| /* |
| * Copyright (c) 2007-2014 Nicira, Inc. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of version 2 of the GNU General Public |
| * License as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include "flow.h" |
| #include "datapath.h" |
| #include <linux/uaccess.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/if_ether.h> |
| #include <linux/if_vlan.h> |
| #include <net/llc_pdu.h> |
| #include <linux/kernel.h> |
| #include <linux/jhash.h> |
| #include <linux/jiffies.h> |
| #include <linux/llc.h> |
| #include <linux/module.h> |
| #include <linux/in.h> |
| #include <linux/rcupdate.h> |
| #include <linux/if_arp.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/sctp.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/icmp.h> |
| #include <linux/icmpv6.h> |
| #include <linux/rculist.h> |
| #include <net/geneve.h> |
| #include <net/ip.h> |
| #include <net/ipv6.h> |
| #include <net/ndisc.h> |
| |
| #include "flow_netlink.h" |
| |
| static void update_range__(struct sw_flow_match *match, |
| size_t offset, size_t size, bool is_mask) |
| { |
| struct sw_flow_key_range *range = NULL; |
| size_t start = rounddown(offset, sizeof(long)); |
| size_t end = roundup(offset + size, sizeof(long)); |
| |
| if (!is_mask) |
| range = &match->range; |
| else if (match->mask) |
| range = &match->mask->range; |
| |
| if (!range) |
| return; |
| |
| if (range->start == range->end) { |
| range->start = start; |
| range->end = end; |
| return; |
| } |
| |
| if (range->start > start) |
| range->start = start; |
| |
| if (range->end < end) |
| range->end = end; |
| } |
| |
| #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ |
| do { \ |
| update_range__(match, offsetof(struct sw_flow_key, field), \ |
| sizeof((match)->key->field), is_mask); \ |
| if (is_mask) { \ |
| if ((match)->mask) \ |
| (match)->mask->key.field = value; \ |
| } else { \ |
| (match)->key->field = value; \ |
| } \ |
| } while (0) |
| |
| #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ |
| do { \ |
| update_range__(match, offset, len, is_mask); \ |
| if (is_mask) \ |
| memcpy((u8 *)&(match)->mask->key + offset, value_p, \ |
| len); \ |
| else \ |
| memcpy((u8 *)(match)->key + offset, value_p, len); \ |
| } while (0) |
| |
| #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ |
| SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ |
| value_p, len, is_mask) |
| |
| static u16 range_n_bytes(const struct sw_flow_key_range *range) |
| { |
| return range->end - range->start; |
| } |
| |
| static bool match_validate(const struct sw_flow_match *match, |
| u64 key_attrs, u64 mask_attrs) |
| { |
| u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET; |
| u64 mask_allowed = key_attrs; /* At most allow all key attributes */ |
| |
| /* The following mask attributes allowed only if they |
| * pass the validation tests. */ |
| mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) |
| | (1 << OVS_KEY_ATTR_IPV6) |
| | (1 << OVS_KEY_ATTR_TCP) |
| | (1 << OVS_KEY_ATTR_TCP_FLAGS) |
| | (1 << OVS_KEY_ATTR_UDP) |
| | (1 << OVS_KEY_ATTR_SCTP) |
| | (1 << OVS_KEY_ATTR_ICMP) |
| | (1 << OVS_KEY_ATTR_ICMPV6) |
| | (1 << OVS_KEY_ATTR_ARP) |
| | (1 << OVS_KEY_ATTR_ND)); |
| |
| /* Always allowed mask fields. */ |
| mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) |
| | (1 << OVS_KEY_ATTR_IN_PORT) |
| | (1 << OVS_KEY_ATTR_ETHERTYPE)); |
| |
| /* Check key attributes. */ |
| if (match->key->eth.type == htons(ETH_P_ARP) |
| || match->key->eth.type == htons(ETH_P_RARP)) { |
| key_expected |= 1 << OVS_KEY_ATTR_ARP; |
| if (match->mask && (match->mask->key.eth.type == htons(0xffff))) |
| mask_allowed |= 1 << OVS_KEY_ATTR_ARP; |
| } |
| |
| if (match->key->eth.type == htons(ETH_P_IP)) { |
| key_expected |= 1 << OVS_KEY_ATTR_IPV4; |
| if (match->mask && (match->mask->key.eth.type == htons(0xffff))) |
| mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; |
| |
| if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { |
| if (match->key->ip.proto == IPPROTO_UDP) { |
| key_expected |= 1 << OVS_KEY_ATTR_UDP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_UDP; |
| } |
| |
| if (match->key->ip.proto == IPPROTO_SCTP) { |
| key_expected |= 1 << OVS_KEY_ATTR_SCTP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; |
| } |
| |
| if (match->key->ip.proto == IPPROTO_TCP) { |
| key_expected |= 1 << OVS_KEY_ATTR_TCP; |
| key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) { |
| mask_allowed |= 1 << OVS_KEY_ATTR_TCP; |
| mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; |
| } |
| } |
| |
| if (match->key->ip.proto == IPPROTO_ICMP) { |
| key_expected |= 1 << OVS_KEY_ATTR_ICMP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; |
| } |
| } |
| } |
| |
| if (match->key->eth.type == htons(ETH_P_IPV6)) { |
| key_expected |= 1 << OVS_KEY_ATTR_IPV6; |
| if (match->mask && (match->mask->key.eth.type == htons(0xffff))) |
| mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; |
| |
| if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { |
| if (match->key->ip.proto == IPPROTO_UDP) { |
| key_expected |= 1 << OVS_KEY_ATTR_UDP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_UDP; |
| } |
| |
| if (match->key->ip.proto == IPPROTO_SCTP) { |
| key_expected |= 1 << OVS_KEY_ATTR_SCTP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; |
| } |
| |
| if (match->key->ip.proto == IPPROTO_TCP) { |
| key_expected |= 1 << OVS_KEY_ATTR_TCP; |
| key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) { |
| mask_allowed |= 1 << OVS_KEY_ATTR_TCP; |
| mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; |
| } |
| } |
| |
| if (match->key->ip.proto == IPPROTO_ICMPV6) { |
| key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; |
| |
| if (match->key->tp.src == |
| htons(NDISC_NEIGHBOUR_SOLICITATION) || |
| match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { |
| key_expected |= 1 << OVS_KEY_ATTR_ND; |
| if (match->mask && (match->mask->key.tp.src == htons(0xffff))) |
| mask_allowed |= 1 << OVS_KEY_ATTR_ND; |
| } |
| } |
| } |
| } |
| |
| if ((key_attrs & key_expected) != key_expected) { |
| /* Key attributes check failed. */ |
| OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n", |
