| /* |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/kvm_host.h> |
| #include <linux/module.h> |
| #include <linux/vmalloc.h> |
| #include <linux/fs.h> |
| #include <linux/mman.h> |
| #include <linux/sched.h> |
| #include <linux/kvm.h> |
| #include <trace/events/kvm.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| |
| #include <asm/unified.h> |
| #include <asm/uaccess.h> |
| #include <asm/ptrace.h> |
| #include <asm/mman.h> |
| #include <asm/cputype.h> |
| #include <asm/tlbflush.h> |
| #include <asm/cacheflush.h> |
| #include <asm/virt.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_coproc.h> |
| #include <asm/kvm_psci.h> |
| #include <asm/opcodes.h> |
| |
| #ifdef REQUIRES_VIRT |
| __asm__(".arch_extension virt"); |
| #endif |
| |
| static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); |
| static struct vfp_hard_struct __percpu *kvm_host_vfp_state; |
| static unsigned long hyp_default_vectors; |
| |
| /* Per-CPU variable containing the currently running vcpu. */ |
| static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu); |
| |
| /* The VMID used in the VTTBR */ |
| static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); |
| static u8 kvm_next_vmid; |
| static DEFINE_SPINLOCK(kvm_vmid_lock); |
| |
| static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu) |
| { |
| BUG_ON(preemptible()); |
| __get_cpu_var(kvm_arm_running_vcpu) = vcpu; |
| } |
| |
| /** |
| * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU. |
| * Must be called from non-preemptible context |
| */ |
| struct kvm_vcpu *kvm_arm_get_running_vcpu(void) |
| { |
| BUG_ON(preemptible()); |
| return __get_cpu_var(kvm_arm_running_vcpu); |
| } |
| |
| /** |
| * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus. |
| */ |
| struct kvm_vcpu __percpu **kvm_get_running_vcpus(void) |
| { |
| return &kvm_arm_running_vcpu; |
| } |
| |
| int kvm_arch_hardware_enable(void *garbage) |
| { |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
| { |
| return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
| } |
| |
| void kvm_arch_hardware_disable(void *garbage) |
| { |
| } |
| |
| int kvm_arch_hardware_setup(void) |
| { |
| return 0; |
| } |
| |
| void kvm_arch_hardware_unsetup(void) |
| { |
| } |
| |
| void kvm_arch_check_processor_compat(void *rtn) |
| { |
| *(int *)rtn = 0; |
| } |
| |
| void kvm_arch_sync_events(struct kvm *kvm) |
| { |
| } |
| |
| /** |
| * kvm_arch_init_vm - initializes a VM data structure |
| * @kvm: pointer to the KVM struct |
| */ |
| int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
| { |
| int ret = 0; |
| |
| if (type) |
| return -EINVAL; |
| |
| ret = kvm_alloc_stage2_pgd(kvm); |
| if (ret) |
| goto out_fail_alloc; |
| |
| ret = create_hyp_mappings(kvm, kvm + 1); |
| if (ret) |
| goto out_free_stage2_pgd; |
| |
| /* Mark the initial VMID generation invalid */ |
| kvm->arch.vmid_gen = 0; |
| |
| return ret; |
| out_free_stage2_pgd: |
| kvm_free_stage2_pgd(kvm); |
| out_fail_alloc: |
| return ret; |
| } |
| |
| int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
| { |
| return VM_FAULT_SIGBUS; |
| } |
| |
| void kvm_arch_free_memslot(struct kvm_memory_slot *free, |
| struct kvm_memory_slot *dont) |
| { |
| } |
| |
| int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) |
| { |
| return 0; |
| } |
| |
| /** |
| * kvm_arch_destroy_vm - destroy the VM data structure |
| * @kvm: pointer to the KVM struct |
| */ |
| void kvm_arch_destroy_vm(struct kvm *kvm) |
| { |
| int i; |
| |
| kvm_free_stage2_pgd(kvm); |
| |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| if (kvm->vcpus[i]) { |
| kvm_arch_vcpu_free(kvm->vcpus[i]); |
| kvm->vcpus[i] = NULL; |
| } |
| } |
| } |
| |
| int kvm_dev_ioctl_check_extension(long ext) |
