| /* |
| * This file is part of UBIFS. |
| * |
| * Copyright (C) 2006-2008 Nokia Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published by |
| * the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 51 |
| * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| * Authors: Artem Bityutskiy (Битюцкий Артём) |
| * Adrian Hunter |
| */ |
| |
| /* |
| * This file implements UBIFS initialization and VFS superblock operations. Some |
| * initialization stuff which is rather large and complex is placed at |
| * corresponding subsystems, but most of it is here. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/ctype.h> |
| #include <linux/kthread.h> |
| #include <linux/parser.h> |
| #include <linux/seq_file.h> |
| #include <linux/mount.h> |
| #include <linux/math64.h> |
| #include <linux/writeback.h> |
| #include "ubifs.h" |
| |
| /* |
| * Maximum amount of memory we may 'kmalloc()' without worrying that we are |
| * allocating too much. |
| */ |
| #define UBIFS_KMALLOC_OK (128*1024) |
| |
| /* Slab cache for UBIFS inodes */ |
| struct kmem_cache *ubifs_inode_slab; |
| |
| /* UBIFS TNC shrinker description */ |
| static struct shrinker ubifs_shrinker_info = { |
| .shrink = ubifs_shrinker, |
| .seeks = DEFAULT_SEEKS, |
| }; |
| |
| /** |
| * validate_inode - validate inode. |
| * @c: UBIFS file-system description object |
| * @inode: the inode to validate |
| * |
| * This is a helper function for 'ubifs_iget()' which validates various fields |
| * of a newly built inode to make sure they contain sane values and prevent |
| * possible vulnerabilities. Returns zero if the inode is all right and |
| * a non-zero error code if not. |
| */ |
| static int validate_inode(struct ubifs_info *c, const struct inode *inode) |
| { |
| int err; |
| const struct ubifs_inode *ui = ubifs_inode(inode); |
| |
| if (inode->i_size > c->max_inode_sz) { |
| ubifs_err("inode is too large (%lld)", |
| (long long)inode->i_size); |
| return 1; |
| } |
| |
| if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { |
| ubifs_err("unknown compression type %d", ui->compr_type); |
| return 2; |
| } |
| |
| if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) |
| return 3; |
| |
| if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) |
| return 4; |
| |
| if (ui->xattr && !S_ISREG(inode->i_mode)) |
| return 5; |
| |
| if (!ubifs_compr_present(ui->compr_type)) { |
| ubifs_warn("inode %lu uses '%s' compression, but it was not " |
| "compiled in", inode->i_ino, |
| ubifs_compr_name(ui->compr_type)); |
| } |
| |
| err = dbg_check_dir(c, inode); |
| return err; |
| } |
| |
| struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) |
| { |
| int err; |
| union ubifs_key key; |
| struct ubifs_ino_node *ino; |
| struct ubifs_info *c = sb->s_fs_info; |
| struct inode *inode; |
| struct ubifs_inode *ui; |
| |
| dbg_gen("inode %lu", inum); |
| |
| inode = iget_locked(sb, inum); |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| if (!(inode->i_state & I_NEW)) |
| return inode; |
| ui = ubifs_inode(inode); |
| |
| ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); |
| if (!ino) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| ino_key_init(c, &key, inode->i_ino); |
| |
| err = ubifs_tnc_lookup(c, &key, ino); |
| if (err) |
| goto out_ino; |
| |
| inode->i_flags |= (S_NOCMTIME | S_NOATIME); |
| set_nlink(inode, le32_to_cpu(ino->nlink)); |
| inode->i_uid = le32_to_cpu(ino->uid); |
| inode->i_gid = le32_to_cpu(ino->gid); |
| inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); |
| inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); |
| inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); |
| inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); |
| inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); |
| inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); |
| inode->i_mode = le32_to_cpu(ino->mode); |
| inode->i_size = le64_to_cpu(ino->size); |
| |
| ui->data_len = le32_to_cpu(ino->data_len); |
| ui->flags = le32_to_cpu(ino->flags); |
| ui->compr_type = le16_to_cpu(ino->compr_type); |
| ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); |
| ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); |
| ui->xattr_size = le32_to_cpu(ino->xattr_size); |
| ui->xattr_names = le32_to_cpu(ino->xattr_names); |
| ui->synced_i_size = ui->ui_size = inode->i_size; |
| |
| ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; |
| |
| err = validate_inode(c, inode); |
| if (err) |
| goto out_invalid; |
| |
| /* Disable read-ahead */ |
| inode->i_mapping->backing_dev_info = &c->bdi; |
| |
| switch (inode->i_mode & S_IFMT) { |
| case S_IFREG: |
| inode->i_mapping->a_ops = &ubifs_file_address_operations; |
| inode->i_op = &ubifs_file_inode_operations; |
| inode->i_fop = &ubifs_file_operations; |
| if (ui->xattr) { |
| ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); |
| if (!ui->data) { |
| err = -ENOMEM; |
| goto out_ino; |
| } |
| memcpy(ui->data, ino->data, ui->data_len); |
| ((char *)ui->data)[ui->data_len] = '\0'; |
| } else if (ui->data_len != 0) { |
| err = 10; |
| goto out_invalid; |
| } |
| break; |
| case S_IFDIR: |
| inode->i_op = &ubifs_dir_inode_operations; |
| inode->i_fop = &ubifs_dir_operations; |
| if (ui->data_len != 0) { |
| err = 11; |
| goto out_invalid; |
| } |
| break; |
| case S_IFLNK: |
| inode->i_op = &ubifs_symlink_inode_operations; |
| if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { |
| err = 12; |
| goto out_invalid; |
| } |
| ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); |
| if (!ui->data) { |
| err = -ENOMEM; |
| goto out_ino; |
| } |
| memcpy(ui->data, ino->data, ui->data_len); |
| ((char *)ui->data)[ui->data_len] = '\0'; |
| break; |
| case S_IFBLK: |
| case S_IFCHR: |
| { |
| dev_t rdev; |
| union ubifs_dev_desc *dev; |
| |
| ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); |
| if (!ui->data) { |
| err = -ENOMEM; |
| goto out_ino; |
| } |
| |
| dev = (union ubifs_dev_desc *)ino->data; |
| if (ui->data_len == sizeof(dev->new)) |
| rdev = new_decode_dev(le32_to_cpu(dev->new)); |
| else if (ui->data_len == sizeof(dev->huge)) |
| rdev = huge_decode_dev(le64_to_cpu(dev->huge)); |
| else { |
| err = 13; |
| goto out_invalid; |
| } |
| memcpy(ui->data, ino->data, ui->data_len); |
| inode->i_op = &ubifs_file_inode_operations; |
| init_special_inode(inode, inode->i_mode, rdev); |
| break; |
| } |
| case S_IFSOCK: |
| case S_IFIFO: |
| inode->i_op = &ubifs_file_inode_operations; |
| init_special_inode(inode, inode->i_mode, 0); |
| if (ui->data_len != 0) { |
| err = 14; |
| goto out_invalid; |
| } |
| break; |
| default: |
| err = 15; |
| goto out_invalid; |
| } |
| |
| kfree(ino); |
| ubifs_set_inode_flags(inode); |
| unlock_new_inode(inode); |
| return inode; |
| |
| out_invalid: |
| ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); |
| dbg_dump_node(c, ino); |
| dbg_dump_inode(c, inode); |
| err = -EINVAL; |
| out_ino: |
| kfree(ino); |
| out: |
| ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); |
| iget_failed(inode); |
| return ERR_PTR(err); |
| } |
| |
| static struct inode *ubifs_alloc_inode(struct super_block *sb) |
| { |
| struct ubifs_inode *ui; |
| |
| ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); |
| if (!ui) |
| return NULL; |
| |
| memset((void *)ui + sizeof(struct inode), 0, |
| sizeof(struct ubifs_inode) - sizeof(struct inode)); |
| mutex_init(&ui->ui_mutex); |
| spin_lock_init(&ui->ui_lock); |
| return &ui->vfs_inode; |
| }; |
| |
| static void ubifs_i_callback(struct rcu_head *head) |
| { |
| struct inode *inode = container_of(head, struct inode, i_rcu); |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| kmem_cache_free(ubifs_inode_slab, ui); |
| } |
| |
| static void ubifs_destroy_inode(struct inode *inode) |
| { |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| |
| kfree(ui->data); |
| call_rcu(&inode->i_rcu, ubifs_i_callback); |
| } |
| |
| /* |
| * Note, Linux write-back code calls this without 'i_mutex'. |
| */ |
| static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) |
| { |
| int err = 0; |
| struct ubifs_info *c = inode->i_sb->s_fs_info; |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| |
| ubifs_assert(!ui->xattr); |
| if (is_bad_inode(inode)) |
| return 0; |
| |
| mutex_lock(&ui->ui_mutex); |
| /* |
