| /* |
| * linux/arch/i386/kernel/setup.c |
| * |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 |
| * |
| * Memory region support |
| * David Parsons <orc@pell.chi.il.us>, July-August 1999 |
| * |
| * Added E820 sanitization routine (removes overlapping memory regions); |
| * Brian Moyle <bmoyle@mvista.com>, February 2001 |
| * |
| * Moved CPU detection code to cpu/${cpu}.c |
| * Patrick Mochel <mochel@osdl.org>, March 2002 |
| * |
| * Provisions for empty E820 memory regions (reported by certain BIOSes). |
| * Alex Achenbach <xela@slit.de>, December 2002. |
| * |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of initialization |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/tty.h> |
| #include <linux/ioport.h> |
| #include <linux/acpi.h> |
| #include <linux/apm_bios.h> |
| #include <linux/initrd.h> |
| #include <linux/bootmem.h> |
| #include <linux/seq_file.h> |
| #include <linux/platform_device.h> |
| #include <linux/console.h> |
| #include <linux/mca.h> |
| #include <linux/root_dev.h> |
| #include <linux/highmem.h> |
| #include <linux/module.h> |
| #include <linux/efi.h> |
| #include <linux/init.h> |
| #include <linux/edd.h> |
| #include <linux/nodemask.h> |
| #include <linux/kexec.h> |
| #include <linux/crash_dump.h> |
| #include <linux/dmi.h> |
| #include <linux/pfn.h> |
| |
| #include <video/edid.h> |
| |
| #include <asm/apic.h> |
| #include <asm/e820.h> |
| #include <asm/mpspec.h> |
| #include <asm/setup.h> |
| #include <asm/arch_hooks.h> |
| #include <asm/sections.h> |
| #include <asm/io_apic.h> |
| #include <asm/ist.h> |
| #include <asm/io.h> |
| #include "setup_arch_pre.h" |
| #include <bios_ebda.h> |
| |
| /* Forward Declaration. */ |
| void __init find_max_pfn(void); |
| |
| /* This value is set up by the early boot code to point to the value |
| immediately after the boot time page tables. It contains a *physical* |
| address, and must not be in the .bss segment! */ |
| unsigned long init_pg_tables_end __initdata = ~0UL; |
| |
| int disable_pse __devinitdata = 0; |
| |
| /* |
| * Machine setup.. |
| */ |
| |
| #ifdef CONFIG_EFI |
| int efi_enabled = 0; |
| EXPORT_SYMBOL(efi_enabled); |
| #endif |
| |
| /* cpu data as detected by the assembly code in head.S */ |
| struct cpuinfo_x86 new_cpu_data __initdata = { 0, 0, 0, 0, -1, 1, 0, 0, -1 }; |
| /* common cpu data for all cpus */ |
| struct cpuinfo_x86 boot_cpu_data __read_mostly = { 0, 0, 0, 0, -1, 1, 0, 0, -1 }; |
| EXPORT_SYMBOL(boot_cpu_data); |
| |
| unsigned long mmu_cr4_features; |
| |
| #ifdef CONFIG_ACPI |
| int acpi_disabled = 0; |
| #else |
| int acpi_disabled = 1; |
| #endif |
| EXPORT_SYMBOL(acpi_disabled); |
| |
| #ifdef CONFIG_ACPI |
| int __initdata acpi_force = 0; |
| extern acpi_interrupt_flags acpi_sci_flags; |
| #endif |
| |
| /* for MCA, but anyone else can use it if they want */ |
| unsigned int machine_id; |
| #ifdef CONFIG_MCA |
| EXPORT_SYMBOL(machine_id); |
| #endif |
| unsigned int machine_submodel_id; |
| unsigned int BIOS_revision; |
| unsigned int mca_pentium_flag; |
| |
| /* For PCI or other memory-mapped resources */ |
| unsigned long pci_mem_start = 0x10000000; |
| #ifdef CONFIG_PCI |
| EXPORT_SYMBOL(pci_mem_start); |
| #endif |
| |
| /* Boot loader ID as an integer, for the benefit of proc_dointvec */ |
| int bootloader_type; |
| |
| /* user-defined highmem size */ |
| static unsigned int highmem_pages = -1; |
| |
| /* |
| * Setup options |
| */ |
| struct drive_info_struct { char dummy[32]; } drive_info; |
| #if defined(CONFIG_BLK_DEV_IDE) || defined(CONFIG_BLK_DEV_HD) || \ |
| defined(CONFIG_BLK_DEV_IDE_MODULE) || defined(CONFIG_BLK_DEV_HD_MODULE) |
| EXPORT_SYMBOL(drive_info); |
| #endif |
| struct screen_info screen_info; |
| EXPORT_SYMBOL(screen_info); |
| struct apm_info apm_info; |
| EXPORT_SYMBOL(apm_info); |
| struct sys_desc_table_struct { |
| unsigned short length; |
| unsigned char table[0]; |
| }; |
| struct edid_info edid_info; |
| EXPORT_SYMBOL_GPL(edid_info); |
| struct ist_info ist_info; |
| #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ |
| defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) |
| EXPORT_SYMBOL(ist_info); |
| #endif |
| struct e820map e820; |
| |
| extern void early_cpu_init(void); |
| extern void generic_apic_probe(char *); |
| extern int root_mountflags; |
| |
| unsigned long saved_videomode; |
| |
| #define RAMDISK_IMAGE_START_MASK 0x07FF |
| #define RAMDISK_PROMPT_FLAG 0x8000 |
| #define RAMDISK_LOAD_FLAG 0x4000 |
| |
| static char command_line[COMMAND_LINE_SIZE]; |
| |
| unsigned char __initdata boot_params[PARAM_SIZE]; |
| |
| static struct resource data_resource = { |
| .name = "Kernel data", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| }; |
| |
| static struct resource code_resource = { |
| .name = "Kernel code", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| }; |
| |
| static struct resource system_rom_resource = { |
| .name = "System ROM", |
| .start = 0xf0000, |
| .end = 0xfffff, |
| .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM |
| }; |
| |
| static struct resource extension_rom_resource = { |
| .name = "Extension ROM", |
| .start = 0xe0000, |
| .end = 0xeffff, |
| .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM |
| }; |
| |
| static struct resource adapter_rom_resources[] = { { |
| .name = "Adapter ROM", |
| .start = 0xc8000, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM |
| }, { |
| .name = "Adapter ROM", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM |
| }, { |
| .name = "Adapter ROM", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM |
| }, { |