| { |
| int r; |
| switch (ext) { |
| case KVM_CAP_USER_MEMORY: |
| case KVM_CAP_SYNC_MMU: |
| case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: |
| case KVM_CAP_ONE_REG: |
| case KVM_CAP_ARM_PSCI: |
| r = 1; |
| break; |
| case KVM_CAP_COALESCED_MMIO: |
| r = KVM_COALESCED_MMIO_PAGE_OFFSET; |
| break; |
| case KVM_CAP_ARM_SET_DEVICE_ADDR: |
| r = 1; |
| case KVM_CAP_NR_VCPUS: |
| r = num_online_cpus(); |
| break; |
| case KVM_CAP_MAX_VCPUS: |
| r = KVM_MAX_VCPUS; |
| break; |
| default: |
| r = 0; |
| break; |
| } |
| return r; |
| } |
| |
| long kvm_arch_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| return -EINVAL; |
| } |
| |
| int kvm_arch_set_memory_region(struct kvm *kvm, |
| struct kvm_userspace_memory_region *mem, |
| struct kvm_memory_slot old, |
| int user_alloc) |
| { |
| return 0; |
| } |
| |
| int kvm_arch_prepare_memory_region(struct kvm *kvm, |
| struct kvm_memory_slot *memslot, |
| struct kvm_memory_slot old, |
| struct kvm_userspace_memory_region *mem, |
| int user_alloc) |
| { |
| return 0; |
| } |
| |
| void kvm_arch_commit_memory_region(struct kvm *kvm, |
| struct kvm_userspace_memory_region *mem, |
| struct kvm_memory_slot old, |
| int user_alloc) |
| { |
| } |
| |
| void kvm_arch_flush_shadow_all(struct kvm *kvm) |
| { |
| } |
| |
| void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
| struct kvm_memory_slot *slot) |
| { |
| } |
| |
| struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) |
| { |
| int err; |
| struct kvm_vcpu *vcpu; |
| |
| vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| if (!vcpu) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| err = kvm_vcpu_init(vcpu, kvm, id); |
| if (err) |
| goto free_vcpu; |
| |
| err = create_hyp_mappings(vcpu, vcpu + 1); |
| if (err) |
| goto vcpu_uninit; |
| |
| return vcpu; |
| vcpu_uninit: |
| kvm_vcpu_uninit(vcpu); |
| free_vcpu: |
| kmem_cache_free(kvm_vcpu_cache, vcpu); |
| out: |
| return ERR_PTR(err); |
| } |
| |
| int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
| { |
| return 0; |
| } |
| |
| void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) |
| { |
| kvm_mmu_free_memory_caches(vcpu); |
| kmem_cache_free(kvm_vcpu_cache, vcpu); |
| } |
| |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| kvm_arch_vcpu_free(vcpu); |
| } |
| |
| int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) |
| { |
| return 0; |
| } |
| |
| int __attribute_const__ kvm_target_cpu(void) |
| { |
| unsigned long implementor = read_cpuid_implementor(); |
| unsigned long part_number = read_cpuid_part_number(); |
| |
| if (implementor != ARM_CPU_IMP_ARM) |
| return -EINVAL; |
| |
| switch (part_number) { |
| case ARM_CPU_PART_CORTEX_A15: |
| return KVM_ARM_TARGET_CORTEX_A15; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| /* Force users to call KVM_ARM_VCPU_INIT */ |
| vcpu->arch.target = -1; |
| return 0; |
| } |
| |
| void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| vcpu->cpu = cpu; |
| vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state); |
| |
| /* |
| * Check whether this vcpu requires the cache to be flushed on |
| * this physical CPU. This is a consequence of doing dcache |
| * operations by set/way on this vcpu. We do it here to be in |
| * a non-preemptible section. |
| */ |
| if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush)) |
| flush_cache_all(); /* We'd really want v7_flush_dcache_all() */ |
| |
| kvm_arm_set_running_vcpu(vcpu); |
| } |
| |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| kvm_arm_set_running_vcpu(NULL); |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
| struct kvm_guest_debug *dbg) |
| { |
| return -EINVAL; |
| } |
| |