| * Due to races between write-back forced by budgeting |
| * (see 'sync_some_inodes()') and pdflush write-back, the inode may |
| * have already been synchronized, do not do this again. This might |
| * also happen if it was synchronized in an VFS operation, e.g. |
| * 'ubifs_link()'. |
| */ |
| if (!ui->dirty) { |
| mutex_unlock(&ui->ui_mutex); |
| return 0; |
| } |
| |
| /* |
| * As an optimization, do not write orphan inodes to the media just |
| * because this is not needed. |
| */ |
| dbg_gen("inode %lu, mode %#x, nlink %u", |
| inode->i_ino, (int)inode->i_mode, inode->i_nlink); |
| if (inode->i_nlink) { |
| err = ubifs_jnl_write_inode(c, inode); |
| if (err) |
| ubifs_err("can't write inode %lu, error %d", |
| inode->i_ino, err); |
| else |
| err = dbg_check_inode_size(c, inode, ui->ui_size); |
| } |
| |
| ui->dirty = 0; |
| mutex_unlock(&ui->ui_mutex); |
| ubifs_release_dirty_inode_budget(c, ui); |
| return err; |
| } |
| |
| static void ubifs_evict_inode(struct inode *inode) |
| { |
| int err; |
| struct ubifs_info *c = inode->i_sb->s_fs_info; |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| |
| if (ui->xattr) |
| /* |
| * Extended attribute inode deletions are fully handled in |
| * 'ubifs_removexattr()'. These inodes are special and have |
| * limited usage, so there is nothing to do here. |
| */ |
| goto out; |
| |
| dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); |
| ubifs_assert(!atomic_read(&inode->i_count)); |
| |
| truncate_inode_pages(&inode->i_data, 0); |
| |
| if (inode->i_nlink) |
| goto done; |
| |
| if (is_bad_inode(inode)) |
| goto out; |
| |
| ui->ui_size = inode->i_size = 0; |
| err = ubifs_jnl_delete_inode(c, inode); |
| if (err) |
| /* |
| * Worst case we have a lost orphan inode wasting space, so a |
| * simple error message is OK here. |
| */ |
| ubifs_err("can't delete inode %lu, error %d", |
| inode->i_ino, err); |
| |
| out: |
| if (ui->dirty) |
| ubifs_release_dirty_inode_budget(c, ui); |
| else { |
| /* We've deleted something - clean the "no space" flags */ |
| c->bi.nospace = c->bi.nospace_rp = 0; |
| smp_wmb(); |
| } |
| done: |
| clear_inode(inode); |
| } |
| |
| static void ubifs_dirty_inode(struct inode *inode, int flags) |
| { |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| |
| ubifs_assert(mutex_is_locked(&ui->ui_mutex)); |
| if (!ui->dirty) { |
| ui->dirty = 1; |
| dbg_gen("inode %lu", inode->i_ino); |
| } |
| } |
| |
| static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) |
| { |
| struct ubifs_info *c = dentry->d_sb->s_fs_info; |
| unsigned long long free; |
| __le32 *uuid = (__le32 *)c->uuid; |
| |
| free = ubifs_get_free_space(c); |
| dbg_gen("free space %lld bytes (%lld blocks)", |
| free, free >> UBIFS_BLOCK_SHIFT); |
| |
| buf->f_type = UBIFS_SUPER_MAGIC; |
| buf->f_bsize = UBIFS_BLOCK_SIZE; |
| buf->f_blocks = c->block_cnt; |
| buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; |
| if (free > c->report_rp_size) |
| buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; |
| else |
| buf->f_bavail = 0; |
| buf->f_files = 0; |
| buf->f_ffree = 0; |
| buf->f_namelen = UBIFS_MAX_NLEN; |
| buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); |
| buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); |
| ubifs_assert(buf->f_bfree <= c->block_cnt); |
| return 0; |
| } |
| |
| static int ubifs_show_options(struct seq_file *s, struct dentry *root) |
| { |
| struct ubifs_info *c = root->d_sb->s_fs_info; |
| |
| if (c->mount_opts.unmount_mode == 2) |
| seq_printf(s, ",fast_unmount"); |
| else if (c->mount_opts.unmount_mode == 1) |
| seq_printf(s, ",norm_unmount"); |
| |
| if (c->mount_opts.bulk_read == 2) |
| seq_printf(s, ",bulk_read"); |
| else if (c->mount_opts.bulk_read == 1) |
| seq_printf(s, ",no_bulk_read"); |
| |
| if (c->mount_opts.chk_data_crc == 2) |
| seq_printf(s, ",chk_data_crc"); |
| else if (c->mount_opts.chk_data_crc == 1) |
| seq_printf(s, ",no_chk_data_crc"); |
| |
| if (c->mount_opts.override_compr) { |
| seq_printf(s, ",compr=%s", |
| ubifs_compr_name(c->mount_opts.compr_type)); |
| } |
| |
| return 0; |
| } |
| |
| static int ubifs_sync_fs(struct super_block *sb, int wait) |
| { |
| int i, err; |
| struct ubifs_info *c = sb->s_fs_info; |
| |
| /* |
| * Zero @wait is just an advisory thing to help the file system shove |
| * lots of data into the queues, and there will be the second |
| * '->sync_fs()' call, with non-zero @wait. |
| */ |
| if (!wait) |
| return 0; |
| |
| /* |
| * Synchronize write buffers, because 'ubifs_run_commit()' does not |
| * do this if it waits for an already running commit. |
| */ |
| for (i = 0; i < c->jhead_cnt; i++) { |
| err = ubifs_wbuf_sync(&c->jheads[i].wbuf); |
| if (err) |
| return err; |
| } |
| |
| /* |
| * Strictly speaking, it is not necessary to commit the journal here, |
| * synchronizing write-buffers would be enough. But committing makes |
| * UBIFS free space predictions much more accurate, so we want to let |
| * the user be able to get more accurate results of 'statfs()' after |
| * they synchronize the file system. |
| */ |
| err = ubifs_run_commit(c); |
| if (err) |
| return err; |
| |
| return ubi_sync(c->vi.ubi_num); |
| } |
| |
| /** |
| * init_constants_early - initialize UBIFS constants. |
| * @c: UBIFS file-system description object |
| * |
| * This function initialize UBIFS constants which do not need the superblock to |
| * be read. It also checks that the UBI volume satisfies basic UBIFS |
| * requirements. Returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| static int init_constants_early(struct ubifs_info *c) |
| { |
| if (c->vi.corrupted) { |
| ubifs_warn("UBI volume is corrupted - read-only mode"); |
| c->ro_media = 1; |
| } |
| |
| if (c->di.ro_mode) { |
| ubifs_msg("read-only UBI device"); |
| c->ro_media = 1; |
| } |
| |
| if (c->vi.vol_type == UBI_STATIC_VOLUME) { |
| ubifs_msg("static UBI volume - read-only mode"); |
| c->ro_media = 1; |
| } |
| |
| c->leb_cnt = c->vi.size; |
| c->leb_size = c->vi.usable_leb_size; |
| c->leb_start = c->di.leb_start; |
| c->half_leb_size = c->leb_size / 2; |
| c->min_io_size = c->di.min_io_size; |
| c->min_io_shift = fls(c->min_io_size) - 1; |
| c->max_write_size = c->di.max_write_size; |
| c->max_write_shift = fls(c->max_write_size) - 1; |
| |
| if (c->leb_size < UBIFS_MIN_LEB_SZ) { |
| ubifs_err("too small LEBs (%d bytes), min. is %d bytes", |
| c->leb_size, UBIFS_MIN_LEB_SZ); |
| return -EINVAL; |
| } |
| |
| if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { |
| ubifs_err("too few LEBs (%d), min. is %d", |
| c->leb_cnt, UBIFS_MIN_LEB_CNT); |
| return -EINVAL; |
| } |
| |
| if (!is_power_of_2(c->min_io_size)) { |
| ubifs_err("bad min. I/O size %d", c->min_io_size); |
| return -EINVAL; |
| } |
| |
| /* |
| * Maximum write size has to be greater or equivalent to min. I/O |
| * size, and be multiple of min. I/O size. |
| */ |
| if (c->max_write_size < c->min_io_size || |
| c->max_write_size % c->min_io_size || |
| !is_power_of_2(c->max_write_size)) { |
| ubifs_err("bad write buffer size %d for %d min. I/O unit", |
| c->max_write_size, c->min_io_size); |
| return -EINVAL; |
| } |
| |
| /* |
| * UBIFS aligns all node to 8-byte boundary, so to make function in |
| * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is |
| * less than 8. |
| */ |
| if (c->min_io_size < 8) { |
| c->min_io_size = 8; |
| c->min_io_shift = 3; |
| if (c->max_write_size < c->min_io_size) { |
| c->max_write_size = c->min_io_size; |
| c->max_write_shift = c->min_io_shift; |
| } |
| } |
| |
| c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); |
| c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); |
| |
| /* |
| * Initialize node length ranges which are mostly needed for node |
| * length validation. |
| */ |
| c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; |
| c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; |
| c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; |
| c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; |
| c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; |
| c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; |
| |
| c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; |
| c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; |
| c->ranges[UBIFS_ORPH_NODE].min_len = |