| .name = "Adapter ROM", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM |
| }, { |
| .name = "Adapter ROM", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM |
| }, { |
| .name = "Adapter ROM", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM |
| } }; |
| |
| #define ADAPTER_ROM_RESOURCES \ |
| (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0]) |
| |
| static struct resource video_rom_resource = { |
| .name = "Video ROM", |
| .start = 0xc0000, |
| .end = 0xc7fff, |
| .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM |
| }; |
| |
| static struct resource video_ram_resource = { |
| .name = "Video RAM area", |
| .start = 0xa0000, |
| .end = 0xbffff, |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| }; |
| |
| static struct resource standard_io_resources[] = { { |
| .name = "dma1", |
| .start = 0x0000, |
| .end = 0x001f, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO |
| }, { |
| .name = "pic1", |
| .start = 0x0020, |
| .end = 0x0021, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO |
| }, { |
| .name = "timer0", |
| .start = 0x0040, |
| .end = 0x0043, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO |
| }, { |
| .name = "timer1", |
| .start = 0x0050, |
| .end = 0x0053, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO |
| }, { |
| .name = "keyboard", |
| .start = 0x0060, |
| .end = 0x006f, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO |
| }, { |
| .name = "dma page reg", |
| .start = 0x0080, |
| .end = 0x008f, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO |
| }, { |
| .name = "pic2", |
| .start = 0x00a0, |
| .end = 0x00a1, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO |
| }, { |
| .name = "dma2", |
| .start = 0x00c0, |
| .end = 0x00df, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO |
| }, { |
| .name = "fpu", |
| .start = 0x00f0, |
| .end = 0x00ff, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO |
| } }; |
| |
| #define STANDARD_IO_RESOURCES \ |
| (sizeof standard_io_resources / sizeof standard_io_resources[0]) |
| |
| #define romsignature(x) (*(unsigned short *)(x) == 0xaa55) |
| |
| static int __init romchecksum(unsigned char *rom, unsigned long length) |
| { |
| unsigned char *p, sum = 0; |
| |
| for (p = rom; p < rom + length; p++) |
| sum += *p; |
| return sum == 0; |
| } |
| |
| static void __init probe_roms(void) |
| { |
| unsigned long start, length, upper; |
| unsigned char *rom; |
| int i; |
| |
| /* video rom */ |
| upper = adapter_rom_resources[0].start; |
| for (start = video_rom_resource.start; start < upper; start += 2048) { |
| rom = isa_bus_to_virt(start); |
| if (!romsignature(rom)) |
| continue; |
| |
| video_rom_resource.start = start; |
| |
| /* 0 < length <= 0x7f * 512, historically */ |
| length = rom[2] * 512; |
| |
| /* if checksum okay, trust length byte */ |
| if (length && romchecksum(rom, length)) |
| video_rom_resource.end = start + length - 1; |
| |
| request_resource(&iomem_resource, &video_rom_resource); |
| break; |
| } |
| |
| start = (video_rom_resource.end + 1 + 2047) & ~2047UL; |
| if (start < upper) |
| start = upper; |
| |
| /* system rom */ |
| request_resource(&iomem_resource, &system_rom_resource); |
| upper = system_rom_resource.start; |
| |
| /* check for extension rom (ignore length byte!) */ |
| rom = isa_bus_to_virt(extension_rom_resource.start); |
| if (romsignature(rom)) { |
| length = extension_rom_resource.end - extension_rom_resource.start + 1; |
| if (romchecksum(rom, length)) { |
| request_resource(&iomem_resource, &extension_rom_resource); |
| upper = extension_rom_resource.start; |
| } |
| } |
| |
| /* check for adapter roms on 2k boundaries */ |
| for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) { |
| rom = isa_bus_to_virt(start); |
| if (!romsignature(rom)) |
| continue; |
| |
| /* 0 < length <= 0x7f * 512, historically */ |
| length = rom[2] * 512; |
| |
| /* but accept any length that fits if checksum okay */ |
| if (!length || start + length > upper || !romchecksum(rom, length)) |
| continue; |
| |
| adapter_rom_resources[i].start = start; |
| adapter_rom_resources[i].end = start + length - 1; |
| request_resource(&iomem_resource, &adapter_rom_resources[i]); |
| |
| start = adapter_rom_resources[i++].end & ~2047UL; |
| } |
| } |
| |
| static void __init limit_regions(unsigned long long size) |
| { |
| unsigned long long current_addr = 0; |
| int i; |
| |
| if (efi_enabled) { |
| efi_memory_desc_t *md; |
| void *p; |
| |
| for (p = memmap.map, i = 0; p < memmap.map_end; |
| p += memmap.desc_size, i++) { |
| md = p; |
| current_addr = md->phys_addr + (md->num_pages << 12); |
| if (md->type == EFI_CONVENTIONAL_MEMORY) { |
| if (current_addr >= size) { |
| md->num_pages -= |
| (((current_addr-size) + PAGE_SIZE-1) >> PAGE_SHIFT); |
| memmap.nr_map = i + 1; |
| return; |
| } |
| } |
| } |
| } |
| for (i = 0; i < e820.nr_map; i++) { |
| current_addr = e820.map[i].addr + e820.map[i].size; |
| if (current_addr < size) |
| continue; |
| |
| if (e820.map[i].type != E820_RAM) |
| continue; |
| |
| if (e820.map[i].addr >= size) { |
| /* |
| * This region starts past the end of the |
| * requested size, skip it completely. |
| */ |
| e820.nr_map = i; |
| } else { |
| e820.nr_map = i + 1; |
| e820.map[i].size -= current_addr - size; |
| } |
| return; |
| } |
| } |
| |
| static void __init add_memory_region(unsigned long long start, |
| unsigned long long size, int type) |
| { |
| int x; |
| |
| if (!efi_enabled) { |
| x = e820.nr_map; |
| |
| if (x == E820MAX) { |
| printk(KERN_ERR "Ooops! Too many entries in the memory map!\n"); |