| (unsigned long long)key_attrs, (unsigned long long)key_expected); |
| return false; |
| } |
| |
| if ((mask_attrs & mask_allowed) != mask_attrs) { |
| /* Mask attributes check failed. */ |
| OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n", |
| (unsigned long long)mask_attrs, (unsigned long long)mask_allowed); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ |
| static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { |
| [OVS_KEY_ATTR_ENCAP] = -1, |
| [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), |
| [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), |
| [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32), |
| [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), |
| [OVS_KEY_ATTR_VLAN] = sizeof(__be16), |
| [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), |
| [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), |
| [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), |
| [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), |
| [OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16), |
| [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), |
| [OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp), |
| [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), |
| [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), |
| [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), |
| [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), |
| [OVS_KEY_ATTR_RECIRC_ID] = sizeof(u32), |
| [OVS_KEY_ATTR_DP_HASH] = sizeof(u32), |
| [OVS_KEY_ATTR_TUNNEL] = -1, |
| }; |
| |
| static bool is_all_zero(const u8 *fp, size_t size) |
| { |
| int i; |
| |
| if (!fp) |
| return false; |
| |
| for (i = 0; i < size; i++) |
| if (fp[i]) |
| return false; |
| |
| return true; |
| } |
| |
| static int __parse_flow_nlattrs(const struct nlattr *attr, |
| const struct nlattr *a[], |
| u64 *attrsp, bool nz) |
| { |
| const struct nlattr *nla; |
| u64 attrs; |
| int rem; |
| |
| attrs = *attrsp; |
| nla_for_each_nested(nla, attr, rem) { |
| u16 type = nla_type(nla); |
| int expected_len; |
| |
| if (type > OVS_KEY_ATTR_MAX) { |
| OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n", |
| type, OVS_KEY_ATTR_MAX); |
| return -EINVAL; |
| } |
| |
| if (attrs & (1 << type)) { |
| OVS_NLERR("Duplicate key attribute (type %d).\n", type); |
| return -EINVAL; |
| } |
| |
| expected_len = ovs_key_lens[type]; |
| if (nla_len(nla) != expected_len && expected_len != -1) { |
| OVS_NLERR("Key attribute has unexpected length (type=%d" |
| ", length=%d, expected=%d).\n", type, |
| nla_len(nla), expected_len); |
| return -EINVAL; |
| } |
| |
| if (!nz || !is_all_zero(nla_data(nla), expected_len)) { |
| attrs |= 1 << type; |
| a[type] = nla; |
| } |
| } |
| if (rem) { |
| OVS_NLERR("Message has %d unknown bytes.\n", rem); |
| return -EINVAL; |
| } |
| |
| *attrsp = attrs; |
| return 0; |
| } |
| |
| static int parse_flow_mask_nlattrs(const struct nlattr *attr, |
| const struct nlattr *a[], u64 *attrsp) |
| { |
| return __parse_flow_nlattrs(attr, a, attrsp, true); |
| } |
| |
| static int parse_flow_nlattrs(const struct nlattr *attr, |
| const struct nlattr *a[], u64 *attrsp) |
| { |
| return __parse_flow_nlattrs(attr, a, attrsp, false); |
| } |
| |
| static int ipv4_tun_from_nlattr(const struct nlattr *attr, |
| struct sw_flow_match *match, bool is_mask) |
| { |
| struct nlattr *a; |
| int rem; |
| bool ttl = false; |
| __be16 tun_flags = 0; |
| unsigned long opt_key_offset; |
| |
| nla_for_each_nested(a, attr, rem) { |
| int type = nla_type(a); |
| static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { |
| [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64), |
| [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32), |
| [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32), |
| [OVS_TUNNEL_KEY_ATTR_TOS] = 1, |
| [OVS_TUNNEL_KEY_ATTR_TTL] = 1, |
| [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0, |
| [OVS_TUNNEL_KEY_ATTR_CSUM] = 0, |
| [OVS_TUNNEL_KEY_ATTR_OAM] = 0, |
| [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = -1, |
| }; |
| |
| if (type > OVS_TUNNEL_KEY_ATTR_MAX) { |
| OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n", |
| type, OVS_TUNNEL_KEY_ATTR_MAX); |
| return -EINVAL; |
| } |
| |
| if (ovs_tunnel_key_lens[type] != nla_len(a) && |
| ovs_tunnel_key_lens[type] != -1) { |
| OVS_NLERR("IPv4 tunnel attribute type has unexpected " |
| " length (type=%d, length=%d, expected=%d).\n", |
| type, nla_len(a), ovs_tunnel_key_lens[type]); |
| return -EINVAL; |
| } |
| |
| switch (type) { |
| case OVS_TUNNEL_KEY_ATTR_ID: |
| SW_FLOW_KEY_PUT(match, tun_key.tun_id, |
| nla_get_be64(a), is_mask); |
| tun_flags |= TUNNEL_KEY; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: |
| SW_FLOW_KEY_PUT(match, tun_key.ipv4_src, |
| nla_get_be32(a), is_mask); |
| break; |
| case OVS_TUNNEL_KEY_ATTR_IPV4_DST: |
| SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst, |
| nla_get_be32(a), is_mask); |
| break; |
| case OVS_TUNNEL_KEY_ATTR_TOS: |
| SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos, |
| nla_get_u8(a), is_mask); |
| break; |
| case OVS_TUNNEL_KEY_ATTR_TTL: |
| SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl, |
| nla_get_u8(a), is_mask); |
| ttl = true; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: |
| tun_flags |= TUNNEL_DONT_FRAGMENT; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_CSUM: |
| tun_flags |= TUNNEL_CSUM; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_OAM: |
| tun_flags |= TUNNEL_OAM; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: |
| tun_flags |= TUNNEL_OPTIONS_PRESENT; |
| if (nla_len(a) > sizeof(match->key->tun_opts)) { |
| OVS_NLERR("Geneve option length exceeds maximum size (len %d, max %zu).\n", |
| nla_len(a), |
| sizeof(match->key->tun_opts)); |
| return -EINVAL; |
| } |
| |
| if (nla_len(a) % 4 != 0) { |
| OVS_NLERR("Geneve option length is not a multiple of 4 (len %d).\n", |
| nla_len(a)); |
| return -EINVAL; |
| } |
| |
| /* We need to record the length of the options passed |
| * down, otherwise packets with the same format but |
| * additional options will be silently matched. |
| */ |
| if (!is_mask) { |
| SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), |
| false); |
| } else { |
| /* This is somewhat unusual because it looks at |
| * both the key and mask while parsing the |
| * attributes (and by extension assumes the key |
| * is parsed first). Normally, we would verify |
| * that each is the correct length and that the |
| * attributes line up in the validate function. |
| * However, that is difficult because this is |
| * variable length and we won't have the |
| * information later. |
| */ |
| if (match->key->tun_opts_len != nla_len(a)) { |
| OVS_NLERR("Geneve option key length (%d) is different from mask length (%d).", |
| match->key->tun_opts_len, |
| nla_len(a)); |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, |
| true); |
| } |
| |
| opt_key_offset = (unsigned long)GENEVE_OPTS( |
| (struct sw_flow_key *)0, |
| nla_len(a)); |
| SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, |
| nla_data(a), nla_len(a), |
| is_mask); |
| break; |
| default: |
| OVS_NLERR("Unknown IPv4 tunnel attribute (%d).\n", |
| type); |
| return -EINVAL; |
| } |
| } |
| |
| SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); |
| |
| if (rem > 0) { |
| OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem); |
| return -EINVAL; |
| } |
| |
| if (!is_mask) { |
| if (!match->key->tun_key.ipv4_dst) { |
| OVS_NLERR("IPv4 tunnel destination address is zero.\n"); |
| return -EINVAL; |
| } |
| |
| if (!ttl) { |
| OVS_NLERR("IPv4 tunnel TTL not specified.\n"); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int __ipv4_tun_to_nlattr(struct sk_buff *skb, |
| const struct ovs_key_ipv4_tunnel *output, |
| const struct geneve_opt *tun_opts, |
| int swkey_tun_opts_len) |
| { |
| if (output->tun_flags & TUNNEL_KEY && |
| nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id)) |
| return -EMSGSIZE; |
| if (output->ipv4_src && |
| nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src)) |
| return -EMSGSIZE; |
| if (output->ipv4_dst && |
| nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst)) |
| return -EMSGSIZE; |
| if (output->ipv4_tos && |
| nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos)) |
| return -EMSGSIZE; |
| if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl)) |
| return -EMSGSIZE; |
| if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && |
| nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) |
| return -EMSGSIZE; |
| if ((output->tun_flags & TUNNEL_CSUM) && |
| nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) |
| return -EMSGSIZE; |
| if ((output->tun_flags & TUNNEL_OAM) && |
| nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) |
| return -EMSGSIZE; |
| if (tun_opts && |
| nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, |
| swkey_tun_opts_len, tun_opts)) |
| return -EMSGSIZE; |
| |
| return 0; |
| } |
| |
| |
| static int ipv4_tun_to_nlattr(struct sk_buff *skb, |
| const struct ovs_key_ipv4_tunnel *output, |
| const struct geneve_opt *tun_opts, |
| int swkey_tun_opts_len) |
| { |
| struct nlattr *nla; |
| int err; |
| |
| nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); |
| if (!nla) |
| return -EMSGSIZE; |
| |
| err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len); |
| if (err) |
| return err; |
| |
| nla_nest_end(skb, nla); |
| return 0; |
| } |
| |
| static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs, |
| const struct nlattr **a, bool is_mask) |
| { |
| if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { |
| u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); |
| |
| SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); |
| } |
| |
| if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { |
| u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); |
| |
| SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); |
| } |
| |
| if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { |
| SW_FLOW_KEY_PUT(match, phy.priority, |
| nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); |
| } |
| |
| if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { |
| u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); |
| |
| if (is_mask) |
| in_port = 0xffffffff; /* Always exact match in_port. */ |
| else if (in_port >= DP_MAX_PORTS) |
| return -EINVAL; |
| |
| SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); |
| } else if (!is_mask) { |
| SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); |
| } |
| |
| if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { |
| uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); |
| |
| SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); |
| } |
| if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { |
| if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, |
| is_mask)) |
| return -EINVAL; |
| *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); |
| } |
| return 0; |
| } |
| |
| static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs, |
| const struct nlattr **a, bool is_mask) |
| { |
| int err; |
| u64 orig_attrs = attrs; |
| |
| err = metadata_from_nlattrs(match, &attrs, a, is_mask); |
| if (err) |
| return err; |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { |
| const struct ovs_key_ethernet *eth_key; |
| |
| eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); |
| SW_FLOW_KEY_MEMCPY(match, eth.src, |
| eth_key->eth_src, ETH_ALEN, is_mask); |
| SW_FLOW_KEY_MEMCPY(match, eth.dst, |
| eth_key->eth_dst, ETH_ALEN, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { |
| __be16 tci; |
| |
| tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); |
| if (!(tci & htons(VLAN_TAG_PRESENT))) { |
| if (is_mask) |
| OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n"); |
| else |
| OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n"); |
| |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_VLAN); |
| } else if (!is_mask) |
| SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true); |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { |
| __be16 eth_type; |
| |
| eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); |
| if (is_mask) { |
| /* Always exact match EtherType. */ |
| eth_type = htons(0xffff); |
| } else if (ntohs(eth_type) < ETH_P_802_3_MIN) { |
| OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n", |
| ntohs(eth_type), ETH_P_802_3_MIN); |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); |
| } else if (!is_mask) { |
| SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { |
| const struct ovs_key_ipv4 *ipv4_key; |
| |
| ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); |
| if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { |
| OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n", |
| ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); |
| return -EINVAL; |
| } |
| SW_FLOW_KEY_PUT(match, ip.proto, |
| ipv4_key->ipv4_proto, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.tos, |
| ipv4_key->ipv4_tos, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.ttl, |
| ipv4_key->ipv4_ttl, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.frag, |
| ipv4_key->ipv4_frag, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.addr.src, |
| ipv4_key->ipv4_src, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.addr.dst, |
| ipv4_key->ipv4_dst, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_IPV4); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { |
| const struct ovs_key_ipv6 *ipv6_key; |
| |
| ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); |
| if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { |
| OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n", |
| ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); |
| return -EINVAL; |
| } |
| SW_FLOW_KEY_PUT(match, ipv6.label, |
| ipv6_key->ipv6_label, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.proto, |
| ipv6_key->ipv6_proto, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.tos, |
| ipv6_key->ipv6_tclass, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.ttl, |
| ipv6_key->ipv6_hlimit, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.frag, |
| ipv6_key->ipv6_frag, is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, |
| ipv6_key->ipv6_src, |
| sizeof(match->key->ipv6.addr.src), |
| is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, |
| ipv6_key->ipv6_dst, |
| sizeof(match->key->ipv6.addr.dst), |
| is_mask); |
| |
| attrs &= ~(1 << OVS_KEY_ATTR_IPV6); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ARP)) { |
| const struct ovs_key_arp *arp_key; |
| |
| arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); |
| if (!is_mask && (arp_key->arp_op & htons(0xff00))) { |
| OVS_NLERR("Unknown ARP opcode (opcode=%d).\n", |
| arp_key->arp_op); |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, ipv4.addr.src, |
| arp_key->arp_sip, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.addr.dst, |
| arp_key->arp_tip, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.proto, |
| ntohs(arp_key->arp_op), is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, |
| arp_key->arp_sha, ETH_ALEN, is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, |
| arp_key->arp_tha, ETH_ALEN, is_mask); |
| |
| attrs &= ~(1 << OVS_KEY_ATTR_ARP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_TCP)) { |
| const struct ovs_key_tcp *tcp_key; |
| |
| tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); |
| SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); |
| SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_TCP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { |
| if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) { |
| SW_FLOW_KEY_PUT(match, tp.flags, |
| nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), |
| is_mask); |
| } else { |
| SW_FLOW_KEY_PUT(match, tp.flags, |
| nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), |
| is_mask); |
| } |
| attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_UDP)) { |
| const struct ovs_key_udp *udp_key; |
| |
| udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); |
| SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); |
| SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_UDP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { |
| const struct ovs_key_sctp *sctp_key; |
| |
| sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); |
| SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); |
| SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_SCTP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { |
| const struct ovs_key_icmp *icmp_key; |
| |
| icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); |
| SW_FLOW_KEY_PUT(match, tp.src, |
| htons(icmp_key->icmp_type), is_mask); |
| SW_FLOW_KEY_PUT(match, tp.dst, |
| htons(icmp_key->icmp_code), is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ICMP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { |
| const struct ovs_key_icmpv6 *icmpv6_key; |
| |
| icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); |
| SW_FLOW_KEY_PUT(match, tp.src, |
| htons(icmpv6_key->icmpv6_type), is_mask); |
| SW_FLOW_KEY_PUT(match, tp.dst, |
| htons(icmpv6_key->icmpv6_code), is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ND)) { |
| const struct ovs_key_nd *nd_key; |
| |
| nd_key = nla_data(a[OVS_KEY_ATTR_ND]); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, |
| nd_key->nd_target, |
| sizeof(match->key->ipv6.nd.target), |
| is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, |
| nd_key->nd_sll, ETH_ALEN, is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, |
| nd_key->nd_tll, ETH_ALEN, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ND); |
| } |
| |
| if (attrs != 0) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static void sw_flow_mask_set(struct sw_flow_mask *mask, |
| struct sw_flow_key_range *range, u8 val) |
| { |
| u8 *m = (u8 *)&mask->key + range->start; |
| |
| mask->range = *range; |
| memset(m, val, range_n_bytes(range)); |
| } |
| |
| /** |
| * ovs_nla_get_match - parses Netlink attributes into a flow key and |
| * mask. In case the 'mask' is NULL, the flow is treated as exact match |
| * flow. Otherwise, it is treated as a wildcarded flow, except the mask |
| * does not include any don't care bit. |
| * @match: receives the extracted flow match information. |
| * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute |
| * sequence. The fields should of the packet that triggered the creation |