| UBIFS_ORPH_NODE_SZ + sizeof(__le64); |
| c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; |
| c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; |
| c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; |
| c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; |
| c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; |
| c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; |
| c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; |
| /* |
| * Minimum indexing node size is amended later when superblock is |
| * read and the key length is known. |
| */ |
| c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; |
| /* |
| * Maximum indexing node size is amended later when superblock is |
| * read and the fanout is known. |
| */ |
| c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; |
| |
| /* |
| * Initialize dead and dark LEB space watermarks. See gc.c for comments |
| * about these values. |
| */ |
| c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); |
| c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); |
| |
| /* |
| * Calculate how many bytes would be wasted at the end of LEB if it was |
| * fully filled with data nodes of maximum size. This is used in |
| * calculations when reporting free space. |
| */ |
| c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; |
| |
| /* Buffer size for bulk-reads */ |
| c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; |
| if (c->max_bu_buf_len > c->leb_size) |
| c->max_bu_buf_len = c->leb_size; |
| return 0; |
| } |
| |
| /** |
| * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. |
| * @c: UBIFS file-system description object |
| * @lnum: LEB the write-buffer was synchronized to |
| * @free: how many free bytes left in this LEB |
| * @pad: how many bytes were padded |
| * |
| * This is a callback function which is called by the I/O unit when the |
| * write-buffer is synchronized. We need this to correctly maintain space |
| * accounting in bud logical eraseblocks. This function returns zero in case of |
| * success and a negative error code in case of failure. |
| * |
| * This function actually belongs to the journal, but we keep it here because |
| * we want to keep it static. |
| */ |
| static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) |
| { |
| return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); |
| } |
| |
| /* |
| * init_constants_sb - initialize UBIFS constants. |
| * @c: UBIFS file-system description object |
| * |
| * This is a helper function which initializes various UBIFS constants after |
| * the superblock has been read. It also checks various UBIFS parameters and |
| * makes sure they are all right. Returns zero in case of success and a |
| * negative error code in case of failure. |
| */ |
| static int init_constants_sb(struct ubifs_info *c) |
| { |
| int tmp, err; |
| long long tmp64; |
| |
| c->main_bytes = (long long)c->main_lebs * c->leb_size; |
| c->max_znode_sz = sizeof(struct ubifs_znode) + |
| c->fanout * sizeof(struct ubifs_zbranch); |
| |
| tmp = ubifs_idx_node_sz(c, 1); |
| c->ranges[UBIFS_IDX_NODE].min_len = tmp; |
| c->min_idx_node_sz = ALIGN(tmp, 8); |
| |
| tmp = ubifs_idx_node_sz(c, c->fanout); |
| c->ranges[UBIFS_IDX_NODE].max_len = tmp; |
| c->max_idx_node_sz = ALIGN(tmp, 8); |
| |
| /* Make sure LEB size is large enough to fit full commit */ |
| tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; |
| tmp = ALIGN(tmp, c->min_io_size); |
| if (tmp > c->leb_size) { |
| dbg_err("too small LEB size %d, at least %d needed", |
| c->leb_size, tmp); |
| return -EINVAL; |
| } |
| |
| /* |
| * Make sure that the log is large enough to fit reference nodes for |
| * all buds plus one reserved LEB. |
| */ |
| tmp64 = c->max_bud_bytes + c->leb_size - 1; |
| c->max_bud_cnt = div_u64(tmp64, c->leb_size); |
| tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); |
| tmp /= c->leb_size; |
| tmp += 1; |
| if (c->log_lebs < tmp) { |
| dbg_err("too small log %d LEBs, required min. %d LEBs", |
| c->log_lebs, tmp); |
| return -EINVAL; |
| } |
| |
| /* |
| * When budgeting we assume worst-case scenarios when the pages are not |
| * be compressed and direntries are of the maximum size. |
| * |
| * Note, data, which may be stored in inodes is budgeted separately, so |
| * it is not included into 'c->bi.inode_budget'. |
| */ |
| c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; |
| c->bi.inode_budget = UBIFS_INO_NODE_SZ; |
| c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; |
| |
| /* |
| * When the amount of flash space used by buds becomes |
| * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. |
| * The writers are unblocked when the commit is finished. To avoid |
| * writers to be blocked UBIFS initiates background commit in advance, |
| * when number of bud bytes becomes above the limit defined below. |
| */ |
| c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; |
| |
| /* |
| * Ensure minimum journal size. All the bytes in the journal heads are |
| * considered to be used, when calculating the current journal usage. |
| * Consequently, if the journal is too small, UBIFS will treat it as |
| * always full. |
| */ |
| tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; |
| if (c->bg_bud_bytes < tmp64) |
| c->bg_bud_bytes = tmp64; |
| if (c->max_bud_bytes < tmp64 + c->leb_size) |
| c->max_bud_bytes = tmp64 + c->leb_size; |
| |
| err = ubifs_calc_lpt_geom(c); |
| if (err) |
| return err; |
| |
| /* Initialize effective LEB size used in budgeting calculations */ |
| c->idx_leb_size = c->leb_size - c->max_idx_node_sz; |
| return 0; |
| } |
| |
| /* |
| * init_constants_master - initialize UBIFS constants. |
| * @c: UBIFS file-system description object |
| * |
| * This is a helper function which initializes various UBIFS constants after |
| * the master node has been read. It also checks various UBIFS parameters and |
| * makes sure they are all right. |
| */ |
| static void init_constants_master(struct ubifs_info *c) |
| { |
| long long tmp64; |
| |
| c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); |
| c->report_rp_size = ubifs_reported_space(c, c->rp_size); |
| |
| /* |
| * Calculate total amount of FS blocks. This number is not used |
| * internally because it does not make much sense for UBIFS, but it is |
| * necessary to report something for the 'statfs()' call. |
| * |
| * Subtract the LEB reserved for GC, the LEB which is reserved for |
| * deletions, minimum LEBs for the index, and assume only one journal |
| * head is available. |
| */ |
| tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; |
| tmp64 *= (long long)c->leb_size - c->leb_overhead; |
| tmp64 = ubifs_reported_space(c, tmp64); |
| c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; |
| } |
| |
| /** |
| * take_gc_lnum - reserve GC LEB. |
| * @c: UBIFS file-system description object |
| * |
| * This function ensures that the LEB reserved for garbage collection is marked |
| * as "taken" in lprops. We also have to set free space to LEB size and dirty |
| * space to zero, because lprops may contain out-of-date information if the |
| * file-system was un-mounted before it has been committed. This function |
| * returns zero in case of success and a negative error code in case of |
| * failure. |
| */ |
| static int take_gc_lnum(struct ubifs_info *c) |
| { |
| int err; |
| |
| if (c->gc_lnum == -1) { |
| ubifs_err("no LEB for GC"); |
| return -EINVAL; |
| } |
| |
| /* And we have to tell lprops that this LEB is taken */ |
| err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, |
| LPROPS_TAKEN, 0, 0); |
| return err; |
| } |
| |
| /** |
| * alloc_wbufs - allocate write-buffers. |
| * @c: UBIFS file-system description object |
| * |
| * This helper function allocates and initializes UBIFS write-buffers. Returns |
| * zero in case of success and %-ENOMEM in case of failure. |
| */ |
| static int alloc_wbufs(struct ubifs_info *c) |
| { |
| int i, err; |
| |
| c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), |
| GFP_KERNEL); |
| if (!c->jheads) |
| return -ENOMEM; |
| |
| /* Initialize journal heads */ |
| for (i = 0; i < c->jhead_cnt; i++) { |
| INIT_LIST_HEAD(&c->jheads[i].buds_list); |
| err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); |
| if (err) |
| return err; |
| |