| |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| return -EINVAL; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| return -EINVAL; |
| } |
| |
| /** |
| * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled |
| * @v: The VCPU pointer |
| * |
| * If the guest CPU is not waiting for interrupts or an interrupt line is |
| * asserted, the CPU is by definition runnable. |
| */ |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) |
| { |
| return !!v->arch.irq_lines; |
| } |
| |
| /* Just ensure a guest exit from a particular CPU */ |
| static void exit_vm_noop(void *info) |
| { |
| } |
| |
| void force_vm_exit(const cpumask_t *mask) |
| { |
| smp_call_function_many(mask, exit_vm_noop, NULL, true); |
| } |
| |
| /** |
| * need_new_vmid_gen - check that the VMID is still valid |
| * @kvm: The VM's VMID to checkt |
| * |
| * return true if there is a new generation of VMIDs being used |
| * |
| * The hardware supports only 256 values with the value zero reserved for the |
| * host, so we check if an assigned value belongs to a previous generation, |
| * which which requires us to assign a new value. If we're the first to use a |
| * VMID for the new generation, we must flush necessary caches and TLBs on all |
| * CPUs. |
| */ |
| static bool need_new_vmid_gen(struct kvm *kvm) |
| { |
| return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen)); |
| } |
| |
| /** |
| * update_vttbr - Update the VTTBR with a valid VMID before the guest runs |
| * @kvm The guest that we are about to run |
| * |
| * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the |
| * VM has a valid VMID, otherwise assigns a new one and flushes corresponding |
| * caches and TLBs. |
| */ |
| static void update_vttbr(struct kvm *kvm) |
| { |
| phys_addr_t pgd_phys; |
| u64 vmid; |
| |
| if (!need_new_vmid_gen(kvm)) |
| return; |
| |
| spin_lock(&kvm_vmid_lock); |
| |
| /* |
| * We need to re-check the vmid_gen here to ensure that if another vcpu |
| * already allocated a valid vmid for this vm, then this vcpu should |
| * use the same vmid. |
| */ |
| if (!need_new_vmid_gen(kvm)) { |
| spin_unlock(&kvm_vmid_lock); |
| return; |
| } |
| |
| /* First user of a new VMID generation? */ |
| if (unlikely(kvm_next_vmid == 0)) { |
| atomic64_inc(&kvm_vmid_gen); |
| kvm_next_vmid = 1; |
| |
| /* |
| * On SMP we know no other CPUs can use this CPU's or each |
| * other's VMID after force_vm_exit returns since the |
| * kvm_vmid_lock blocks them from reentry to the guest. |
| */ |
| force_vm_exit(cpu_all_mask); |
| /* |
| * Now broadcast TLB + ICACHE invalidation over the inner |
| * shareable domain to make sure all data structures are |
| * clean. |
| */ |
| kvm_call_hyp(__kvm_flush_vm_context); |
| } |
| |
| kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen); |
| kvm->arch.vmid = kvm_next_vmid; |
| kvm_next_vmid++; |
| |
| /* update vttbr to be used with the new vmid */ |
| pgd_phys = virt_to_phys(kvm->arch.pgd); |
| vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK; |
| kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK; |
| kvm->arch.vttbr |= vmid; |
| |
| spin_unlock(&kvm_vmid_lock); |
| } |
| |
| static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| /* SVC called from Hyp mode should never get here */ |
| kvm_debug("SVC called from Hyp mode shouldn't go here\n"); |
| BUG(); |
| return -EINVAL; /* Squash warning */ |
| } |
| |
| static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0), |
| vcpu->arch.hsr & HSR_HVC_IMM_MASK); |
| |
| if (kvm_psci_call(vcpu)) |
| return 1; |
| |
| kvm_inject_undefined(vcpu); |
| return 1; |
| } |
| |
| static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| if (kvm_psci_call(vcpu)) |
| return 1; |
| |
| kvm_inject_undefined(vcpu); |
