = -EINVAL; |
| break; |
| } |
| if (ret) { |
| return ret; |
| } |
| temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); |
| xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); |
| xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", |
| udev->slot_id, |
| &xhci->dcbaa->dev_context_ptrs[udev->slot_id], |
| (unsigned long long) |
| xhci->dcbaa->dev_context_ptrs[udev->slot_id]); |
| xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", |
| (unsigned long long)virt_dev->out_ctx->dma); |
| xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); |
| xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); |
| xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); |
| xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); |
| /* |
| * USB core uses address 1 for the roothubs, so we add one to the |
| * address given back to us by the HC. |
| */ |
| slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); |
| udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1; |
| /* Zero the input context control for later use */ |
| ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); |
| ctrl_ctx->add_flags = 0; |
| ctrl_ctx->drop_flags = 0; |
| |
| xhci_dbg(xhci, "Device address = %d\n", udev->devnum); |
| /* XXX Meh, not sure if anyone else but choose_address uses this. */ |
| set_bit(udev->devnum, udev->bus->devmap.devicemap); |
| |
| return 0; |
| } |
| |
| /* Once a hub descriptor is fetched for a device, we need to update the xHC's |
| * internal data structures for the device. |
| */ |
| int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, |
| struct usb_tt *tt, gfp_t mem_flags) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| struct xhci_virt_device *vdev; |
| struct xhci_command *config_cmd; |
| struct xhci_input_control_ctx *ctrl_ctx; |
| struct xhci_slot_ctx *slot_ctx; |
| unsigned long flags; |
| unsigned think_time; |
| int ret; |
| |
| /* Ignore root hubs */ |
| if (!hdev->parent) |
| return 0; |
| |
| vdev = xhci->devs[hdev->slot_id]; |
| if (!vdev) { |
| xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); |
| return -EINVAL; |
| } |
| config_cmd = xhci_alloc_command(xhci, true, mem_flags); |
| if (!config_cmd) { |
| xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); |
| return -ENOMEM; |
| } |
| |
| spin_lock_irqsave(&xhci->lock, flags); |
| xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); |
| ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); |
| ctrl_ctx->add_flags |= SLOT_FLAG; |
| slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); |
| slot_ctx->dev_info |= DEV_HUB; |
| if (tt->multi) |
| slot_ctx->dev_info |= DEV_MTT; |
| if (xhci->hci_version > 0x95) { |
| xhci_dbg(xhci, "xHCI version %x needs hub " |
| "TT think time and number of ports\n", |
| (unsigned int) xhci->hci_version); |
| slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild); |
| /* Set TT think time - convert from ns to FS bit times. |
| * 0 = 8 FS bit times, 1 = 16 FS bit times, |
| * 2 = 24 FS bit times, 3 = 32 FS bit times. |
| */ |
| think_time = tt->think_time; |
| if (think_time != 0) |
| think_time = (think_time / 666) - 1; |
| slot_ctx->tt_info |= TT_THINK_TIME(think_time); |
| } else { |
| xhci_dbg(xhci, "xHCI version %x doesn't need hub " |
| "TT think time or number of ports\n", |
| (unsigned int) xhci->hci_version); |
| } |
| slot_ctx->dev_state = 0; |
| spin_unlock_irqrestore(&xhci->lock, flags); |
| |
| xhci_dbg(xhci, "Set up %s for hub device.\n", |
| (xhci->hci_version > 0x95) ? |
| "configure endpoint" : "evaluate context"); |
| xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); |
| xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); |
| |
| /* Issue and wait for the configure endpoint or |
| * evaluate context command. |
| */ |
| if (xhci->hci_version > 0x95) |
| ret = xhci_configure_endpoint(xhci, hdev, config_cmd, |
| false, false); |
| else |
| ret = xhci_configure_endpoint(xhci, hdev, config_cmd, |
| true, false); |
| |
| xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); |
| xhci_dbg_ctx(xhci, vdev->out_ctx, 0); |
| |
| xhci_free_command(xhci, config_cmd); |
| return ret; |
| } |
| |
| int xhci_get_frame(struct usb_hcd *hcd) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| /* EHCI mods by the periodic size. Why? */ |
| return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; |
| } |
| |
| MODULE_DESCRIPTION(DRIVER_DESC); |
| MODULE_AUTHOR(DRIVER_AUTHOR); |
| MODULE_LICENSE("GPL"); |
| |
| static int __init xhci_hcd_init(void) |
| { |
| #ifdef CONFIG_PCI |
| int retval = 0; |
| |
| retval = xhci_register_pci(); |
| |
| if (retval < 0) { |
| printk(KERN_DEBUG "Problem registering PCI driver."); |
| return retval; |
| } |
| #endif |
| /* |
| * Check the compiler generated sizes of structures that must be laid |
| * out in specific ways for hardware access. |
| */ |
| BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); |
| BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); |
| BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); |
| /* xhci_device_control has eight fields, and also |
| * embeds one xhci_slot_ctx and 31 xhci_ep_ctx |
| */ |
| BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); |
| BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); |
| BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); |
| BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); |
| BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); |
| /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ |
| BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); |
| BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); |
| return 0; |
| } |
| module_init(xhci_hcd_init); |
| |
| static void __exit xhci_hcd_cleanup(void) |
| { |
| #ifdef CONFIG_PCI |
| xhci_unregister_pci(); |
| #endif |
| } |
| module_exit(xhci_hcd_cleanup); |