| c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; |
| c->jheads[i].wbuf.jhead = i; |
| c->jheads[i].grouped = 1; |
| } |
| |
| c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM; |
| /* |
| * Garbage Collector head likely contains long-term data and |
| * does not need to be synchronized by timer. Also GC head nodes are |
| * not grouped. |
| */ |
| c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM; |
| c->jheads[GCHD].wbuf.no_timer = 1; |
| c->jheads[GCHD].grouped = 0; |
| |
| return 0; |
| } |
| |
| /** |
| * free_wbufs - free write-buffers. |
| * @c: UBIFS file-system description object |
| */ |
| static void free_wbufs(struct ubifs_info *c) |
| { |
| int i; |
| |
| if (c->jheads) { |
| for (i = 0; i < c->jhead_cnt; i++) { |
| kfree(c->jheads[i].wbuf.buf); |
| kfree(c->jheads[i].wbuf.inodes); |
| } |
| kfree(c->jheads); |
| c->jheads = NULL; |
| } |
| } |
| |
| /** |
| * free_orphans - free orphans. |
| * @c: UBIFS file-system description object |
| */ |
| static void free_orphans(struct ubifs_info *c) |
| { |
| struct ubifs_orphan *orph; |
| |
| while (c->orph_dnext) { |
| orph = c->orph_dnext; |
| c->orph_dnext = orph->dnext; |
| list_del(&orph->list); |
| kfree(orph); |
| } |
| |
| while (!list_empty(&c->orph_list)) { |
| orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); |
| list_del(&orph->list); |
| kfree(orph); |
| dbg_err("orphan list not empty at unmount"); |
| } |
| |
| vfree(c->orph_buf); |
| c->orph_buf = NULL; |
| } |
| |
| /** |
| * free_buds - free per-bud objects. |
| * @c: UBIFS file-system description object |
| */ |
| static void free_buds(struct ubifs_info *c) |
| { |
| struct rb_node *this = c->buds.rb_node; |
| struct ubifs_bud *bud; |
| |
| while (this) { |
| if (this->rb_left) |
| this = this->rb_left; |
| else if (this->rb_right) |
| this = this->rb_right; |
| else { |
| bud = rb_entry(this, struct ubifs_bud, rb); |
| this = rb_parent(this); |
| if (this) { |
| if (this->rb_left == &bud->rb) |
| this->rb_left = NULL; |
| else |
| this->rb_right = NULL; |
| } |
| kfree(bud); |
| } |
| } |
| } |
| |
| /** |
| * check_volume_empty - check if the UBI volume is empty. |
| * @c: UBIFS file-system description object |
| * |
| * This function checks if the UBIFS volume is empty by looking if its LEBs are |
| * mapped or not. The result of checking is stored in the @c->empty variable. |
| * Returns zero in case of success and a negative error code in case of |
| * failure. |
| */ |
| static int check_volume_empty(struct ubifs_info *c) |
| { |
| int lnum, err; |
| |
| c->empty = 1; |
| for (lnum = 0; lnum < c->leb_cnt; lnum++) { |
| err = ubifs_is_mapped(c, lnum); |
| if (unlikely(err < 0)) |
| return err; |
| if (err == 1) { |
| c->empty = 0; |
| break; |
| } |
| |
| cond_resched(); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * UBIFS mount options. |
| * |
| * Opt_fast_unmount: do not run a journal commit before un-mounting |
| * Opt_norm_unmount: run a journal commit before un-mounting |
| * Opt_bulk_read: enable bulk-reads |
| * Opt_no_bulk_read: disable bulk-reads |
| * Opt_chk_data_crc: check CRCs when reading data nodes |
| * Opt_no_chk_data_crc: do not check CRCs when reading data nodes |
| * Opt_override_compr: override default compressor |
| * Opt_err: just end of array marker |
| */ |
| enum { |
| Opt_fast_unmount, |
| Opt_norm_unmount, |
| Opt_bulk_read, |
| Opt_no_bulk_read, |
| Opt_chk_data_crc, |
| Opt_no_chk_data_crc, |
| Opt_override_compr, |
| Opt_err, |
| }; |
| |
| static const match_table_t tokens = { |
| {Opt_fast_unmount, "fast_unmount"}, |
| {Opt_norm_unmount, "norm_unmount"}, |
| {Opt_bulk_read, "bulk_read"}, |
| {Opt_no_bulk_read, "no_bulk_read"}, |
| {Opt_chk_data_crc, "chk_data_crc"}, |
| {Opt_no_chk_data_crc, "no_chk_data_crc"}, |
| {Opt_override_compr, "compr=%s"}, |
| {Opt_err, NULL}, |
| }; |
| |
| /** |
| * parse_standard_option - parse a standard mount option. |
| * @option: the option to parse |
| * |
| * Normally, standard mount options like "sync" are passed to file-systems as |
| * flags. However, when a "rootflags=" kernel boot parameter is used, they may |
| * be present in the options string. This function tries to deal with this |
| * situation and parse standard options. Returns 0 if the option was not |
| * recognized, and the corresponding integer flag if it was. |
| * |
| * UBIFS is only interested in the "sync" option, so do not check for anything |
| * else. |
| */ |
| static int parse_standard_option(const char *option) |
| { |
| ubifs_msg("parse %s", option); |
| if (!strcmp(option, "sync")) |
| return MS_SYNCHRONOUS; |
| return 0; |
| } |
| |
| /** |
| * ubifs_parse_options - parse mount parameters. |
| * @c: UBIFS file-system description object |
| * @options: parameters to parse |
| * @is_remount: non-zero if this is FS re-mount |
| * |
| * This function parses UBIFS mount options and returns zero in case success |
| * and a negative error code in case of failure. |
| */ |
| static int ubifs_parse_options(struct ubifs_info *c, char *options, |
| int is_remount) |
| { |
| char *p; |
| substring_t args[MAX_OPT_ARGS]; |
| |
| if (!options) |
| return 0; |
| |
| while ((p = strsep(&options, ","))) { |
| int token; |
| |
| if (!*p) |
| continue; |
| |
| token = match_token(p, tokens, args); |
| switch (token) { |
| /* |
| * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. |
| * We accept them in order to be backward-compatible. But this |
| * should be removed at some point. |
| */ |
| case Opt_fast_unmount: |
| c->mount_opts.unmount_mode = 2; |
| break; |
| case Opt_norm_unmount: |
| c->mount_opts.unmount_mode = 1; |
| break; |
| case Opt_bulk_read: |
| c->mount_opts.bulk_read = 2; |
| c->bulk_read = 1; |
| break; |
| case Opt_no_bulk_read: |
| c->mount_opts.bulk_read = 1; |
| c->bulk_read = 0; |
| break; |
| case Opt_chk_data_crc: |
| c->mount_opts.chk_data_crc = 2; |
| c->no_chk_data_crc = 0; |
| break; |
| case Opt_no_chk_data_crc: |
| c->mount_opts.chk_data_crc = 1; |
| c->no_chk_data_crc = 1; |
| break; |
| case Opt_override_compr: |
| { |
| char *name = match_strdup(&args[0]); |
| |
| if (!name) |
| return -ENOMEM; |
| if (!strcmp(name, "none")) |
| c->mount_opts.compr_type = UBIFS_COMPR_NONE; |
| else if (!strcmp(name, "lzo")) |
| c->mount_opts.compr_type = UBIFS_COMPR_LZO; |
| else if (!strcmp(name, "zlib")) |
| c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; |
| else { |
| ubifs_err("unknown compressor \"%s\"", name); |
| kfree(name); |
| return -EINVAL; |
| } |
| kfree(name); |
| c->mount_opts.override_compr = 1; |
| c->default_compr = c->mount_opts.compr_type; |
| break; |
| } |
| default: |
| { |
| unsigned long flag; |
| struct super_block *sb = c->vfs_sb; |
| |
| flag = parse_standard_option(p); |
| if (!flag) { |
| ubifs_err("unrecognized mount option \"%s\" " |
| "or missing value", p); |
| return -EINVAL; |
| } |
| sb->s_flags |= flag; |
| break; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * destroy_journal - destroy journal data structures. |
| * @c: UBIFS file-system description object |
| * |
| * This function destroys journal data structures including those that may have |
| * been created by recovery functions. |
| */ |
| static void destroy_journal(struct ubifs_info *c) |
| { |
| while (!list_empty(&c->unclean_leb_list)) { |
| struct ubifs_unclean_leb *ucleb; |
| |
| ucleb = list_entry(c->unclean_leb_list.next, |
| struct ubifs_unclean_leb, list); |
| list_del(&ucleb->list); |
| kfree(ucleb); |
| } |
| while (!list_empty(&c->old_buds)) { |
| struct ubifs_bud *bud; |
| |
| bud = list_entry(c->old_buds.next, struct ubifs_bud, list); |
| list_del(&bud->list); |
| kfree(bud); |
| } |
| ubifs_destroy_idx_gc(c); |
| ubifs_destroy_size_tree(c); |
| ubifs_tnc_close(c); |
| free_buds(c); |
| } |
| |
| /** |
| * bu_init - initialize bulk-read information. |
| * @c: UBIFS file-system description object |
| */ |
| static void bu_init(struct ubifs_info *c) |
| { |
| ubifs_assert(c->bulk_read == 1); |
| |
| if (c->bu.buf) |
| return; /* Already initialized */ |
| |
| again: |
| c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); |
| if (!c->bu.buf) { |
| if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { |
| c->max_bu_buf_len = UBIFS_KMALLOC_OK; |
| goto again; |
| } |
| |
| /* Just disable bulk-read */ |
| ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, " |
| "disabling it", c->max_bu_buf_len); |
| c->mount_opts.bulk_read = 1; |
| c->bulk_read = 0; |
| return; |
| } |
| } |
| |
| /** |
| * check_free_space - check if there is enough free space to mount. |
| * @c: UBIFS file-system description object |
| * |
| * This function makes sure UBIFS has enough free space to be mounted in |
| * read/write mode. UBIFS must always have some free space to allow deletions. |
| */ |
| static int check_free_space(struct ubifs_info *c) |
| { |
| ubifs_assert(c->dark_wm > 0); |
| if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { |
| ubifs_err("insufficient free space to mount in R/W mode"); |
| dbg_dump_budg(c, &c->bi); |
| dbg_dump_lprops(c); |
| return -ENOSPC; |
| } |
| return 0; |
| } |
| |
| /** |
| * mount_ubifs - mount UBIFS file-system. |
| * @c: UBIFS file-system description object |
| * |
| * This function mounts UBIFS file system. Returns zero in case of success and |
| * a negative error code in case of failure. |
| * |
| * Note, the function does not de-allocate resources it it fails half way |
| * through, and the caller has to do this instead. |
| */ |
| static int mount_ubifs(struct ubifs_info *c) |
| { |
| int err; |
| long long x; |
| size_t sz; |
| |
| c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); |
| err = init_constants_early(c); |
| if (err) |
| return err; |
| |
| err = ubifs_debugging_init(c); |
| if (err) |
| return err; |
| |
| err = check_volume_empty(c); |
| if (err) |
| goto out_free; |
| |
| if (c->empty && (c->ro_mount || c->ro_media)) { |
| /* |
| * This UBI volume is empty, and read-only, or the file system |
| * is mounted read-only - we cannot format it. |
| */ |
| ubifs_err("can't format empty UBI volume: read-only %s", |
| c->ro_media ? "UBI volume" : "mount"); |
| err = -EROFS; |
| goto out_free; |
| } |
| |
| if (c->ro_media && !c->ro_mount) { |
| ubifs_err("cannot mount read-write - read-only media"); |
| err = -EROFS; |
| goto out_free; |
| } |
| |
| /* |
| * The requirement for the buffer is that it should fit indexing B-tree |
| * height amount of integers. We assume the height if the TNC tree will |
| * never exceed 64. |
| */ |
| err = -ENOMEM; |
| c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); |
| if (!c->bottom_up_buf) |
| goto out_free; |
| |
| c->sbuf = vmalloc(c->leb_size); |
| if (!c->sbuf) |
| goto out_free; |
| |
| if (!c->ro_mount) { |
| c->ileb_buf = vmalloc(c->leb_size); |
| if (!c->ileb_buf) |
| goto out_free; |
| } |
| |
| if (c->bulk_read == 1) |
| bu_init(c); |
| |
| if (!c->ro_mount) { |
| c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, |
| GFP_KERNEL); |
| if (!c->write_reserve_buf) |
| goto out_free; |
| } |
| |
| c->mounting = 1; |
| |
| err = ubifs_read_superblock(c); |
| if (err) |
| goto out_free; |
| |
| /* |
| * Make sure the compressor which is set as default in the superblock |
| * or overridden by mount options is actually compiled in. |
| */ |
| if (!ubifs_compr_present(c->default_compr)) { |
| ubifs_err("'compressor \"%s\" is not compiled in", |
| ubifs_compr_name(c->default_compr)); |
| err = -ENOTSUPP; |
| goto out_free; |
| } |
| |
| err = init_constants_sb(c); |
| if (err) |
| goto out_free; |
| |
| sz = ALIGN(c->max_idx_node_sz, c->min_io_size); |
| sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); |
| c->cbuf = kmalloc(sz, GFP_NOFS); |
| if (!c->cbuf) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| |
| err = alloc_wbufs(c); |
| if (err) |
| goto out_cbuf; |
| |
| sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); |
| if (!c->ro_mount) { |
| /* Create background thread */ |
| c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); |
| if (IS_ERR(c->bgt)) { |
| err = PTR_ERR(c->bgt); |
| c->bgt = NULL; |
| ubifs_err("cannot spawn \"%s\", error %d", |
| c->bgt_name, err); |
| goto out_wbufs; |
| } |
| wake_up_process(c->bgt); |
| } |
| |
| err = ubifs_read_master(c); |
| if (err) |
| goto out_master; |
| |
| init_constants_master(c); |
| |
| if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { |
| ubifs_msg("recovery needed"); |
| c->need_recovery = 1; |
| } |
| |
| if (c->need_recovery && !c->ro_mount) { |
| err = ubifs_recover_inl_heads(c, c->sbuf); |
| if (err) |
| goto out_master; |
| } |
| |
| err = ubifs_lpt_init(c, 1, !c->ro_mount); |
| if (err) |
| goto out_master; |
| |
| if (!c->ro_mount && c->space_fixup) { |
| err = ubifs_fixup_free_space(c); |
| if (err) |
| goto out_master; |
| } |
| |
| if (!c->ro_mount) { |
| /* |
| * Set the "dirty" flag so that if we reboot uncleanly we |
| * will notice this immediately on the next mount. |
| */ |
| c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); |
| err = ubifs_write_master(c); |
| if (err) |
| goto out_lpt; |
| } |
| |
| err = dbg_check_idx_size(c, c->bi.old_idx_sz); |
| if (err) |
| goto out_lpt; |
| |
| err = ubifs_replay_journal(c); |
| if (err) |
| goto out_journal; |
| |
| /* Calculate 'min_idx_lebs' after journal replay */ |
| c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); |
| |
| err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); |
| if (err) |
| goto out_orphans; |
| |
| if (!c->ro_mount) { |
| int lnum; |
| |
| err = check_free_space(c); |
| if (err) |
| goto out_orphans; |
| |
| /* Check for enough log space */ |
| lnum = c->lhead_lnum + 1; |
| if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) |
| lnum = UBIFS_LOG_LNUM; |
| if (lnum == c->ltail_lnum) { |
| err = ubifs_consolidate_log(c); |
| if (err) |
| goto out_orphans; |
| } |
| |
| if (c->need_recovery) { |
| err = ubifs_recover_size(c); |
| if (err) |
| goto out_orphans; |
| err = ubifs_rcvry_gc_commit(c); |
| if (err) |
| goto out_orphans; |
| } else { |
| err = take_gc_lnum(c); |
| if (err) |
| goto out_orphans; |
| |
| /* |
| * GC LEB may contain garbage if there was an unclean |
| * reboot, and it should be un-mapped. |
| */ |
| err = ubifs_leb_unmap(c, c->gc_lnum); |
| if (err) |
| goto out_orphans; |
| } |
| |
| err = dbg_check_lprops(c); |
| if (err) |
| goto out_orphans; |
| } else if (c->need_recovery) { |
| err = ubifs_recover_size(c); |
| if (err) |
| goto out_orphans; |
| } else { |
| /* |
| * Even if we mount read-only, we have to set space in GC LEB |
| * to proper value because this affects UBIFS free space |
| * reporting. We do not want to have a situation when |
| * re-mounting from R/O to R/W changes amount of free space. |
| */ |
| err = take_gc_lnum(c); |
| if (err) |
| goto out_orphans; |
| } |
| |
| spin_lock(&ubifs_infos_lock); |
| list_add_tail(&c->infos_list, &ubifs_infos); |
| spin_unlock(&ubifs_infos_lock); |
| |
| if (c->need_recovery) { |
| if (c->ro_mount) |
| ubifs_msg("recovery deferred"); |
| else { |
| c->need_recovery = 0; |
| ubifs_msg("recovery completed"); |
| /* |
| * GC LEB has to be empty and taken at this point. But |
| * the journal head LEBs may also be accounted as |
| * "empty taken" if they are empty. |
| */ |
| ubifs_assert(c->lst.taken_empty_lebs > 0); |
| } |
| } else |
| ubifs_assert(c->lst.taken_empty_lebs > 0); |
| |
| err = dbg_check_filesystem(c); |
| if (err) |
| goto out_infos; |
| |
| err = dbg_debugfs_init_fs(c); |
| if (err) |
| goto out_infos; |
| |
| c->mounting = 0; |
| |
| ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"", |
| c->vi.ubi_num, c->vi.vol_id, c->vi.name); |
| if (c->ro_mount) |
| ubifs_msg("mounted read-only"); |
| x = (long long)c->main_lebs * c->leb_size; |
| ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d " |
| "LEBs)", x, x >> 10, x >> 20, c->main_lebs); |
| x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; |
| ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d " |
| "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt); |
| ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)", |
| c->fmt_version, c->ro_compat_version, |
| UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); |
| ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr)); |
| ubifs_msg("reserved for root: %llu bytes (%llu KiB)", |
| c->report_rp_size, c->report_rp_size >> 10); |
| |
| dbg_msg("compiled on: " __DATE__ " at " __TIME__); |
| dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); |
| dbg_msg("max. write size: %d bytes", c->max_write_size); |
| dbg_msg("LEB size: %d bytes (%d KiB)", |