| return; |
| } |
| |
| e820.map[x].addr = start; |
| e820.map[x].size = size; |
| e820.map[x].type = type; |
| e820.nr_map++; |
| } |
| } /* add_memory_region */ |
| |
| #define E820_DEBUG 1 |
| |
| static void __init print_memory_map(char *who) |
| { |
| int i; |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| printk(" %s: %016Lx - %016Lx ", who, |
| e820.map[i].addr, |
| e820.map[i].addr + e820.map[i].size); |
| switch (e820.map[i].type) { |
| case E820_RAM: printk("(usable)\n"); |
| break; |
| case E820_RESERVED: |
| printk("(reserved)\n"); |
| break; |
| case E820_ACPI: |
| printk("(ACPI data)\n"); |
| break; |
| case E820_NVS: |
| printk("(ACPI NVS)\n"); |
| break; |
| default: printk("type %lu\n", e820.map[i].type); |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Sanitize the BIOS e820 map. |
| * |
| * Some e820 responses include overlapping entries. The following |
| * replaces the original e820 map with a new one, removing overlaps. |
| * |
| */ |
| struct change_member { |
| struct e820entry *pbios; /* pointer to original bios entry */ |
| unsigned long long addr; /* address for this change point */ |
| }; |
| static struct change_member change_point_list[2*E820MAX] __initdata; |
| static struct change_member *change_point[2*E820MAX] __initdata; |
| static struct e820entry *overlap_list[E820MAX] __initdata; |
| static struct e820entry new_bios[E820MAX] __initdata; |
| |
| static int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map) |
| { |
| struct change_member *change_tmp; |
| unsigned long current_type, last_type; |
| unsigned long long last_addr; |
| int chgidx, still_changing; |
| int overlap_entries; |
| int new_bios_entry; |
| int old_nr, new_nr, chg_nr; |
| int i; |
| |
| /* |
| Visually we're performing the following (1,2,3,4 = memory types)... |
| |
| Sample memory map (w/overlaps): |
| ____22__________________ |
| ______________________4_ |
| ____1111________________ |
| _44_____________________ |
| 11111111________________ |
| ____________________33__ |
| ___________44___________ |
| __________33333_________ |
| ______________22________ |
| ___________________2222_ |
| _________111111111______ |
| _____________________11_ |
| _________________4______ |
| |
| Sanitized equivalent (no overlap): |
| 1_______________________ |
| _44_____________________ |
| ___1____________________ |
| ____22__________________ |
| ______11________________ |
| _________1______________ |
| __________3_____________ |
| ___________44___________ |
| _____________33_________ |
| _______________2________ |
| ________________1_______ |
| _________________4______ |
| ___________________2____ |
| ____________________33__ |
| ______________________4_ |
| */ |
| |
| /* if there's only one memory region, don't bother */ |
| if (*pnr_map < 2) |
| return -1; |
| |
| old_nr = *pnr_map; |
| |
| /* bail out if we find any unreasonable addresses in bios map */ |
| for (i=0; i<old_nr; i++) |
| if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr) |
| return -1; |
| |
| /* create pointers for initial change-point information (for sorting) */ |
| for (i=0; i < 2*old_nr; i++) |
| change_point[i] = &change_point_list[i]; |
| |
| /* record all known change-points (starting and ending addresses), |
| omitting those that are for empty memory regions */ |
| chgidx = 0; |
| for (i=0; i < old_nr; i++) { |
| if (biosmap[i].size != 0) { |
| change_point[chgidx]->addr = biosmap[i].addr; |
| change_point[chgidx++]->pbios = &biosmap[i]; |
| change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size; |
| change_point[chgidx++]->pbios = &biosmap[i]; |
| } |
| } |
| chg_nr = chgidx; /* true number of change-points */ |
| |
| /* sort change-point list by memory addresses (low -> high) */ |
| still_changing = 1; |
| while (still_changing) { |
| still_changing = 0; |
| for (i=1; i < chg_nr; i++) { |
| /* if <current_addr> > <last_addr>, swap */ |
| /* or, if current=<start_addr> & last=<end_addr>, swap */ |
| if ((change_point[i]->addr < change_point[i-1]->addr) || |
| ((change_point[i]->addr == change_point[i-1]->addr) && |
| (change_point[i]->addr == change_point[i]->pbios->addr) && |
| (change_point[i-1]->addr != change_point[i-1]->pbios->addr)) |
| ) |
| { |
| change_tmp = change_point[i]; |
| change_point[i] = change_point[i-1]; |
| change_point[i-1] = change_tmp; |
| still_changing=1; |
| } |
| } |
| } |
| |
| /* create a new bios memory map, removing overlaps */ |
| overlap_entries=0; /* number of entries in the overlap table */ |
| new_bios_entry=0; /* index for creating new bios map entries */ |
| last_type = 0; /* start with undefined memory type */ |
| last_addr = 0; /* start with 0 as last starting address */ |
| /* loop through change-points, determining affect on the new bios map */ |
| for (chgidx=0; chgidx < chg_nr; chgidx++) |
| { |
| /* keep track of all overlapping bios entries */ |
| if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr) |
| { |
| /* add map entry to overlap list (> 1 entry implies an overlap) */ |
| overlap_list[overlap_entries++]=change_point[chgidx]->pbios; |
| } |
| else |
| { |
| /* remove entry from list (order independent, so swap with last) */ |
| for (i=0; i<overlap_entries; i++) |
| { |
| if (overlap_list[i] == change_point[chgidx]->pbios) |
| overlap_list[i] = overlap_list[overlap_entries-1]; |
| } |
| overlap_entries--; |
| } |
| /* if there are overlapping entries, decide which "type" to use */ |
| /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */ |
| current_type = 0; |
| for (i=0; i<overlap_entries; i++) |