| * of this flow. |
| * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink |
| * attribute specifies the mask field of the wildcarded flow. |
| */ |
| int ovs_nla_get_match(struct sw_flow_match *match, |
| const struct nlattr *key, |
| const struct nlattr *mask) |
| { |
| const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; |
| const struct nlattr *encap; |
| u64 key_attrs = 0; |
| u64 mask_attrs = 0; |
| bool encap_valid = false; |
| int err; |
| |
| err = parse_flow_nlattrs(key, a, &key_attrs); |
| if (err) |
| return err; |
| |
| if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && |
| (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && |
| (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) { |
| __be16 tci; |
| |
| if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && |
| (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { |
| OVS_NLERR("Invalid Vlan frame.\n"); |
| return -EINVAL; |
| } |
| |
| key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); |
| tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); |
| encap = a[OVS_KEY_ATTR_ENCAP]; |
| key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); |
| encap_valid = true; |
| |
| if (tci & htons(VLAN_TAG_PRESENT)) { |
| err = parse_flow_nlattrs(encap, a, &key_attrs); |
| if (err) |
| return err; |
| } else if (!tci) { |
| /* Corner case for truncated 802.1Q header. */ |
| if (nla_len(encap)) { |
| OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n"); |
| return -EINVAL; |
| } |
| } else { |
| OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n"); |
| return -EINVAL; |
| } |
| } |
| |
| err = ovs_key_from_nlattrs(match, key_attrs, a, false); |
| if (err) |
| return err; |
| |
| if (mask) { |
| err = parse_flow_mask_nlattrs(mask, a, &mask_attrs); |
| if (err) |
| return err; |
| |
| if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) { |
| __be16 eth_type = 0; |
| __be16 tci = 0; |
| |
| if (!encap_valid) { |
| OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n"); |
| return -EINVAL; |
| } |
| |
| mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); |
| if (a[OVS_KEY_ATTR_ETHERTYPE]) |
| eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); |
| |
| if (eth_type == htons(0xffff)) { |
| mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); |
| encap = a[OVS_KEY_ATTR_ENCAP]; |
| err = parse_flow_mask_nlattrs(encap, a, &mask_attrs); |
| } else { |
| OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n", |
| ntohs(eth_type)); |
| return -EINVAL; |
| } |
| |
| if (a[OVS_KEY_ATTR_VLAN]) |
| tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); |
| |
| if (!(tci & htons(VLAN_TAG_PRESENT))) { |
| OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci)); |
| return -EINVAL; |
| } |
| } |
| |
| err = ovs_key_from_nlattrs(match, mask_attrs, a, true); |
| if (err) |
| return err; |
| } else { |
| /* Populate exact match flow's key mask. */ |
| if (match->mask) |
| sw_flow_mask_set(match->mask, &match->range, 0xff); |
| } |
| |
| if (!match_validate(match, key_attrs, mask_attrs)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /** |
| * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. |
| * @key: Receives extracted in_port, priority, tun_key and skb_mark. |
| * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute |
| * sequence. |
| * |
| * This parses a series of Netlink attributes that form a flow key, which must |
| * take the same form accepted by flow_from_nlattrs(), but only enough of it to |
| * get the metadata, that is, the parts of the flow key that cannot be |
| * extracted from the packet itself. |
| */ |
| |
| int ovs_nla_get_flow_metadata(const struct nlattr *attr, |
| struct sw_flow_key *key) |
| { |
| const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; |
| struct sw_flow_match match; |
| u64 attrs = 0; |
| int err; |
| |
| err = parse_flow_nlattrs(attr, a, &attrs); |
| if (err) |
| return -EINVAL; |
| |
| memset(&match, 0, sizeof(match)); |
| match.key = key; |
| |
| key->phy.in_port = DP_MAX_PORTS; |
| |
| return metadata_from_nlattrs(&match, &attrs, a, false); |
| } |
| |
| int ovs_nla_put_flow(const struct sw_flow_key *swkey, |
| const struct sw_flow_key *output, struct sk_buff *skb) |
| { |
| struct ovs_key_ethernet *eth_key; |
| struct nlattr *nla, *encap; |
| bool is_mask = (swkey != output); |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) |
| goto nla_put_failure; |
| |
| if ((swkey->tun_key.ipv4_dst || is_mask)) { |
| const struct geneve_opt *opts = NULL; |
| |
| if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) |
| opts = GENEVE_OPTS(output, swkey->tun_opts_len); |
| |
| if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts, |
| swkey->tun_opts_len)) |
| goto nla_put_failure; |
| } |
| |
| if (swkey->phy.in_port == DP_MAX_PORTS) { |
| if (is_mask && (output->phy.in_port == 0xffff)) |
| if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) |
| goto nla_put_failure; |
| } else { |
| u16 upper_u16; |
| upper_u16 = !is_mask ? 0 : 0xffff; |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, |
| (upper_u16 << 16) | output->phy.in_port)) |
| goto nla_put_failure; |
| } |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) |
| goto nla_put_failure; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); |
| if (!nla) |
| goto nla_put_failure; |
| |
| eth_key = nla_data(nla); |
| ether_addr_copy(eth_key->eth_src, output->eth.src); |
| ether_addr_copy(eth_key->eth_dst, output->eth.dst); |
| |
| if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { |
| __be16 eth_type; |
| eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff); |
| if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || |
| nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci)) |
| goto nla_put_failure; |
| encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); |
| if (!swkey->eth.tci) |
| goto unencap; |
| } else |
| encap = NULL; |
| |
| if (swkey->eth.type == htons(ETH_P_802_2)) { |
| /* |
| * Ethertype 802.2 is represented in the netlink with omitted |
| * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and |
| * 0xffff in the mask attribute. Ethertype can also |