| c->leb_size, c->leb_size >> 10); |
| dbg_msg("data journal heads: %d", |
| c->jhead_cnt - NONDATA_JHEADS_CNT); |
| dbg_msg("UUID: %pUB", c->uuid); |
| dbg_msg("big_lpt %d", c->big_lpt); |
| dbg_msg("log LEBs: %d (%d - %d)", |
| c->log_lebs, UBIFS_LOG_LNUM, c->log_last); |
| dbg_msg("LPT area LEBs: %d (%d - %d)", |
| c->lpt_lebs, c->lpt_first, c->lpt_last); |
| dbg_msg("orphan area LEBs: %d (%d - %d)", |
| c->orph_lebs, c->orph_first, c->orph_last); |
| dbg_msg("main area LEBs: %d (%d - %d)", |
| c->main_lebs, c->main_first, c->leb_cnt - 1); |
| dbg_msg("index LEBs: %d", c->lst.idx_lebs); |
| dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)", |
| c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, |
| c->bi.old_idx_sz >> 20); |
| dbg_msg("key hash type: %d", c->key_hash_type); |
| dbg_msg("tree fanout: %d", c->fanout); |
| dbg_msg("reserved GC LEB: %d", c->gc_lnum); |
| dbg_msg("first main LEB: %d", c->main_first); |
| dbg_msg("max. znode size %d", c->max_znode_sz); |
| dbg_msg("max. index node size %d", c->max_idx_node_sz); |
| dbg_msg("node sizes: data %zu, inode %zu, dentry %zu", |
| UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); |
| dbg_msg("node sizes: trun %zu, sb %zu, master %zu", |
| UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); |
| dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu", |
| UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); |
| dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", |
| UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, |
| UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); |
| dbg_msg("dead watermark: %d", c->dead_wm); |
| dbg_msg("dark watermark: %d", c->dark_wm); |
| dbg_msg("LEB overhead: %d", c->leb_overhead); |
| x = (long long)c->main_lebs * c->dark_wm; |
| dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)", |
| x, x >> 10, x >> 20); |
| dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)", |
| c->max_bud_bytes, c->max_bud_bytes >> 10, |
| c->max_bud_bytes >> 20); |
| dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", |
| c->bg_bud_bytes, c->bg_bud_bytes >> 10, |
| c->bg_bud_bytes >> 20); |
| dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)", |
| c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); |
| dbg_msg("max. seq. number: %llu", c->max_sqnum); |
| dbg_msg("commit number: %llu", c->cmt_no); |
| |
| return 0; |
| |
| out_infos: |
| spin_lock(&ubifs_infos_lock); |
| list_del(&c->infos_list); |
| spin_unlock(&ubifs_infos_lock); |
| out_orphans: |
| free_orphans(c); |
| out_journal: |
| destroy_journal(c); |
| out_lpt: |
| ubifs_lpt_free(c, 0); |
| out_master: |
| kfree(c->mst_node); |
| kfree(c->rcvrd_mst_node); |
| if (c->bgt) |
| kthread_stop(c->bgt); |
| out_wbufs: |
| free_wbufs(c); |
| out_cbuf: |
| kfree(c->cbuf); |
| out_free: |
| kfree(c->write_reserve_buf); |
| kfree(c->bu.buf); |
| vfree(c->ileb_buf); |
| vfree(c->sbuf); |
| kfree(c->bottom_up_buf); |
| ubifs_debugging_exit(c); |
| return err; |
| } |
| |
| /** |
| * ubifs_umount - un-mount UBIFS file-system. |
| * @c: UBIFS file-system description object |
| * |
| * Note, this function is called to free allocated resourced when un-mounting, |
| * as well as free resources when an error occurred while we were half way |
| * through mounting (error path cleanup function). So it has to make sure the |
| * resource was actually allocated before freeing it. |
| */ |
| static void ubifs_umount(struct ubifs_info *c) |
| { |
| dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, |
| c->vi.vol_id); |
| |
| dbg_debugfs_exit_fs(c); |
| spin_lock(&ubifs_infos_lock); |
| list_del(&c->infos_list); |
| spin_unlock(&ubifs_infos_lock); |
| |
| if (c->bgt) |
| kthread_stop(c->bgt); |
| |
| destroy_journal(c); |
| free_wbufs(c); |
| free_orphans(c); |
| ubifs_lpt_free(c, 0); |
| |
| kfree(c->cbuf); |
| kfree(c->rcvrd_mst_node); |
| kfree(c->mst_node); |
| kfree(c->write_reserve_buf); |
| kfree(c->bu.buf); |
| vfree(c->ileb_buf); |
| vfree(c->sbuf); |
| kfree(c->bottom_up_buf); |
| ubifs_debugging_exit(c); |
| } |
| |
| /** |
| * ubifs_remount_rw - re-mount in read-write mode. |
| * @c: UBIFS file-system description object |
| * |
| * UBIFS avoids allocating many unnecessary resources when mounted in read-only |
| * mode. This function allocates the needed resources and re-mounts UBIFS in |
| * read-write mode. |
| */ |
| static int ubifs_remount_rw(struct ubifs_info *c) |
| { |
| int err, lnum; |
| |
| if (c->rw_incompat) { |
| ubifs_err("the file-system is not R/W-compatible"); |
| ubifs_msg("on-flash format version is w%d/r%d, but software " |
| "only supports up to version w%d/r%d", c->fmt_version, |
| c->ro_compat_version, UBIFS_FORMAT_VERSION, |
| UBIFS_RO_COMPAT_VERSION); |
| return -EROFS; |
| } |
| |
| mutex_lock(&c->umount_mutex); |
| dbg_save_space_info(c); |
| c->remounting_rw = 1; |
| c->ro_mount = 0; |
| |
| err = check_free_space(c); |
| if (err) |
| goto out; |
| |
| if (c->old_leb_cnt != c->leb_cnt) { |
| struct ubifs_sb_node *sup; |
| |
| sup = ubifs_read_sb_node(c); |
| if (IS_ERR(sup)) { |
| err = PTR_ERR(sup); |
| goto out; |
| } |
| sup->leb_cnt = cpu_to_le32(c->leb_cnt); |
| err = ubifs_write_sb_node(c, sup); |
| kfree(sup); |
| if (err) |
| goto out; |
| } |
| |
| if (c->need_recovery) { |
| ubifs_msg("completing deferred recovery"); |
| err = ubifs_write_rcvrd_mst_node(c); |
| if (err) |
| goto out; |
| err = ubifs_recover_size(c); |
| if (err) |
| goto out; |
| err = ubifs_clean_lebs(c, c->sbuf); |
| if (err) |
| goto out; |
| err = ubifs_recover_inl_heads(c, c->sbuf); |
| if (err) |
| goto out; |
| } else { |
| /* A readonly mount is not allowed to have orphans */ |
| ubifs_assert(c->tot_orphans == 0); |
| err = ubifs_clear_orphans(c); |
| if (err) |
| goto out; |
| } |
| |
| if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { |
| c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); |
| err = ubifs_write_master(c); |
| if (err) |
| goto out; |
| } |
| |
| c->ileb_buf = vmalloc(c->leb_size); |
| if (!c->ileb_buf) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); |
| if (!c->write_reserve_buf) |
| goto out; |
| |
| err = ubifs_lpt_init(c, 0, 1); |
| if (err) |
| goto out; |
| |
| /* Create background thread */ |
| c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); |
| if (IS_ERR(c->bgt)) { |
| err = PTR_ERR(c->bgt); |
| c->bgt = NULL; |
| ubifs_err("cannot spawn \"%s\", error %d", |
| c->bgt_name, err); |
| goto out; |
| } |
| wake_up_process(c->bgt); |
| |
| c->orph_buf = vmalloc(c->leb_size); |
| if (!c->orph_buf) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| /* Check for enough log space */ |
| lnum = c->lhead_lnum + 1; |
| if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) |
| lnum = UBIFS_LOG_LNUM; |
| if (lnum == c->ltail_lnum) { |
| err = ubifs_consolidate_log(c); |
| if (err) |
| goto out; |
| } |
| |
| if (c->need_recovery) |
| err = ubifs_rcvry_gc_commit(c); |
| else |
| err = ubifs_leb_unmap(c, c->gc_lnum); |
| if (err) |
| goto out; |
| |
| dbg_gen("re-mounted read-write"); |
| c->remounting_rw = 0; |
| |
| if (c->need_recovery) { |
| c->need_recovery = 0; |
| ubifs_msg("deferred recovery completed"); |
| } else { |
| /* |
| * Do not run the debugging space check if the were doing |
| * recovery, because when we saved the information we had the |
| * file-system in a state where the TNC and lprops has been |
| * modified in memory, but all the I/O operations (including a |
| * commit) were deferred. So the file-system was in |
| * "non-committed" state. Now the file-system is in committed |
| * state, and of course the amount of free space will change |
| * because, for example, the old index size was imprecise. |
| */ |
| err = dbg_check_space_info(c); |
| } |
| |
| if (c->space_fixup) { |
| err = ubifs_fixup_free_space(c); |
| if (err) |
| goto out; |
| } |
| |
| mutex_unlock(&c->umount_mutex); |
| return err; |
| |
| out: |
| c->ro_mount = 1; |
| vfree(c->orph_buf); |
| c->orph_buf = NULL; |
| if (c->bgt) { |
| kthread_stop(c->bgt); |
| c->bgt = NULL; |
| } |
| free_wbufs(c); |
| kfree(c->write_reserve_buf); |
| c->write_reserve_buf = NULL; |
| vfree(c->ileb_buf); |
| c->ileb_buf = NULL; |
| ubifs_lpt_free(c, 1); |
| c->remounting_rw = 0; |
| mutex_unlock(&c->umount_mutex); |