| return 1; |
| } |
| |
| static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| /* The hypervisor should never cause aborts */ |
| kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n", |
| vcpu->arch.hxfar, vcpu->arch.hsr); |
| return -EFAULT; |
| } |
| |
| static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| /* This is either an error in the ws. code or an external abort */ |
| kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n", |
| vcpu->arch.hxfar, vcpu->arch.hsr); |
| return -EFAULT; |
| } |
| |
| typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *); |
| static exit_handle_fn arm_exit_handlers[] = { |
| [HSR_EC_WFI] = kvm_handle_wfi, |
| [HSR_EC_CP15_32] = kvm_handle_cp15_32, |
| [HSR_EC_CP15_64] = kvm_handle_cp15_64, |
| [HSR_EC_CP14_MR] = kvm_handle_cp14_access, |
| [HSR_EC_CP14_LS] = kvm_handle_cp14_load_store, |
| [HSR_EC_CP14_64] = kvm_handle_cp14_access, |
| [HSR_EC_CP_0_13] = kvm_handle_cp_0_13_access, |
| [HSR_EC_CP10_ID] = kvm_handle_cp10_id, |
| [HSR_EC_SVC_HYP] = handle_svc_hyp, |
| [HSR_EC_HVC] = handle_hvc, |
| [HSR_EC_SMC] = handle_smc, |
| [HSR_EC_IABT] = kvm_handle_guest_abort, |
| [HSR_EC_IABT_HYP] = handle_pabt_hyp, |
| [HSR_EC_DABT] = kvm_handle_guest_abort, |
| [HSR_EC_DABT_HYP] = handle_dabt_hyp, |
| }; |
| |
| /* |
| * A conditional instruction is allowed to trap, even though it |
| * wouldn't be executed. So let's re-implement the hardware, in |
| * software! |
| */ |
| static bool kvm_condition_valid(struct kvm_vcpu *vcpu) |
| { |
| unsigned long cpsr, cond, insn; |
| |
| /* |
| * Exception Code 0 can only happen if we set HCR.TGE to 1, to |
| * catch undefined instructions, and then we won't get past |
| * the arm_exit_handlers test anyway. |
| */ |
| BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0); |
| |
| /* Top two bits non-zero? Unconditional. */ |
| if (vcpu->arch.hsr >> 30) |
| return true; |
| |
| cpsr = *vcpu_cpsr(vcpu); |
| |
| /* Is condition field valid? */ |
| if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT) |
| cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT; |
| else { |
| /* This can happen in Thumb mode: examine IT state. */ |
| unsigned long it; |
| |
| it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3); |
| |
| /* it == 0 => unconditional. */ |
| if (it == 0) |
| return true; |
| |
| /* The cond for this insn works out as the top 4 bits. */ |
| cond = (it >> 4); |
| } |
| |
| /* Shift makes it look like an ARM-mode instruction */ |
| insn = cond << 28; |
| return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL; |
| } |
| |
| /* |
| * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on |
| * proper exit to QEMU. |
| */ |
| static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, |
| int exception_index) |
| { |
| unsigned long hsr_ec; |
| |
| switch (exception_index) { |
| case ARM_EXCEPTION_IRQ: |
| return 1; |
| case ARM_EXCEPTION_UNDEFINED: |
| kvm_err("Undefined exception in Hyp mode at: %#08x\n", |
| vcpu->arch.hyp_pc); |
| BUG(); |
| panic("KVM: Hypervisor undefined exception!\n"); |
| case ARM_EXCEPTION_DATA_ABORT: |
| case ARM_EXCEPTION_PREF_ABORT: |
| case ARM_EXCEPTION_HVC: |
| hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT; |
| |
| if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers) |
| || !arm_exit_handlers[hsr_ec]) { |
| kvm_err("Unkown exception class: %#08lx, " |
| "hsr: %#08x\n", hsr_ec, |
| (unsigned int)vcpu->arch.hsr); |
| BUG(); |
| } |
| |
| /* |
| * See ARM ARM B1.14.1: "Hyp traps on instructions |
| * that fail their condition code check" |
| */ |
| if (!kvm_condition_valid(vcpu)) { |
| bool is_wide = vcpu->arch.hsr & HSR_IL; |
| kvm_skip_instr(vcpu, is_wide); |
| return 1; |
| } |
| |