| if (overlap_list[i]->type > current_type) |
| current_type = overlap_list[i]->type; |
| /* continue building up new bios map based on this information */ |
| if (current_type != last_type) { |
| if (last_type != 0) { |
| new_bios[new_bios_entry].size = |
| change_point[chgidx]->addr - last_addr; |
| /* move forward only if the new size was non-zero */ |
| if (new_bios[new_bios_entry].size != 0) |
| if (++new_bios_entry >= E820MAX) |
| break; /* no more space left for new bios entries */ |
| } |
| if (current_type != 0) { |
| new_bios[new_bios_entry].addr = change_point[chgidx]->addr; |
| new_bios[new_bios_entry].type = current_type; |
| last_addr=change_point[chgidx]->addr; |
| } |
| last_type = current_type; |
| } |
| } |
| new_nr = new_bios_entry; /* retain count for new bios entries */ |
| |
| /* copy new bios mapping into original location */ |
| memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry)); |
| *pnr_map = new_nr; |
| |
| return 0; |
| } |
| |
| /* |
| * Copy the BIOS e820 map into a safe place. |
| * |
| * Sanity-check it while we're at it.. |
| * |
| * If we're lucky and live on a modern system, the setup code |
| * will have given us a memory map that we can use to properly |
| * set up memory. If we aren't, we'll fake a memory map. |
| * |
| * We check to see that the memory map contains at least 2 elements |
| * before we'll use it, because the detection code in setup.S may |
| * not be perfect and most every PC known to man has two memory |
| * regions: one from 0 to 640k, and one from 1mb up. (The IBM |
| * thinkpad 560x, for example, does not cooperate with the memory |
| * detection code.) |
| */ |
| static int __init copy_e820_map(struct e820entry * biosmap, int nr_map) |
| { |
| /* Only one memory region (or negative)? Ignore it */ |
| if (nr_map < 2) |
| return -1; |
| |
| do { |
| unsigned long long start = biosmap->addr; |
| unsigned long long size = biosmap->size; |
| unsigned long long end = start + size; |
| unsigned long type = biosmap->type; |
| |
| /* Overflow in 64 bits? Ignore the memory map. */ |
| if (start > end) |
| return -1; |
| |
| /* |
| * Some BIOSes claim RAM in the 640k - 1M region. |
| * Not right. Fix it up. |
| */ |
| if (type == E820_RAM) { |
| if (start < 0x100000ULL && end > 0xA0000ULL) { |
| if (start < 0xA0000ULL) |
| add_memory_region(start, 0xA0000ULL-start, type); |
| if (end <= 0x100000ULL) |
| continue; |
| start = 0x100000ULL; |
| size = end - start; |
| } |
| } |
| add_memory_region(start, size, type); |
| } while (biosmap++,--nr_map); |
| return 0; |
| } |
| |
| #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) |
| struct edd edd; |
| #ifdef CONFIG_EDD_MODULE |
| EXPORT_SYMBOL(edd); |
| #endif |
| /** |
| * copy_edd() - Copy the BIOS EDD information |
| * from boot_params into a safe place. |
| * |
| */ |
| static inline void copy_edd(void) |
| { |
| memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature)); |
| memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info)); |
| edd.mbr_signature_nr = EDD_MBR_SIG_NR; |
| edd.edd_info_nr = EDD_NR; |
| } |
| #else |
| static inline void copy_edd(void) |
| { |
| } |
| #endif |
| |
| /* |
| * Do NOT EVER look at the BIOS memory size location. |
| * It does not work on many machines. |
| */ |
| #define LOWMEMSIZE() (0x9f000) |
| |
| static void __init parse_cmdline_early (char ** cmdline_p) |
| { |
| char c = ' ', *to = command_line, *from = saved_command_line; |
| int len = 0; |
| int userdef = 0; |
| |
| /* Save unparsed command line copy for /proc/cmdline */ |
| saved_command_line[COMMAND_LINE_SIZE-1] = '\0'; |
| |
| for (;;) { |
| if (c != ' ') |
| goto next_char; |
| /* |
| * "mem=nopentium" disables the 4MB page tables. |
| * "mem=XXX[kKmM]" defines a memory region from HIGH_MEM |
| * to <mem>, overriding the bios size. |
| * "memmap=XXX[KkmM]@XXX[KkmM]" defines a memory region from |
| * <start> to <start>+<mem>, overriding the bios size. |
| * |
| * HPA tells me bootloaders need to parse mem=, so no new |
| * option should be mem= [also see Documentation/i386/boot.txt] |
| */ |
| if (!memcmp(from, "mem=", 4)) { |
| if (to != command_line) |
| to--; |
| if (!memcmp(from+4, "nopentium", 9)) { |
| from += 9+4; |
| clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability); |
| disable_pse = 1; |
| } else { |
| /* If the user specifies memory size, we |
| * limit the BIOS-provided memory map to |
| * that size. exactmap can be used to specify |
| * the exact map. mem=number can be used to |
| * trim the existing memory map. |
| */ |
| unsigned long long mem_size; |
| |
| mem_size = memparse(from+4, &from); |
| limit_regions(mem_size); |
| userdef=1; |
| } |
| } |
| |
| else if (!memcmp(from, "memmap=", 7)) { |
| if (to != command_line) |
| to--; |
| if (!memcmp(from+7, "exactmap", 8)) { |
| #ifdef CONFIG_CRASH_DUMP |
| /* If we are doing a crash dump, we |
| * still need to know the real mem |
| * size before original memory map is |
| * reset. |
| */ |
| find_max_pfn(); |
| saved_max_pfn = max_pfn; |
| #endif |
| from += 8+7; |
| e820.nr_map = 0; |
| userdef = 1; |
| } else { |
| /* If the user specifies memory size, we |
| * limit the BIOS-provided memory map to |
| * that size. exactmap can be used to specify |
| * the exact map. mem=number can be used to |
| * trim the existing memory map. |
| */ |
| unsigned long long start_at, mem_size; |
| |
| mem_size = memparse(from+7, &from); |
| if (*from == '@') { |
| start_at = memparse(from+1, &from); |
| add_memory_region(start_at, mem_size, E820_RAM); |
| } else if (*from == '#') { |
| start_at = memparse(from+1, &from); |