| * be wildcarded. |
| */ |
| if (is_mask && output->eth.type) |
| if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, |
| output->eth.type)) |
| goto nla_put_failure; |
| goto unencap; |
| } |
| |
| if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) |
| goto nla_put_failure; |
| |
| if (swkey->eth.type == htons(ETH_P_IP)) { |
| struct ovs_key_ipv4 *ipv4_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); |
| if (!nla) |
| goto nla_put_failure; |
| ipv4_key = nla_data(nla); |
| ipv4_key->ipv4_src = output->ipv4.addr.src; |
| ipv4_key->ipv4_dst = output->ipv4.addr.dst; |
| ipv4_key->ipv4_proto = output->ip.proto; |
| ipv4_key->ipv4_tos = output->ip.tos; |
| ipv4_key->ipv4_ttl = output->ip.ttl; |
| ipv4_key->ipv4_frag = output->ip.frag; |
| } else if (swkey->eth.type == htons(ETH_P_IPV6)) { |
| struct ovs_key_ipv6 *ipv6_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); |
| if (!nla) |
| goto nla_put_failure; |
| ipv6_key = nla_data(nla); |
| memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, |
| sizeof(ipv6_key->ipv6_src)); |
| memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, |
| sizeof(ipv6_key->ipv6_dst)); |
| ipv6_key->ipv6_label = output->ipv6.label; |
| ipv6_key->ipv6_proto = output->ip.proto; |
| ipv6_key->ipv6_tclass = output->ip.tos; |
| ipv6_key->ipv6_hlimit = output->ip.ttl; |
| ipv6_key->ipv6_frag = output->ip.frag; |
| } else if (swkey->eth.type == htons(ETH_P_ARP) || |
| swkey->eth.type == htons(ETH_P_RARP)) { |
| struct ovs_key_arp *arp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| arp_key = nla_data(nla); |
| memset(arp_key, 0, sizeof(struct ovs_key_arp)); |
| arp_key->arp_sip = output->ipv4.addr.src; |
| arp_key->arp_tip = output->ipv4.addr.dst; |
| arp_key->arp_op = htons(output->ip.proto); |
| ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); |
| ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); |
| } |
| |
| if ((swkey->eth.type == htons(ETH_P_IP) || |
| swkey->eth.type == htons(ETH_P_IPV6)) && |
| swkey->ip.frag != OVS_FRAG_TYPE_LATER) { |
| |
| if (swkey->ip.proto == IPPROTO_TCP) { |
| struct ovs_key_tcp *tcp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| tcp_key = nla_data(nla); |
| tcp_key->tcp_src = output->tp.src; |
| tcp_key->tcp_dst = output->tp.dst; |
| if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, |
| output->tp.flags)) |
| goto nla_put_failure; |
| } else if (swkey->ip.proto == IPPROTO_UDP) { |
| struct ovs_key_udp *udp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| udp_key = nla_data(nla); |
| udp_key->udp_src = output->tp.src; |
| udp_key->udp_dst = output->tp.dst; |
| } else if (swkey->ip.proto == IPPROTO_SCTP) { |
| struct ovs_key_sctp *sctp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| sctp_key = nla_data(nla); |
| sctp_key->sctp_src = output->tp.src; |
| sctp_key->sctp_dst = output->tp.dst; |
| } else if (swkey->eth.type == htons(ETH_P_IP) && |
| swkey->ip.proto == IPPROTO_ICMP) { |
| struct ovs_key_icmp *icmp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| icmp_key = nla_data(nla); |
| icmp_key->icmp_type = ntohs(output->tp.src); |
| icmp_key->icmp_code = ntohs(output->tp.dst); |
| } else if (swkey->eth.type == htons(ETH_P_IPV6) && |
| swkey->ip.proto == IPPROTO_ICMPV6) { |
| struct ovs_key_icmpv6 *icmpv6_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, |
| sizeof(*icmpv6_key)); |
| if (!nla) |
| goto nla_put_failure; |
| icmpv6_key = nla_data(nla); |
| icmpv6_key->icmpv6_type = ntohs(output->tp.src); |
| icmpv6_key->icmpv6_code = ntohs(output->tp.dst); |
| |
| if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || |
| icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { |
| struct ovs_key_nd *nd_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); |
| if (!nla) |
| goto nla_put_failure; |
| nd_key = nla_data(nla); |
| memcpy(nd_key->nd_target, &output->ipv6.nd.target, |
| sizeof(nd_key->nd_target)); |
| ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); |
| ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); |
| } |
| } |
| } |
| |
| unencap: |
| if (encap) |
| nla_nest_end(skb, encap); |
| |
| return 0; |
| |
| nla_put_failure: |
| return -EMSGSIZE; |
| } |
| |
| #define MAX_ACTIONS_BUFSIZE (32 * 1024) |
| |
| struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size) |
| { |
| struct sw_flow_actions *sfa; |
| |
| if (size > MAX_ACTIONS_BUFSIZE) |
| return ERR_PTR(-EINVAL); |
| |
| sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); |
| if (!sfa) |
| return ERR_PTR(-ENOMEM); |
| |
| sfa->actions_len = 0; |
| return sfa; |
| } |
| |
| /* Schedules 'sf_acts' to be freed after the next RCU grace period. |
| * The caller must hold rcu_read_lock for this to be sensible. */ |
| void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) |
| { |
| kfree_rcu(sf_acts, rcu); |
| } |
| |
| static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, |
| int attr_len) |
| { |
| |
| struct sw_flow_actions *acts; |
| int new_acts_size; |
| int req_size = NLA_ALIGN(attr_len); |
| int next_offset = offsetof(struct sw_flow_actions, actions) + |
| (*sfa)->actions_len; |
| |
| if (req_size <= (ksize(*sfa) - next_offset)) |
| goto out; |
| |
| new_acts_size = ksize(*sfa) * 2; |
| |
| if (new_acts_size > MAX_ACTIONS_BUFSIZE) { |
| if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) |
| return ERR_PTR(-EMSGSIZE); |
| new_acts_size = MAX_ACTIONS_BUFSIZE; |
| } |
| |
| acts = ovs_nla_alloc_flow_actions(new_acts_size); |
| if (IS_ERR(acts)) |
| return (void *)acts; |
| |
| memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); |
| acts->actions_len = (*sfa)->actions_len; |
| kfree(*sfa); |
| *sfa = acts; |
| |
| out: |
| (*sfa)->actions_len += req_size; |
| return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); |
| } |
| |
| static struct nlattr *__add_action(struct sw_flow_actions **sfa, |
| int attrtype, void *data, int len) |
| { |
| struct nlattr *a; |
| |
| a = reserve_sfa_size(sfa, nla_attr_size(len)); |
| if (IS_ERR(a)) |
| return a; |
| |
| a->nla_type = attrtype; |
| a->nla_len = nla_attr_size(len); |
| |
| if (data) |
| memcpy(nla_data(a), data, len); |
| memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); |