| return arm_exit_handlers[hsr_ec](vcpu, run); |
| default: |
| kvm_pr_unimpl("Unsupported exception type: %d", |
| exception_index); |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return 0; |
| } |
| } |
| |
| static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) |
| { |
| if (likely(vcpu->arch.has_run_once)) |
| return 0; |
| |
| vcpu->arch.has_run_once = true; |
| |
| /* |
| * Handle the "start in power-off" case by calling into the |
| * PSCI code. |
| */ |
| if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) { |
| *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF; |
| kvm_psci_call(vcpu); |
| } |
| |
| return 0; |
| } |
| |
| static void vcpu_pause(struct kvm_vcpu *vcpu) |
| { |
| wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu); |
| |
| wait_event_interruptible(*wq, !vcpu->arch.pause); |
| } |
| |
| /** |
| * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run structure pointer used for userspace state exchange |
| * |
| * This function is called through the VCPU_RUN ioctl called from user space. It |
| * will execute VM code in a loop until the time slice for the process is used |
| * or some emulation is needed from user space in which case the function will |
| * return with return value 0 and with the kvm_run structure filled in with the |
| * required data for the requested emulation. |
| */ |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| int ret; |
| sigset_t sigsaved; |
| |
| /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */ |
| if (unlikely(vcpu->arch.target < 0)) |
| return -ENOEXEC; |
| |
| ret = kvm_vcpu_first_run_init(vcpu); |
| if (ret) |
| return ret; |
| |
| if (run->exit_reason == KVM_EXIT_MMIO) { |
| ret = kvm_handle_mmio_return(vcpu, vcpu->run); |
| if (ret) |
| return ret; |
| } |
| |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); |
| |
| ret = 1; |
| run->exit_reason = KVM_EXIT_UNKNOWN; |
| while (ret > 0) { |
| /* |
| * Check conditions before entering the guest |
| */ |
| cond_resched(); |
| |
| update_vttbr(vcpu->kvm); |
| |
| if (vcpu->arch.pause) |
| vcpu_pause(vcpu); |
| |
| local_irq_disable(); |
| |
| /* |
| * Re-check atomic conditions |
| */ |
| if (signal_pending(current)) { |
| ret = -EINTR; |
| run->exit_reason = KVM_EXIT_INTR; |
| } |
| |
| if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) { |
| local_irq_enable(); |
| continue; |
| } |
| |
| /************************************************************** |
| * Enter the guest |
| */ |
| trace_kvm_entry(*vcpu_pc(vcpu)); |
| kvm_guest_enter(); |
| vcpu->mode = IN_GUEST_MODE; |
| |
| ret = kvm_call_hyp(__kvm_vcpu_run, vcpu); |
| |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| vcpu->arch.last_pcpu = smp_processor_id(); |
| kvm_guest_exit(); |
| trace_kvm_exit(*vcpu_pc(vcpu)); |
| /* |
| * We may have taken a host interrupt in HYP mode (ie |
| * while executing the guest). This interrupt is still |
| * pending, as we haven't serviced it yet! |
| * |
| * We're now back in SVC mode, with interrupts |
| * disabled. Enabling the interrupts now will have |
| * the effect of taking the interrupt again, in SVC |
| * mode this time. |
| */ |
| local_irq_enable(); |
| |
| /* |
| * Back from guest |
| *************************************************************/ |
| |
| ret = handle_exit(vcpu, run, ret); |
| } |
| |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| return ret; |
| } |
| |
| static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) |
| { |
| int bit_index; |
| bool set; |
| unsigned long *ptr; |
| |
| if (number == KVM_ARM_IRQ_CPU_IRQ) |
| bit_index = __ffs(HCR_VI); |
| else /* KVM_ARM_IRQ_CPU_FIQ */ |
| bit_index = __ffs(HCR_VF); |
| |
| ptr = (unsigned long *)&vcpu->arch.irq_lines; |