| add_memory_region(start_at, mem_size, E820_ACPI); |
| } else if (*from == '$') { |
| start_at = memparse(from+1, &from); |
| add_memory_region(start_at, mem_size, E820_RESERVED); |
| } else { |
| limit_regions(mem_size); |
| userdef=1; |
| } |
| } |
| } |
| |
| else if (!memcmp(from, "noexec=", 7)) |
| noexec_setup(from + 7); |
| |
| |
| #ifdef CONFIG_X86_SMP |
| /* |
| * If the BIOS enumerates physical processors before logical, |
| * maxcpus=N at enumeration-time can be used to disable HT. |
| */ |
| else if (!memcmp(from, "maxcpus=", 8)) { |
| extern unsigned int maxcpus; |
| |
| maxcpus = simple_strtoul(from + 8, NULL, 0); |
| } |
| #endif |
| |
| #ifdef CONFIG_ACPI |
| /* "acpi=off" disables both ACPI table parsing and interpreter */ |
| else if (!memcmp(from, "acpi=off", 8)) { |
| disable_acpi(); |
| } |
| |
| /* acpi=force to over-ride black-list */ |
| else if (!memcmp(from, "acpi=force", 10)) { |
| acpi_force = 1; |
| acpi_ht = 1; |
| acpi_disabled = 0; |
| } |
| |
| /* acpi=strict disables out-of-spec workarounds */ |
| else if (!memcmp(from, "acpi=strict", 11)) { |
| acpi_strict = 1; |
| } |
| |
| /* Limit ACPI just to boot-time to enable HT */ |
| else if (!memcmp(from, "acpi=ht", 7)) { |
| if (!acpi_force) |
| disable_acpi(); |
| acpi_ht = 1; |
| } |
| |
| /* "pci=noacpi" disable ACPI IRQ routing and PCI scan */ |
| else if (!memcmp(from, "pci=noacpi", 10)) { |
| acpi_disable_pci(); |
| } |
| /* "acpi=noirq" disables ACPI interrupt routing */ |
| else if (!memcmp(from, "acpi=noirq", 10)) { |
| acpi_noirq_set(); |
| } |
| |
| else if (!memcmp(from, "acpi_sci=edge", 13)) |
| acpi_sci_flags.trigger = 1; |
| |
| else if (!memcmp(from, "acpi_sci=level", 14)) |
| acpi_sci_flags.trigger = 3; |
| |
| else if (!memcmp(from, "acpi_sci=high", 13)) |
| acpi_sci_flags.polarity = 1; |
| |
| else if (!memcmp(from, "acpi_sci=low", 12)) |
| acpi_sci_flags.polarity = 3; |
| |
| #ifdef CONFIG_X86_IO_APIC |
| else if (!memcmp(from, "acpi_skip_timer_override", 24)) |
| acpi_skip_timer_override = 1; |
| |
| if (!memcmp(from, "disable_timer_pin_1", 19)) |
| disable_timer_pin_1 = 1; |
| if (!memcmp(from, "enable_timer_pin_1", 18)) |
| disable_timer_pin_1 = -1; |
| |
| /* disable IO-APIC */ |
| else if (!memcmp(from, "noapic", 6)) |
| disable_ioapic_setup(); |
| #endif /* CONFIG_X86_IO_APIC */ |
| #endif /* CONFIG_ACPI */ |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| /* enable local APIC */ |
| else if (!memcmp(from, "lapic", 5)) |
| lapic_enable(); |
| |
| /* disable local APIC */ |
| else if (!memcmp(from, "nolapic", 6)) |
| lapic_disable(); |
| #endif /* CONFIG_X86_LOCAL_APIC */ |
| |
| #ifdef CONFIG_KEXEC |
| /* crashkernel=size@addr specifies the location to reserve for |
| * a crash kernel. By reserving this memory we guarantee |
| * that linux never set's it up as a DMA target. |
| * Useful for holding code to do something appropriate |
| * after a kernel panic. |
| */ |
| else if (!memcmp(from, "crashkernel=", 12)) { |
| unsigned long size, base; |
| size = memparse(from+12, &from); |
| if (*from == '@') { |
| base = memparse(from+1, &from); |
| /* FIXME: Do I want a sanity check |
| * to validate the memory range? |
| */ |
| crashk_res.start = base; |
| crashk_res.end = base + size - 1; |
| } |
| } |
| #endif |
| #ifdef CONFIG_PROC_VMCORE |
| /* elfcorehdr= specifies the location of elf core header |
| * stored by the crashed kernel. |
| */ |
| else if (!memcmp(from, "elfcorehdr=", 11)) |
| elfcorehdr_addr = memparse(from+11, &from); |
| #endif |
| |
| /* |
| * highmem=size forces highmem to be exactly 'size' bytes. |
| * This works even on boxes that have no highmem otherwise. |
| * This also works to reduce highmem size on bigger boxes. |
| */ |
| else if (!memcmp(from, "highmem=", 8)) |
| highmem_pages = memparse(from+8, &from) >> PAGE_SHIFT; |
| |
| /* |
| * vmalloc=size forces the vmalloc area to be exactly 'size' |
| * bytes. This can be used to increase (or decrease) the |
| * vmalloc area - the default is 128m. |
| */ |
| else if (!memcmp(from, "vmalloc=", 8)) |
| __VMALLOC_RESERVE = memparse(from+8, &from); |
| |
| next_char: |
| c = *(from++); |
| if (!c) |
| break; |
| if (COMMAND_LINE_SIZE <= ++len) |
| break; |
| *(to++) = c; |
| } |
| *to = '\0'; |
| *cmdline_p = command_line; |
| if (userdef) { |
| printk(KERN_INFO "user-defined physical RAM map:\n"); |
| print_memory_map("user"); |
| } |
| } |
| |
| /* |
| * Callback for efi_memory_walk. |
| */ |
| static int __init |
| efi_find_max_pfn(unsigned long start, unsigned long end, void *arg) |
| { |
| unsigned long *max_pfn = arg, pfn; |
| |
| if (start < end) { |
| pfn = PFN_UP(end -1); |
| if (pfn > *max_pfn) |
| *max_pfn = pfn; |
| } |
| return 0; |
| } |
| |
| static int __init |
| efi_memory_present_wrapper(unsigned long start, unsigned long end, void *arg) |
| { |
| memory_present(0, start, end); |
| return 0; |
| } |
| |
| /* |
| * Find the highest page frame number we have available |
| */ |
| void __init find_max_pfn(void) |
| { |
| int i; |
| |
| max_pfn = 0; |
| if (efi_enabled) { |
| efi_memmap_walk(efi_find_max_pfn, &max_pfn); |
| efi_memmap_walk(efi_memory_present_wrapper, NULL); |
| return; |
| } |
| |
| for (i = 0; i < e820.nr_map; i++) { |
| unsigned long start, end; |
| /* RAM? */ |
| if (e820.map[i].type != E820_RAM) |
| continue; |
| start = PFN_UP(e820.map[i].addr); |
| end = PFN_DOWN(e820.map[i].addr + e820.map[i].size); |
| if (start >= end) |
| continue; |
| if (end > max_pfn) |
| max_pfn = end; |
| memory_present(0, start, end); |
| } |
| } |
| |
| /* |