| return err; |
| } |
| |
| /** |
| * ubifs_remount_ro - re-mount in read-only mode. |
| * @c: UBIFS file-system description object |
| * |
| * We assume VFS has stopped writing. Possibly the background thread could be |
| * running a commit, however kthread_stop will wait in that case. |
| */ |
| static void ubifs_remount_ro(struct ubifs_info *c) |
| { |
| int i, err; |
| |
| ubifs_assert(!c->need_recovery); |
| ubifs_assert(!c->ro_mount); |
| |
| mutex_lock(&c->umount_mutex); |
| if (c->bgt) { |
| kthread_stop(c->bgt); |
| c->bgt = NULL; |
| } |
| |
| dbg_save_space_info(c); |
| |
| for (i = 0; i < c->jhead_cnt; i++) |
| ubifs_wbuf_sync(&c->jheads[i].wbuf); |
| |
| c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); |
| c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); |
| c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); |
| err = ubifs_write_master(c); |
| if (err) |
| ubifs_ro_mode(c, err); |
| |
| vfree(c->orph_buf); |
| c->orph_buf = NULL; |
| kfree(c->write_reserve_buf); |
| c->write_reserve_buf = NULL; |
| vfree(c->ileb_buf); |
| c->ileb_buf = NULL; |
| ubifs_lpt_free(c, 1); |
| c->ro_mount = 1; |
| err = dbg_check_space_info(c); |
| if (err) |
| ubifs_ro_mode(c, err); |
| mutex_unlock(&c->umount_mutex); |
| } |
| |
| static void ubifs_put_super(struct super_block *sb) |
| { |
| int i; |
| struct ubifs_info *c = sb->s_fs_info; |
| |
| ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, |
| c->vi.vol_id); |
| |
| /* |
| * The following asserts are only valid if there has not been a failure |
| * of the media. For example, there will be dirty inodes if we failed |
| * to write them back because of I/O errors. |
| */ |
| if (!c->ro_error) { |
| ubifs_assert(c->bi.idx_growth == 0); |
| ubifs_assert(c->bi.dd_growth == 0); |
| ubifs_assert(c->bi.data_growth == 0); |
| } |
| |
| /* |
| * The 'c->umount_lock' prevents races between UBIFS memory shrinker |
| * and file system un-mount. Namely, it prevents the shrinker from |
| * picking this superblock for shrinking - it will be just skipped if |
| * the mutex is locked. |
| */ |
| mutex_lock(&c->umount_mutex); |
| if (!c->ro_mount) { |
| /* |
| * First of all kill the background thread to make sure it does |
| * not interfere with un-mounting and freeing resources. |
| */ |
| if (c->bgt) { |
| kthread_stop(c->bgt); |
| c->bgt = NULL; |
| } |
| |
| /* |
| * On fatal errors c->ro_error is set to 1, in which case we do |
| * not write the master node. |
| */ |
| if (!c->ro_error) { |
| int err; |
| |
| /* Synchronize write-buffers */ |
| for (i = 0; i < c->jhead_cnt; i++) |
| ubifs_wbuf_sync(&c->jheads[i].wbuf); |
| |
| /* |
| * We are being cleanly unmounted which means the |
| * orphans were killed - indicate this in the master |
| * node. Also save the reserved GC LEB number. |
| */ |
| c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); |
| c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); |
| c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); |
| err = ubifs_write_master(c); |
| if (err) |
| /* |
| * Recovery will attempt to fix the master area |
| * next mount, so we just print a message and |
| * continue to unmount normally. |
| */ |
| ubifs_err("failed to write master node, " |
| "error %d", err); |
| } else { |
| for (i = 0; i < c->jhead_cnt; i++) |
| /* Make sure write-buffer timers are canceled */ |
| hrtimer_cancel(&c->jheads[i].wbuf.timer); |
| } |
| } |
| |
| ubifs_umount(c); |
| bdi_destroy(&c->bdi); |
| ubi_close_volume(c->ubi); |
| mutex_unlock(&c->umount_mutex); |
| } |
| |
| static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) |
| { |
| int err; |
| struct ubifs_info *c = sb->s_fs_info; |
| |
| dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); |
| |
| err = ubifs_parse_options(c, data, 1); |
| if (err) { |
| ubifs_err("invalid or unknown remount parameter"); |
| return err; |
| } |
| |
| if (c->ro_mount && !(*flags & MS_RDONLY)) { |
| if (c->ro_error) { |
| ubifs_msg("cannot re-mount R/W due to prior errors"); |
| return -EROFS; |
| } |
| if (c->ro_media) { |
| ubifs_msg("cannot re-mount R/W - UBI volume is R/O"); |
| return -EROFS; |
| } |
| err = ubifs_remount_rw(c); |
| if (err) |
| return err; |
| } else if (!c->ro_mount && (*flags & MS_RDONLY)) { |
| if (c->ro_error) { |
| ubifs_msg("cannot re-mount R/O due to prior errors"); |
| return -EROFS; |
| } |
| ubifs_remount_ro(c); |
| } |
| |
| if (c->bulk_read == 1) |
| bu_init(c); |
| else { |
| dbg_gen("disable bulk-read"); |
| kfree(c->bu.buf); |
| c->bu.buf = NULL; |
| } |
| |
| ubifs_assert(c->lst.taken_empty_lebs > 0); |
| return 0; |
| } |
| |
| const struct super_operations ubifs_super_operations = { |
| .alloc_inode = ubifs_alloc_inode, |
| .destroy_inode = ubifs_destroy_inode, |
| .put_super = ubifs_put_super, |
| .write_inode = ubifs_write_inode, |
| .evict_inode = ubifs_evict_inode, |
| .statfs = ubifs_statfs, |
| .dirty_inode = ubifs_dirty_inode, |
| .remount_fs = ubifs_remount_fs, |
| .show_options = ubifs_show_options, |
| .sync_fs = ubifs_sync_fs, |
| }; |
| |
| /** |
| * open_ubi - parse UBI device name string and open the UBI device. |
| * @name: UBI volume name |
| * @mode: UBI volume open mode |
| * |
| * The primary method of mounting UBIFS is by specifying the UBI volume |
| * character device node path. However, UBIFS may also be mounted withoug any |
| * character device node using one of the following methods: |
| * |
| * o ubiX_Y - mount UBI device number X, volume Y; |
| * o ubiY - mount UBI device number 0, volume Y; |
| * o ubiX:NAME - mount UBI device X, volume with name NAME; |
| * o ubi:NAME - mount UBI device 0, volume with name NAME. |
| * |
| * Alternative '!' separator may be used instead of ':' (because some shells |
| * like busybox may interpret ':' as an NFS host name separator). This function |
| * returns UBI volume description object in case of success and a negative |
| * error code in case of failure. |
| */ |
| static struct ubi_volume_desc *open_ubi(const char *name, int mode) |
| { |
| struct ubi_volume_desc *ubi; |
| int dev, vol; |
| char *endptr; |
| |
| /* First, try to open using the device node path method */ |
| ubi = ubi_open_volume_path(name, mode); |
| if (!IS_ERR(ubi)) |
| return ubi; |
| |
| /* Try the "nodev" method */ |
| if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') |
| return ERR_PTR(-EINVAL); |
| |
| /* ubi:NAME method */ |
| if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') |
| return ubi_open_volume_nm(0, name + 4, mode); |
| |
| if (!isdigit(name[3])) |
| return ERR_PTR(-EINVAL); |
| |
| dev = simple_strtoul(name + 3, &endptr, 0); |
| |
| /* ubiY method */ |
| if (*endptr == '\0') |
| return ubi_open_volume(0, dev, mode); |
| |
| /* ubiX_Y method */ |
| if (*endptr == '_' && isdigit(endptr[1])) { |
| vol = simple_strtoul(endptr + 1, &endptr, 0); |
| if (*endptr != '\0') |
| return ERR_PTR(-EINVAL); |
| return ubi_open_volume(dev, vol, mode); |
| } |
| |
| /* ubiX:NAME method */ |
| if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') |
| return ubi_open_volume_nm(dev, ++endptr, mode); |
| |
| return ERR_PTR(-EINVAL); |
| } |
| |
| static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) |
| { |
| struct ubifs_info *c; |
| |
| c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); |
| if (c) { |
| spin_lock_init(&c->cnt_lock); |
| spin_lock_init(&c->cs_lock); |
| spin_lock_init(&c->buds_lock); |
| spin_lock_init(&c->space_lock); |
| spin_lock_init(&c->orphan_lock); |
| init_rwsem(&c->commit_sem); |
| mutex_init(&c->lp_mutex); |
| mutex_init(&c->tnc_mutex); |
| mutex_init(&c->log_mutex); |
| mutex_init(&c->mst_mutex); |
| mutex_init(&c->umount_mutex); |
| mutex_init(&c->bu_mutex); |
| mutex_init(&c->write_reserve_mutex); |
| init_waitqueue_head(&c->cmt_wq); |
| c->buds = RB_ROOT; |
| c->old_idx = RB_ROOT; |
| c->size_tree = RB_ROOT; |
| c->orph_tree = RB_ROOT; |
| INIT_LIST_HEAD(&c->infos_list); |
| INIT_LIST_HEAD(&c->idx_gc); |
| INIT_LIST_HEAD(&c->replay_list); |
| INIT_LIST_HEAD(&c->replay_buds); |
| INIT_LIST_HEAD(&c->uncat_list); |
| INIT_LIST_HEAD(&c->empty_list); |
| INIT_LIST_HEAD(&c->freeable_list); |
| INIT_LIST_HEAD(&c->frdi_idx_list); |
| INIT_LIST_HEAD(&c->unclean_leb_list); |
| INIT_LIST_HEAD(&c->old_buds); |
| INIT_LIST_HEAD(&c->orph_list); |