| if (level) |
| set = test_and_set_bit(bit_index, ptr); |
| else |
| set = test_and_clear_bit(bit_index, ptr); |
| |
| /* |
| * If we didn't change anything, no need to wake up or kick other CPUs |
| */ |
| if (set == level) |
| return 0; |
| |
| /* |
| * The vcpu irq_lines field was updated, wake up sleeping VCPUs and |
| * trigger a world-switch round on the running physical CPU to set the |
| * virtual IRQ/FIQ fields in the HCR appropriately. |
| */ |
| kvm_vcpu_kick(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level) |
| { |
| u32 irq = irq_level->irq; |
| unsigned int irq_type, vcpu_idx, irq_num; |
| int nrcpus = atomic_read(&kvm->online_vcpus); |
| struct kvm_vcpu *vcpu = NULL; |
| bool level = irq_level->level; |
| |
| irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; |
| vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; |
| irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; |
| |
| trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); |
| |
| if (irq_type != KVM_ARM_IRQ_TYPE_CPU) |
| return -EINVAL; |
| |
| if (vcpu_idx >= nrcpus) |
| return -EINVAL; |
| |
| vcpu = kvm_get_vcpu(kvm, vcpu_idx); |
| if (!vcpu) |
| return -EINVAL; |
| |
| if (irq_num > KVM_ARM_IRQ_CPU_FIQ) |
| return -EINVAL; |
| |
| return vcpu_interrupt_line(vcpu, irq_num, level); |
| } |
| |
| long kvm_arch_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| |
| switch (ioctl) { |
| case KVM_ARM_VCPU_INIT: { |
| struct kvm_vcpu_init init; |
| |
| if (copy_from_user(&init, argp, sizeof(init))) |
| return -EFAULT; |
| |
| return kvm_vcpu_set_target(vcpu, &init); |
| |
| } |
| case KVM_SET_ONE_REG: |
| case KVM_GET_ONE_REG: { |
| struct kvm_one_reg reg; |
| if (copy_from_user(®, argp, sizeof(reg))) |
| return -EFAULT; |
| if (ioctl == KVM_SET_ONE_REG) |
| return kvm_arm_set_reg(vcpu, ®); |
| else |
| return kvm_arm_get_reg(vcpu, ®); |
| } |
| case KVM_GET_REG_LIST: { |
| struct kvm_reg_list __user *user_list = argp; |
| struct kvm_reg_list reg_list; |
| unsigned n; |
| |
| if (copy_from_user(®_list, user_list, sizeof(reg_list))) |
| return -EFAULT; |
| n = reg_list.n; |
| reg_list.n = kvm_arm_num_regs(vcpu); |
| if (copy_to_user(user_list, ®_list, sizeof(reg_list))) |
| return -EFAULT; |
| if (n < reg_list.n) |
| return -E2BIG; |
| return kvm_arm_copy_reg_indices(vcpu, user_list->reg); |
| } |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) |
| { |
| return -EINVAL; |
| } |
| |
| static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, |
| struct kvm_arm_device_addr *dev_addr) |
| { |
| return -ENODEV; |
| } |
| |
| long kvm_arch_vm_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| |
| switch (ioctl) { |
| case KVM_ARM_SET_DEVICE_ADDR: { |
| struct kvm_arm_device_addr dev_addr; |
| |
| if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) |
| return -EFAULT; |
| return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); |
| } |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static void cpu_init_hyp_mode(void *vector) |
| { |
| unsigned long long pgd_ptr; |
| unsigned long pgd_low, pgd_high; |
| unsigned long hyp_stack_ptr; |
| unsigned long stack_page; |
| unsigned long vector_ptr; |
| |
| /* Switch from the HYP stub to our own HYP init vector */ |
| __hyp_set_vectors((unsigned long)vector); |
| |
| pgd_ptr = (unsigned long long)kvm_mmu_get_httbr(); |
| pgd_low = (pgd_ptr & ((1ULL << 32) - 1)); |
| pgd_high = (pgd_ptr >> 32ULL); |
| stack_page = __get_cpu_var(kvm_arm_hyp_stack_page); |
| hyp_stack_ptr = stack_page + PAGE_SIZE; |
| vector_ptr = (unsigned long)__kvm_hyp_vector; |
| |
| /* |
| * Call initialization code, and switch to the full blown |
| * HYP code. The init code doesn't need to preserve these registers as |