| * Determine low and high memory ranges: |
| */ |
| unsigned long __init find_max_low_pfn(void) |
| { |
| unsigned long max_low_pfn; |
| |
| max_low_pfn = max_pfn; |
| if (max_low_pfn > MAXMEM_PFN) { |
| if (highmem_pages == -1) |
| highmem_pages = max_pfn - MAXMEM_PFN; |
| if (highmem_pages + MAXMEM_PFN < max_pfn) |
| max_pfn = MAXMEM_PFN + highmem_pages; |
| if (highmem_pages + MAXMEM_PFN > max_pfn) { |
| printk("only %luMB highmem pages available, ignoring highmem size of %uMB.\n", pages_to_mb(max_pfn - MAXMEM_PFN), pages_to_mb(highmem_pages)); |
| highmem_pages = 0; |
| } |
| max_low_pfn = MAXMEM_PFN; |
| #ifndef CONFIG_HIGHMEM |
| /* Maximum memory usable is what is directly addressable */ |
| printk(KERN_WARNING "Warning only %ldMB will be used.\n", |
| MAXMEM>>20); |
| if (max_pfn > MAX_NONPAE_PFN) |
| printk(KERN_WARNING "Use a PAE enabled kernel.\n"); |
| else |
| printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); |
| max_pfn = MAXMEM_PFN; |
| #else /* !CONFIG_HIGHMEM */ |
| #ifndef CONFIG_X86_PAE |
| if (max_pfn > MAX_NONPAE_PFN) { |
| max_pfn = MAX_NONPAE_PFN; |
| printk(KERN_WARNING "Warning only 4GB will be used.\n"); |
| printk(KERN_WARNING "Use a PAE enabled kernel.\n"); |
| } |
| #endif /* !CONFIG_X86_PAE */ |
| #endif /* !CONFIG_HIGHMEM */ |
| } else { |
| if (highmem_pages == -1) |
| highmem_pages = 0; |
| #ifdef CONFIG_HIGHMEM |
| if (highmem_pages >= max_pfn) { |
| printk(KERN_ERR "highmem size specified (%uMB) is bigger than pages available (%luMB)!.\n", pages_to_mb(highmem_pages), pages_to_mb(max_pfn)); |
| highmem_pages = 0; |
| } |
| if (highmem_pages) { |
| if (max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){ |
| printk(KERN_ERR "highmem size %uMB results in smaller than 64MB lowmem, ignoring it.\n", pages_to_mb(highmem_pages)); |
| highmem_pages = 0; |
| } |
| max_low_pfn -= highmem_pages; |
| } |
| #else |
| if (highmem_pages) |
| printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n"); |
| #endif |
| } |
| return max_low_pfn; |
| } |
| |
| /* |
| * Free all available memory for boot time allocation. Used |
| * as a callback function by efi_memory_walk() |
| */ |
| |
| static int __init |
| free_available_memory(unsigned long start, unsigned long end, void *arg) |
| { |
| /* check max_low_pfn */ |
| if (start >= (max_low_pfn << PAGE_SHIFT)) |
| return 0; |
| if (end >= (max_low_pfn << PAGE_SHIFT)) |
| end = max_low_pfn << PAGE_SHIFT; |
| if (start < end) |
| free_bootmem(start, end - start); |
| |
| return 0; |
| } |
| /* |
| * Register fully available low RAM pages with the bootmem allocator. |
| */ |
| static void __init register_bootmem_low_pages(unsigned long max_low_pfn) |
| { |
| int i; |
| |
| if (efi_enabled) { |
| efi_memmap_walk(free_available_memory, NULL); |
| return; |
| } |
| for (i = 0; i < e820.nr_map; i++) { |
| unsigned long curr_pfn, last_pfn, size; |
| /* |
| * Reserve usable low memory |
| */ |
| if (e820.map[i].type != E820_RAM) |
| continue; |
| /* |
| * We are rounding up the start address of usable memory: |
| */ |
| curr_pfn = PFN_UP(e820.map[i].addr); |
| if (curr_pfn >= max_low_pfn) |
| continue; |
| /* |
| * ... and at the end of the usable range downwards: |
| */ |
| last_pfn = PFN_DOWN(e820.map[i].addr + e820.map[i].size); |
| |
| if (last_pfn > max_low_pfn) |
| last_pfn = max_low_pfn; |
| |
| /* |
| * .. finally, did all the rounding and playing |
| * around just make the area go away? |
| */ |
| if (last_pfn <= curr_pfn) |
| continue; |
| |
| size = last_pfn - curr_pfn; |
| free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size)); |
| } |
| } |
| |
| /* |
| * workaround for Dell systems that neglect to reserve EBDA |
| */ |
| static void __init reserve_ebda_region(void) |
| { |
| unsigned int addr; |
| addr = get_bios_ebda(); |
| if (addr) |
| reserve_bootmem(addr, PAGE_SIZE); |
| } |
| |
| #ifndef CONFIG_NEED_MULTIPLE_NODES |
| void __init setup_bootmem_allocator(void); |
| static unsigned long __init setup_memory(void) |
| { |
| /* |
| * partially used pages are not usable - thus |
| * we are rounding upwards: |
| */ |
| min_low_pfn = PFN_UP(init_pg_tables_end); |
| |
| find_max_pfn(); |
| |
| max_low_pfn = find_max_low_pfn(); |
| |
| #ifdef CONFIG_HIGHMEM |
| highstart_pfn = highend_pfn = max_pfn; |
| if (max_pfn > max_low_pfn) { |
| highstart_pfn = max_low_pfn; |
| } |
| printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", |
| pages_to_mb(highend_pfn - highstart_pfn)); |
| #endif |
| printk(KERN_NOTICE "%ldMB LOWMEM available.\n", |
| pages_to_mb(max_low_pfn)); |
| |
| setup_bootmem_allocator(); |
| |
| return max_low_pfn; |
| } |
| |
| void __init zone_sizes_init(void) |
| { |
| unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0}; |
| unsigned int max_dma, low; |
| |
| max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; |
| low = max_low_pfn; |
| |
| if (low < max_dma) |
| zones_size[ZONE_DMA] = low; |
| else { |
| zones_size[ZONE_DMA] = max_dma; |
| zones_size[ZONE_NORMAL] = low - max_dma; |
| #ifdef CONFIG_HIGHMEM |
| zones_size[ZONE_HIGHMEM] = highend_pfn - low; |
| #endif |
| } |
| free_area_init(zones_size); |
| } |
| #else |
| extern unsigned long __init setup_memory(void); |
| extern void zone_sizes_init(void); |
| #endif /* !CONFIG_NEED_MULTIPLE_NODES */ |
| |
| void __init setup_bootmem_allocator(void) |
| { |
| unsigned long bootmap_size; |
| /* |
| * Initialize the boot-time allocator (with low memory only): |
| */ |
| bootmap_size = init_bootmem(min_low_pfn, max_low_pfn); |
| |
| register_bootmem_low_pages(max_low_pfn); |
| |
| /* |