| INIT_LIST_HEAD(&c->orph_new); |
| c->no_chk_data_crc = 1; |
| |
| c->highest_inum = UBIFS_FIRST_INO; |
| c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; |
| |
| ubi_get_volume_info(ubi, &c->vi); |
| ubi_get_device_info(c->vi.ubi_num, &c->di); |
| } |
| return c; |
| } |
| |
| static int ubifs_fill_super(struct super_block *sb, void *data, int silent) |
| { |
| struct ubifs_info *c = sb->s_fs_info; |
| struct inode *root; |
| int err; |
| |
| c->vfs_sb = sb; |
| /* Re-open the UBI device in read-write mode */ |
| c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); |
| if (IS_ERR(c->ubi)) { |
| err = PTR_ERR(c->ubi); |
| goto out; |
| } |
| |
| /* |
| * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For |
| * UBIFS, I/O is not deferred, it is done immediately in readpage, |
| * which means the user would have to wait not just for their own I/O |
| * but the read-ahead I/O as well i.e. completely pointless. |
| * |
| * Read-ahead will be disabled because @c->bdi.ra_pages is 0. |
| */ |
| c->bdi.name = "ubifs", |
| c->bdi.capabilities = BDI_CAP_MAP_COPY; |
| err = bdi_init(&c->bdi); |
| if (err) |
| goto out_close; |
| err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", |
| c->vi.ubi_num, c->vi.vol_id); |
| if (err) |
| goto out_bdi; |
| |
| err = ubifs_parse_options(c, data, 0); |
| if (err) |
| goto out_bdi; |
| |
| sb->s_bdi = &c->bdi; |
| sb->s_fs_info = c; |
| sb->s_magic = UBIFS_SUPER_MAGIC; |
| sb->s_blocksize = UBIFS_BLOCK_SIZE; |
| sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; |
| sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); |
| if (c->max_inode_sz > MAX_LFS_FILESIZE) |
| sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; |
| sb->s_op = &ubifs_super_operations; |
| |
| mutex_lock(&c->umount_mutex); |
| err = mount_ubifs(c); |
| if (err) { |
| ubifs_assert(err < 0); |
| goto out_unlock; |
| } |
| |
| /* Read the root inode */ |
| root = ubifs_iget(sb, UBIFS_ROOT_INO); |
| if (IS_ERR(root)) { |
| err = PTR_ERR(root); |
| goto out_umount; |
| } |
| |
| sb->s_root = d_make_root(root); |
| if (!sb->s_root) |
| goto out_umount; |
| |
| mutex_unlock(&c->umount_mutex); |
| return 0; |
| |
| out_umount: |
| ubifs_umount(c); |
| out_unlock: |
| mutex_unlock(&c->umount_mutex); |
| out_bdi: |
| bdi_destroy(&c->bdi); |
| out_close: |
| ubi_close_volume(c->ubi); |
| out: |
| return err; |
| } |
| |
| static int sb_test(struct super_block *sb, void *data) |
| { |
| struct ubifs_info *c1 = data; |
| struct ubifs_info *c = sb->s_fs_info; |
| |
| return c->vi.cdev == c1->vi.cdev; |
| } |
| |
| static int sb_set(struct super_block *sb, void *data) |
| { |
| sb->s_fs_info = data; |
| return set_anon_super(sb, NULL); |
| } |
| |
| static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, |
| const char *name, void *data) |
| { |
| struct ubi_volume_desc *ubi; |
| struct ubifs_info *c; |
| struct super_block *sb; |
| int err; |
| |
| dbg_gen("name %s, flags %#x", name, flags); |
| |
| /* |
| * Get UBI device number and volume ID. Mount it read-only so far |
| * because this might be a new mount point, and UBI allows only one |
| * read-write user at a time. |
| */ |
| ubi = open_ubi(name, UBI_READONLY); |
| if (IS_ERR(ubi)) { |
| dbg_err("cannot open \"%s\", error %d", |
| name, (int)PTR_ERR(ubi)); |
| return ERR_CAST(ubi); |
| } |
| |
| c = alloc_ubifs_info(ubi); |
| if (!c) { |
| err = -ENOMEM; |
| goto out_close; |
| } |
| |
| dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); |
| |
| sb = sget(fs_type, sb_test, sb_set, c); |
| if (IS_ERR(sb)) { |
| err = PTR_ERR(sb); |
| kfree(c); |
| goto out_close; |
| } |
| |
| if (sb->s_root) { |
| struct ubifs_info *c1 = sb->s_fs_info; |
| kfree(c); |
| /* A new mount point for already mounted UBIFS */ |
| dbg_gen("this ubi volume is already mounted"); |
| if (!!(flags & MS_RDONLY) != c1->ro_mount) { |
| err = -EBUSY; |
| goto out_deact; |
| } |
| } else { |
| sb->s_flags = flags; |
| err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); |
| if (err) |
| goto out_deact; |
| /* We do not support atime */ |
| sb->s_flags |= MS_ACTIVE | MS_NOATIME; |
| } |
| |
| /* 'fill_super()' opens ubi again so we must close it here */ |
| ubi_close_volume(ubi); |
| |
| return dget(sb->s_root); |
| |
| out_deact: |
| deactivate_locked_super(sb); |
| out_close: |
| ubi_close_volume(ubi); |
| return ERR_PTR(err); |
| } |
| |
| static void kill_ubifs_super(struct super_block *s) |
| { |
| struct ubifs_info *c = s->s_fs_info; |
| kill_anon_super(s); |
| kfree(c); |
| } |
| |
| static struct file_system_type ubifs_fs_type = { |
| .name = "ubifs", |
| .owner = THIS_MODULE, |
| .mount = ubifs_mount, |
| .kill_sb = kill_ubifs_super, |
| }; |
| |
| /* |
| * Inode slab cache constructor. |
| */ |
| static void inode_slab_ctor(void *obj) |
| { |
| struct ubifs_inode *ui = obj; |
| inode_init_once(&ui->vfs_inode); |
| } |
| |
| static int __init ubifs_init(void) |
| { |
| int err; |
| |
| BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); |
| |
| /* Make sure node sizes are 8-byte aligned */ |
| BUILD_BUG_ON(UBIFS_CH_SZ & 7); |
| BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); |
| |
| BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); |
| BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); |
| BUILD_BUG_ON(MIN_WRITE_SZ & 7); |
| |
| /* Check min. node size */ |
| BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); |
| BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); |
| BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); |
| BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); |
| |
| BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); |
| BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); |
| BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); |
| BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); |
| |
| /* Defined node sizes */ |
| BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); |
| BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); |
| BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); |
| BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); |
| |
| /* |
| * We use 2 bit wide bit-fields to store compression type, which should |
| * be amended if more compressors are added. The bit-fields are: |
| * @compr_type in 'struct ubifs_inode', @default_compr in |
| * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. |
| */ |
| BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); |
| |
| /* |
| * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to |
| * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. |
| */ |
| if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { |
| ubifs_err("VFS page cache size is %u bytes, but UBIFS requires" |
| " at least 4096 bytes", |
| (unsigned int)PAGE_CACHE_SIZE); |
| return -EINVAL; |
| } |
| |
| ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", |
| sizeof(struct ubifs_inode), 0, |
| SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, |
| &inode_slab_ctor); |
| if (!ubifs_inode_slab) |
| return -ENOMEM; |
| |
| register_shrinker(&ubifs_shrinker_info); |
| |
| err = ubifs_compressors_init(); |
| if (err) |
| goto out_shrinker; |
| |
| err = dbg_debugfs_init(); |
| if (err) |
| goto out_compr; |
| |
| err = register_filesystem(&ubifs_fs_type); |
| if (err) { |
| ubifs_err("cannot register file system, error %d", err); |
| goto out_dbg; |
| } |
| return 0; |
| |
| out_dbg: |
| dbg_debugfs_exit(); |
| out_compr: |
| ubifs_compressors_exit(); |
| out_shrinker: |
| unregister_shrinker(&ubifs_shrinker_info); |
| kmem_cache_destroy(ubifs_inode_slab); |
| return err; |
| } |
| /* late_initcall to let compressors initialize first */ |
| late_initcall(ubifs_init); |
| |
| static void __exit ubifs_exit(void) |
| { |
| ubifs_assert(list_empty(&ubifs_infos)); |
| ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); |
| |
| dbg_debugfs_exit(); |
| ubifs_compressors_exit(); |
| unregister_shrinker(&ubifs_shrinker_info); |
| kmem_cache_destroy(ubifs_inode_slab); |
| unregister_filesystem(&ubifs_fs_type); |
| } |
| module_exit(ubifs_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(__stringify(UBIFS_VERSION)); |
| MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); |
| MODULE_DESCRIPTION("UBIFS - UBI File System"); |