| |
| return a; |
| } |
| |
| static int add_action(struct sw_flow_actions **sfa, int attrtype, |
| void *data, int len) |
| { |
| struct nlattr *a; |
| |
| a = __add_action(sfa, attrtype, data, len); |
| if (IS_ERR(a)) |
| return PTR_ERR(a); |
| |
| return 0; |
| } |
| |
| static inline int add_nested_action_start(struct sw_flow_actions **sfa, |
| int attrtype) |
| { |
| int used = (*sfa)->actions_len; |
| int err; |
| |
| err = add_action(sfa, attrtype, NULL, 0); |
| if (err) |
| return err; |
| |
| return used; |
| } |
| |
| static inline void add_nested_action_end(struct sw_flow_actions *sfa, |
| int st_offset) |
| { |
| struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + |
| st_offset); |
| |
| a->nla_len = sfa->actions_len - st_offset; |
| } |
| |
| static int validate_and_copy_sample(const struct nlattr *attr, |
| const struct sw_flow_key *key, int depth, |
| struct sw_flow_actions **sfa) |
| { |
| const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; |
| const struct nlattr *probability, *actions; |
| const struct nlattr *a; |
| int rem, start, err, st_acts; |
| |
| memset(attrs, 0, sizeof(attrs)); |
| nla_for_each_nested(a, attr, rem) { |
| int type = nla_type(a); |
| if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) |
| return -EINVAL; |
| attrs[type] = a; |
| } |
| if (rem) |
| return -EINVAL; |
| |
| probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; |
| if (!probability || nla_len(probability) != sizeof(u32)) |
| return -EINVAL; |
| |
| actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; |
| if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) |
| return -EINVAL; |
| |
| /* validation done, copy sample action. */ |
| start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE); |
| if (start < 0) |
| return start; |
| err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY, |
| nla_data(probability), sizeof(u32)); |
| if (err) |
| return err; |
| st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS); |
| if (st_acts < 0) |
| return st_acts; |
| |
| err = ovs_nla_copy_actions(actions, key, depth + 1, sfa); |
| if (err) |
| return err; |
| |
| add_nested_action_end(*sfa, st_acts); |
| add_nested_action_end(*sfa, start); |
| |
| return 0; |
| } |
| |
| static int validate_tp_port(const struct sw_flow_key *flow_key) |
| { |
| if ((flow_key->eth.type == htons(ETH_P_IP) || |
| flow_key->eth.type == htons(ETH_P_IPV6)) && |
| (flow_key->tp.src || flow_key->tp.dst)) |
| return 0; |
| |
| return -EINVAL; |
| } |
| |
| void ovs_match_init(struct sw_flow_match *match, |
| struct sw_flow_key *key, |
| struct sw_flow_mask *mask) |
| { |
| memset(match, 0, sizeof(*match)); |
| match->key = key; |
| match->mask = mask; |
| |
| memset(key, 0, sizeof(*key)); |
| |
| if (mask) { |
| memset(&mask->key, 0, sizeof(mask->key)); |
| mask->range.start = mask->range.end = 0; |
| } |
| } |
| |
| static int validate_and_copy_set_tun(const struct nlattr *attr, |
| struct sw_flow_actions **sfa) |
| { |
| struct sw_flow_match match; |
| struct sw_flow_key key; |
| struct ovs_tunnel_info *tun_info; |
| struct nlattr *a; |
| int err, start; |
| |
| ovs_match_init(&match, &key, NULL); |
| err = ipv4_tun_from_nlattr(nla_data(attr), &match, false); |
| if (err) |
| return err; |
| |
| if (key.tun_opts_len) { |
| struct geneve_opt *option = GENEVE_OPTS(&key, |
| key.tun_opts_len); |
| int opts_len = key.tun_opts_len; |
| bool crit_opt = false; |
| |
| while (opts_len > 0) { |
| int len; |
| |
| if (opts_len < sizeof(*option)) |
| return -EINVAL; |
| |
| len = sizeof(*option) + option->length * 4; |
| if (len > opts_len) |
| return -EINVAL; |
| |
| crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); |
| |
| option = (struct geneve_opt *)((u8 *)option + len); |
| opts_len -= len; |
| }; |
| |
| key.tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; |
| }; |
| |
| start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET); |
| if (start < 0) |
| return start; |
| |
| a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, |
| sizeof(*tun_info) + key.tun_opts_len); |
| if (IS_ERR(a)) |
| return PTR_ERR(a); |
| |
| tun_info = nla_data(a); |
| tun_info->tunnel = key.tun_key; |
| tun_info->options_len = key.tun_opts_len; |
| |
| if (tun_info->options_len) { |
| /* We need to store the options in the action itself since |
| * everything else will go away after flow setup. We can append |
| * it to tun_info and then point there. |
| */ |
| memcpy((tun_info + 1), GENEVE_OPTS(&key, key.tun_opts_len), |
| key.tun_opts_len); |
| tun_info->options = (struct geneve_opt *)(tun_info + 1); |
| } else { |
| tun_info->options = NULL; |
| } |
| |
| add_nested_action_end(*sfa, start); |
| |
| return err; |
| } |
| |
| static int validate_set(const struct nlattr *a, |
| const struct sw_flow_key *flow_key, |
| struct sw_flow_actions **sfa, |
| bool *set_tun) |
| { |
| const struct nlattr *ovs_key = nla_data(a); |
| int key_type = nla_type(ovs_key); |
| |
| /* There can be only one key in a action */ |
| if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) |
| return -EINVAL; |
| |
| if (key_type > OVS_KEY_ATTR_MAX || |
| (ovs_key_lens[key_type] != nla_len(ovs_key) && |
| ovs_key_lens[key_type] != -1)) |
| return -EINVAL; |
| |
| switch (key_type) { |
| const struct ovs_key_ipv4 *ipv4_key; |
| const struct ovs_key_ipv6 *ipv6_key; |
| int err; |
| |
| case OVS_KEY_ATTR_PRIORITY: |
| case OVS_KEY_ATTR_SKB_MARK: |
| case OVS_KEY_ATTR_ETHERNET: |
| break; |
| |
| case OVS_KEY_ATTR_TUNNEL: |
| *set_tun = true; |
| err = validate_and_copy_set_tun(a, sfa); |
| if (err) |
| return err; |
| break; |
| |
| case OVS_KEY_ATTR_IPV4: |
| if (flow_key->eth.type != htons(ETH_P_IP)) |
| return -EINVAL; |
| |
| if (!flow_key->ip.proto) |
| return -EINVAL; |
| |
| ipv4_key = nla_data(ovs_key); |
| if (ipv4_key->ipv4_proto != flow_key->ip.proto) |
| return -EINVAL; |
| |
| if (ipv4_key->ipv4_frag != flow_key->ip.frag) |
| return -EINVAL; |
| |
| break; |
| |
| case OVS_KEY_ATTR_IPV6: |
| if (flow_key->eth.type != htons(ETH_P_IPV6)) |
| return -EINVAL; |
| |
| if (!flow_key->ip.proto) |
| return -EINVAL; |
| |
| ipv6_key = nla_data(ovs_key); |