| * Reserve the bootmem bitmap itself as well. We do this in two |
| * steps (first step was init_bootmem()) because this catches |
| * the (very unlikely) case of us accidentally initializing the |
| * bootmem allocator with an invalid RAM area. |
| */ |
| reserve_bootmem(__PHYSICAL_START, (PFN_PHYS(min_low_pfn) + |
| bootmap_size + PAGE_SIZE-1) - (__PHYSICAL_START)); |
| |
| /* |
| * reserve physical page 0 - it's a special BIOS page on many boxes, |
| * enabling clean reboots, SMP operation, laptop functions. |
| */ |
| reserve_bootmem(0, PAGE_SIZE); |
| |
| /* reserve EBDA region, it's a 4K region */ |
| reserve_ebda_region(); |
| |
| /* could be an AMD 768MPX chipset. Reserve a page before VGA to prevent |
| PCI prefetch into it (errata #56). Usually the page is reserved anyways, |
| unless you have no PS/2 mouse plugged in. */ |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && |
| boot_cpu_data.x86 == 6) |
| reserve_bootmem(0xa0000 - 4096, 4096); |
| |
| #ifdef CONFIG_SMP |
| /* |
| * But first pinch a few for the stack/trampoline stuff |
| * FIXME: Don't need the extra page at 4K, but need to fix |
| * trampoline before removing it. (see the GDT stuff) |
| */ |
| reserve_bootmem(PAGE_SIZE, PAGE_SIZE); |
| #endif |
| #ifdef CONFIG_ACPI_SLEEP |
| /* |
| * Reserve low memory region for sleep support. |
| */ |
| acpi_reserve_bootmem(); |
| #endif |
| #ifdef CONFIG_X86_FIND_SMP_CONFIG |
| /* |
| * Find and reserve possible boot-time SMP configuration: |
| */ |
| find_smp_config(); |
| #endif |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (LOADER_TYPE && INITRD_START) { |
| if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { |
| reserve_bootmem(INITRD_START, INITRD_SIZE); |
| initrd_start = |
| INITRD_START ? INITRD_START + PAGE_OFFSET : 0; |
| initrd_end = initrd_start+INITRD_SIZE; |
| } |
| else { |
| printk(KERN_ERR "initrd extends beyond end of memory " |
| "(0x%08lx > 0x%08lx)\ndisabling initrd\n", |
| INITRD_START + INITRD_SIZE, |
| max_low_pfn << PAGE_SHIFT); |
| initrd_start = 0; |
| } |
| } |
| #endif |
| #ifdef CONFIG_KEXEC |
| if (crashk_res.start != crashk_res.end) |
| reserve_bootmem(crashk_res.start, |
| crashk_res.end - crashk_res.start + 1); |
| #endif |
| } |
| |
| /* |
| * The node 0 pgdat is initialized before all of these because |
| * it's needed for bootmem. node>0 pgdats have their virtual |
| * space allocated before the pagetables are in place to access |
| * them, so they can't be cleared then. |
| * |
| * This should all compile down to nothing when NUMA is off. |
| */ |
| void __init remapped_pgdat_init(void) |
| { |
| int nid; |
| |
| for_each_online_node(nid) { |
| if (nid != 0) |
| memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); |
| } |
| } |
| |
| /* |
| * Request address space for all standard RAM and ROM resources |
| * and also for regions reported as reserved by the e820. |
| */ |
| static void __init |
| legacy_init_iomem_resources(struct resource *code_resource, struct resource *data_resource) |
| { |
| int i; |
| |
| probe_roms(); |
| for (i = 0; i < e820.nr_map; i++) { |
| struct resource *res; |
| res = kzalloc(sizeof(struct resource), GFP_ATOMIC); |
| switch (e820.map[i].type) { |
| case E820_RAM: res->name = "System RAM"; break; |
| case E820_ACPI: res->name = "ACPI Tables"; break; |
| case E820_NVS: res->name = "ACPI Non-volatile Storage"; break; |
| default: res->name = "reserved"; |
| } |
| res->start = e820.map[i].addr; |
| res->end = res->start + e820.map[i].size - 1; |
| res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| request_resource(&iomem_resource, res); |
| if (e820.map[i].type == E820_RAM) { |
| /* |
| * We don't know which RAM region contains kernel data, |
| * so we try it repeatedly and let the resource manager |
| * test it. |
| */ |
| request_resource(res, code_resource); |
| request_resource(res, data_resource); |
| #ifdef CONFIG_KEXEC |
| request_resource(res, &crashk_res); |
| #endif |
| } |
| } |
| } |
| |
| /* |
| * Request address space for all standard resources |
| * |
| * This is called just before pcibios_assign_resources(), which is also |
| * an fs_initcall, but is linked in later (in arch/i386/pci/i386.c). |
| */ |
| static int __init request_standard_resources(void) |
| { |
| int i; |
| |
| printk("Setting up standard PCI resources\n"); |
| if (efi_enabled) |
| efi_initialize_iomem_resources(&code_resource, &data_resource); |
| else |
| legacy_init_iomem_resources(&code_resource, &data_resource); |
| |
| /* EFI systems may still have VGA */ |
| request_resource(&iomem_resource, &video_ram_resource); |
| |
| /* request I/O space for devices used on all i[345]86 PCs */ |
| for (i = 0; i < STANDARD_IO_RESOURCES; i++) |
| request_resource(&ioport_resource, &standard_io_resources[i]); |
| return 0; |
| } |
| |
| fs_initcall(request_standard_resources); |
| |
| static void __init register_memory(void) |
| { |
| unsigned long gapstart, gapsize, round; |
| unsigned long long last; |
| int i; |
| |
| /* |
| * Search for the bigest gap in the low 32 bits of the e820 |
| * memory space. |
| */ |
| last = 0x100000000ull; |
| gapstart = 0x10000000; |
| gapsize = 0x400000; |
| i = e820.nr_map; |
| while (--i >= 0) { |
| unsigned long long start = e820.map[i].addr; |
| unsigned long long end = start + e820.map[i].size; |
| |
| /* |
| * Since "last" is at most 4GB, we know we'll |
| * fit in 32 bits if this condition is true |
| */ |
| if (last > end) { |
| unsigned long gap = last - end; |
| |
| if (gap > gapsize) { |
| gapsize = gap; |
| gapstart = end; |
| } |
| } |
| if (start < last) |