| * r1-r3 and r12 are already callee save according to the AAPCS. |
| * Note that we slightly misuse the prototype by casing the pgd_low to |
| * a void *. |
| */ |
| kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr); |
| } |
| |
| /** |
| * Inits Hyp-mode on all online CPUs |
| */ |
| static int init_hyp_mode(void) |
| { |
| phys_addr_t init_phys_addr; |
| int cpu; |
| int err = 0; |
| |
| /* |
| * Allocate Hyp PGD and setup Hyp identity mapping |
| */ |
| err = kvm_mmu_init(); |
| if (err) |
| goto out_err; |
| |
| /* |
| * It is probably enough to obtain the default on one |
| * CPU. It's unlikely to be different on the others. |
| */ |
| hyp_default_vectors = __hyp_get_vectors(); |
| |
| /* |
| * Allocate stack pages for Hypervisor-mode |
| */ |
| for_each_possible_cpu(cpu) { |
| unsigned long stack_page; |
| |
| stack_page = __get_free_page(GFP_KERNEL); |
| if (!stack_page) { |
| err = -ENOMEM; |
| goto out_free_stack_pages; |
| } |
| |
| per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; |
| } |
| |
| /* |
| * Execute the init code on each CPU. |
| * |
| * Note: The stack is not mapped yet, so don't do anything else than |
| * initializing the hypervisor mode on each CPU using a local stack |
| * space for temporary storage. |
| */ |
| init_phys_addr = virt_to_phys(__kvm_hyp_init); |
| for_each_online_cpu(cpu) { |
| smp_call_function_single(cpu, cpu_init_hyp_mode, |
| (void *)(long)init_phys_addr, 1); |
| } |
| |
| /* |
| * Unmap the identity mapping |
| */ |
| kvm_clear_hyp_idmap(); |
| |
| /* |
| * Map the Hyp-code called directly from the host |
| */ |
| err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end); |
| if (err) { |
| kvm_err("Cannot map world-switch code\n"); |
| goto out_free_mappings; |
| } |
| |
| /* |
| * Map the Hyp stack pages |
| */ |
| for_each_possible_cpu(cpu) { |
| char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); |
| err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE); |
| |
| if (err) { |
| kvm_err("Cannot map hyp stack\n"); |
| goto out_free_mappings; |
| } |
| } |
| |
| /* |
| * Map the host VFP structures |
| */ |
| kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct); |
| if (!kvm_host_vfp_state) { |
| err = -ENOMEM; |
| kvm_err("Cannot allocate host VFP state\n"); |
| goto out_free_mappings; |
| } |
| |
| for_each_possible_cpu(cpu) { |
| struct vfp_hard_struct *vfp; |
| |
| vfp = per_cpu_ptr(kvm_host_vfp_state, cpu); |
| err = create_hyp_mappings(vfp, vfp + 1); |
| |
| if (err) { |
| kvm_err("Cannot map host VFP state: %d\n", err); |
| goto out_free_vfp; |
| } |
| } |
| |
| kvm_info("Hyp mode initialized successfully\n"); |
| return 0; |
| out_free_vfp: |
| free_percpu(kvm_host_vfp_state); |
| out_free_mappings: |
| free_hyp_pmds(); |
| out_free_stack_pages: |
| for_each_possible_cpu(cpu) |
| free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); |
| out_err: |
| kvm_err("error initializing Hyp mode: %d\n", err); |
| return err; |
| } |
| |
| /** |
| * Initialize Hyp-mode and memory mappings on all CPUs. |
| */ |
| int kvm_arch_init(void *opaque) |
| { |
| int err; |
| |
| if (!is_hyp_mode_available()) { |
| kvm_err("HYP mode not available\n"); |
| return -ENODEV; |
| } |
| |
| if (kvm_target_cpu() < 0) { |
| kvm_err("Target CPU not supported!\n"); |
| return -ENODEV; |
| } |
| |
| err = init_hyp_mode(); |
| if (err) |
| goto out_err; |
| |
| kvm_coproc_table_init(); |
| return 0; |
| out_err: |
| return err; |
| } |
| |
| /* NOP: Compiling as a module not supported */ |
| void kvm_arch_exit(void) |
| { |
| } |
| |
| static int arm_init(void) |
| { |
| int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); |
| return rc; |
| } |
| |
| module_init(arm_init); |