| if (ipv6_key->ipv6_proto != flow_key->ip.proto) |
| return -EINVAL; |
| |
| if (ipv6_key->ipv6_frag != flow_key->ip.frag) |
| return -EINVAL; |
| |
| if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) |
| return -EINVAL; |
| |
| break; |
| |
| case OVS_KEY_ATTR_TCP: |
| if (flow_key->ip.proto != IPPROTO_TCP) |
| return -EINVAL; |
| |
| return validate_tp_port(flow_key); |
| |
| case OVS_KEY_ATTR_UDP: |
| if (flow_key->ip.proto != IPPROTO_UDP) |
| return -EINVAL; |
| |
| return validate_tp_port(flow_key); |
| |
| case OVS_KEY_ATTR_SCTP: |
| if (flow_key->ip.proto != IPPROTO_SCTP) |
| return -EINVAL; |
| |
| return validate_tp_port(flow_key); |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int validate_userspace(const struct nlattr *attr) |
| { |
| static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { |
| [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, |
| [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, |
| }; |
| struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; |
| int error; |
| |
| error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, |
| attr, userspace_policy); |
| if (error) |
| return error; |
| |
| if (!a[OVS_USERSPACE_ATTR_PID] || |
| !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int copy_action(const struct nlattr *from, |
| struct sw_flow_actions **sfa) |
| { |
| int totlen = NLA_ALIGN(from->nla_len); |
| struct nlattr *to; |
| |
| to = reserve_sfa_size(sfa, from->nla_len); |
| if (IS_ERR(to)) |
| return PTR_ERR(to); |
| |
| memcpy(to, from, totlen); |
| return 0; |
| } |
| |
| int ovs_nla_copy_actions(const struct nlattr *attr, |
| const struct sw_flow_key *key, |
| int depth, |
| struct sw_flow_actions **sfa) |
| { |
| const struct nlattr *a; |
| int rem, err; |
| |
| if (depth >= SAMPLE_ACTION_DEPTH) |
| return -EOVERFLOW; |
| |
| nla_for_each_nested(a, attr, rem) { |
| /* Expected argument lengths, (u32)-1 for variable length. */ |
| static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { |
| [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), |
| [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), |
| [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, |
| [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), |
| [OVS_ACTION_ATTR_POP_VLAN] = 0, |
| [OVS_ACTION_ATTR_SET] = (u32)-1, |
| [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, |
| [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash) |
| }; |
| const struct ovs_action_push_vlan *vlan; |
| int type = nla_type(a); |
| bool skip_copy; |
| |
| if (type > OVS_ACTION_ATTR_MAX || |
| (action_lens[type] != nla_len(a) && |
| action_lens[type] != (u32)-1)) |
| return -EINVAL; |
| |
| skip_copy = false; |
| switch (type) { |
| case OVS_ACTION_ATTR_UNSPEC: |
| return -EINVAL; |
| |
| case OVS_ACTION_ATTR_USERSPACE: |
| err = validate_userspace(a); |
| if (err) |
| return err; |
| break; |
| |
| case OVS_ACTION_ATTR_OUTPUT: |
| if (nla_get_u32(a) >= DP_MAX_PORTS) |
| return -EINVAL; |
| break; |
| |
| case OVS_ACTION_ATTR_HASH: { |
| const struct ovs_action_hash *act_hash = nla_data(a); |
| |
| switch (act_hash->hash_alg) { |
| case OVS_HASH_ALG_L4: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| break; |
| } |
| |
| case OVS_ACTION_ATTR_POP_VLAN: |
| break; |
| |
| case OVS_ACTION_ATTR_PUSH_VLAN: |
| vlan = nla_data(a); |
| if (vlan->vlan_tpid != htons(ETH_P_8021Q)) |
| return -EINVAL; |
| if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT))) |
| return -EINVAL; |
| break; |
| |
| case OVS_ACTION_ATTR_RECIRC: |
| break; |
| |
| case OVS_ACTION_ATTR_SET: |
| err = validate_set(a, key, sfa, &skip_copy); |
| if (err) |
| return err; |
| break; |
| |
| case OVS_ACTION_ATTR_SAMPLE: |
| err = validate_and_copy_sample(a, key, depth, sfa); |
| if (err) |
| return err; |
| skip_copy = true; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| if (!skip_copy) { |
| err = copy_action(a, sfa); |
| if (err) |
| return err; |
| } |
| } |
| |
| if (rem > 0) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) |
| { |
| const struct nlattr *a; |
| struct nlattr *start; |
| int err = 0, rem; |
| |
| start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE); |
| if (!start) |
| return -EMSGSIZE; |
| |
| nla_for_each_nested(a, attr, rem) { |
| int type = nla_type(a); |
| struct nlattr *st_sample; |
| |
| switch (type) { |
| case OVS_SAMPLE_ATTR_PROBABILITY: |
| if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY, |
| sizeof(u32), nla_data(a))) |
| return -EMSGSIZE; |
| break; |
| case OVS_SAMPLE_ATTR_ACTIONS: |
| st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS); |
| if (!st_sample) |
| return -EMSGSIZE; |
| err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); |
| if (err) |
| return err; |
| nla_nest_end(skb, st_sample); |
| break; |
| } |
| } |
| |
| nla_nest_end(skb, start); |
| return err; |
| } |
| |
| static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) |
| { |
| const struct nlattr *ovs_key = nla_data(a); |
| int key_type = nla_type(ovs_key); |
| struct nlattr *start; |
| int err; |
| |
| switch (key_type) { |
| case OVS_KEY_ATTR_TUNNEL_INFO: { |
| struct ovs_tunnel_info *tun_info = nla_data(ovs_key); |
| |
| start = nla_nest_start(skb, OVS_ACTION_ATTR_SET); |
| if (!start) |
| return -EMSGSIZE; |
| |
| err = ipv4_tun_to_nlattr(skb, &tun_info->tunnel, |
| tun_info->options_len ? |
| tun_info->options : NULL, |
| tun_info->options_len); |
| if (err) |
| return err; |
| nla_nest_end(skb, start); |
| break; |
| } |
| default: |
| if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) |
| return -EMSGSIZE; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) |
| { |
| const struct nlattr *a; |
| int rem, err; |
| |
| nla_for_each_attr(a, attr, len, rem) { |
| int type = nla_type(a); |
| |
| switch (type) { |
| case OVS_ACTION_ATTR_SET: |
| err = set_action_to_attr(a, skb); |
| if (err) |
| return err; |
| break; |
| |
| case OVS_ACTION_ATTR_SAMPLE: |
| err = sample_action_to_attr(a, skb); |
| if (err) |
| return err; |
| break; |
| default: |
| if (nla_put(skb, type, nla_len(a), nla_data(a))) |
| return -EMSGSIZE; |
| break; |
| } |
| } |
| |
| return 0; |
| } |