| last = start; |
| } |
| |
| /* |
| * See how much we want to round up: start off with |
| * rounding to the next 1MB area. |
| */ |
| round = 0x100000; |
| while ((gapsize >> 4) > round) |
| round += round; |
| /* Fun with two's complement */ |
| pci_mem_start = (gapstart + round) & -round; |
| |
| printk("Allocating PCI resources starting at %08lx (gap: %08lx:%08lx)\n", |
| pci_mem_start, gapstart, gapsize); |
| } |
| |
| static char * __init machine_specific_memory_setup(void); |
| |
| #ifdef CONFIG_MCA |
| static void set_mca_bus(int x) |
| { |
| MCA_bus = x; |
| } |
| #else |
| static void set_mca_bus(int x) { } |
| #endif |
| |
| /* |
| * Determine if we were loaded by an EFI loader. If so, then we have also been |
| * passed the efi memmap, systab, etc., so we should use these data structures |
| * for initialization. Note, the efi init code path is determined by the |
| * global efi_enabled. This allows the same kernel image to be used on existing |
| * systems (with a traditional BIOS) as well as on EFI systems. |
| */ |
| void __init setup_arch(char **cmdline_p) |
| { |
| unsigned long max_low_pfn; |
| |
| memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); |
| pre_setup_arch_hook(); |
| early_cpu_init(); |
| |
| /* |
| * FIXME: This isn't an official loader_type right |
| * now but does currently work with elilo. |
| * If we were configured as an EFI kernel, check to make |
| * sure that we were loaded correctly from elilo and that |
| * the system table is valid. If not, then initialize normally. |
| */ |
| #ifdef CONFIG_EFI |
| if ((LOADER_TYPE == 0x50) && EFI_SYSTAB) |
| efi_enabled = 1; |
| #endif |
| |
| ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); |
| drive_info = DRIVE_INFO; |
| screen_info = SCREEN_INFO; |
| edid_info = EDID_INFO; |
| apm_info.bios = APM_BIOS_INFO; |
| ist_info = IST_INFO; |
| saved_videomode = VIDEO_MODE; |
| if( SYS_DESC_TABLE.length != 0 ) { |
| set_mca_bus(SYS_DESC_TABLE.table[3] & 0x2); |
| machine_id = SYS_DESC_TABLE.table[0]; |
| machine_submodel_id = SYS_DESC_TABLE.table[1]; |
| BIOS_revision = SYS_DESC_TABLE.table[2]; |
| } |
| bootloader_type = LOADER_TYPE; |
| |
| #ifdef CONFIG_BLK_DEV_RAM |
| rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; |
| rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); |
| rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); |
| #endif |
| ARCH_SETUP |
| if (efi_enabled) |
| efi_init(); |
| else { |
| printk(KERN_INFO "BIOS-provided physical RAM map:\n"); |
| print_memory_map(machine_specific_memory_setup()); |
| } |
| |
| copy_edd(); |
| |
| if (!MOUNT_ROOT_RDONLY) |
| root_mountflags &= ~MS_RDONLY; |
| init_mm.start_code = (unsigned long) _text; |
| init_mm.end_code = (unsigned long) _etext; |
| init_mm.end_data = (unsigned long) _edata; |
| init_mm.brk = init_pg_tables_end + PAGE_OFFSET; |
| |
| code_resource.start = virt_to_phys(_text); |
| code_resource.end = virt_to_phys(_etext)-1; |
| data_resource.start = virt_to_phys(_etext); |
| data_resource.end = virt_to_phys(_edata)-1; |
| |
| parse_cmdline_early(cmdline_p); |
| |
| #ifdef CONFIG_EARLY_PRINTK |
| { |
| char *s = strstr(*cmdline_p, "earlyprintk="); |
| if (s) { |
| setup_early_printk(strchr(s, '=') + 1); |
| printk("early console enabled\n"); |
| } |
| } |
| #endif |
| |
| max_low_pfn = setup_memory(); |
| |
| /* |
| * NOTE: before this point _nobody_ is allowed to allocate |
| * any memory using the bootmem allocator. Although the |
| * alloctor is now initialised only the first 8Mb of the kernel |
| * virtual address space has been mapped. All allocations before |
| * paging_init() has completed must use the alloc_bootmem_low_pages() |
| * variant (which allocates DMA'able memory) and care must be taken |
| * not to exceed the 8Mb limit. |
| */ |
| |
| #ifdef CONFIG_SMP |
| smp_alloc_memory(); /* AP processor realmode stacks in low memory*/ |
| #endif |
| paging_init(); |
| remapped_pgdat_init(); |
| sparse_init(); |
| zone_sizes_init(); |
| |
| /* |
| * NOTE: at this point the bootmem allocator is fully available. |
| */ |
| |
| dmi_scan_machine(); |
| |
| #ifdef CONFIG_X86_GENERICARCH |
| generic_apic_probe(*cmdline_p); |
| #endif |
| if (efi_enabled) |
| efi_map_memmap(); |
| |
| #ifdef CONFIG_X86_IO_APIC |
| check_acpi_pci(); /* Checks more than just ACPI actually */ |
| #endif |
| |
| #ifdef CONFIG_ACPI |
| /* |
| * Parse the ACPI tables for possible boot-time SMP configuration. |
| */ |
| acpi_boot_table_init(); |
| acpi_boot_init(); |
| |
| #if defined(CONFIG_SMP) && defined(CONFIG_X86_PC) |
| if (def_to_bigsmp) |
| printk(KERN_WARNING "More than 8 CPUs detected and " |
| "CONFIG_X86_PC cannot handle it.\nUse " |
| "CONFIG_X86_GENERICARCH or CONFIG_X86_BIGSMP.\n"); |
| #endif |
| #endif |
| #ifdef CONFIG_X86_LOCAL_APIC |
| if (smp_found_config) |
| get_smp_config(); |
| #endif |
| |
| register_memory(); |
| |
| #ifdef CONFIG_VT |
| #if defined(CONFIG_VGA_CONSOLE) |
| if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) |
| conswitchp = &vga_con; |
| #elif defined(CONFIG_DUMMY_CONSOLE) |
| conswitchp = &dummy_con; |
| #endif |
| #endif |
| } |
| |
| static __init int add_pcspkr(void) |
| { |
| struct platform_device *pd; |
| int ret; |
| |
| pd = platform_device_alloc("pcspkr", -1); |
| if (!pd) |
| return -ENOMEM; |
| |
| ret = platform_device_add(pd); |
| if (ret) |
| platform_device_put(pd); |
| |
| return ret; |
| } |
| device_initcall(add_pcspkr); |
| |
| #include "setup_arch_post.h" |
| /* |
| * Local Variables: |
| * mode:c |
| * c-file-style:"k&r" |
| * c-basic-offset:8 |
| * End: |
| */ |