blob: 393f975ab397c1dd32919b77f9f0cfe8351fc397 [file] [log] [blame]
/*
* Author: Andy Fleming <afleming@freescale.com>
* Kumar Gala <galak@kernel.crashing.org>
*
* Copyright 2006-2008, 2011-2012 Freescale Semiconductor Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/kexec.h>
#include <linux/highmem.h>
#include <linux/cpu.h>
#include <asm/machdep.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/mpic.h>
#include <asm/cacheflush.h>
#include <asm/dbell.h>
#include <asm/fsl_guts.h>
#include <sysdev/fsl_soc.h>
#include <sysdev/mpic.h>
#include "smp.h"
struct epapr_spin_table {
u32 addr_h;
u32 addr_l;
u32 r3_h;
u32 r3_l;
u32 reserved;
u32 pir;
};
static struct ccsr_guts __iomem *guts;
static u64 timebase;
static int tb_req;
static int tb_valid;
static void mpc85xx_timebase_freeze(int freeze)
{
uint32_t mask;
mask = CCSR_GUTS_DEVDISR_TB0 | CCSR_GUTS_DEVDISR_TB1;
if (freeze)
setbits32(&guts->devdisr, mask);
else
clrbits32(&guts->devdisr, mask);
in_be32(&guts->devdisr);
}
static void mpc85xx_give_timebase(void)
{
unsigned long flags;
local_irq_save(flags);
while (!tb_req)
barrier();
tb_req = 0;
mpc85xx_timebase_freeze(1);
#ifdef CONFIG_PPC64
/*
* e5500/e6500 have a workaround for erratum A-006958 in place
* that will reread the timebase until TBL is non-zero.
* That would be a bad thing when the timebase is frozen.
*
* Thus, we read it manually, and instead of checking that
* TBL is non-zero, we ensure that TB does not change. We don't
* do that for the main mftb implementation, because it requires
* a scratch register
*/
{
u64 prev;
asm volatile("mfspr %0, %1" : "=r" (timebase) :
"i" (SPRN_TBRL));
do {
prev = timebase;
asm volatile("mfspr %0, %1" : "=r" (timebase) :
"i" (SPRN_TBRL));
} while (prev != timebase);
}
#else
timebase = get_tb();
#endif
mb();
tb_valid = 1;
while (tb_valid)
barrier();
mpc85xx_timebase_freeze(0);
local_irq_restore(flags);
}
static void mpc85xx_take_timebase(void)
{
unsigned long flags;
local_irq_save(flags);
tb_req = 1;
while (!tb_valid)
barrier();
set_tb(timebase >> 32, timebase & 0xffffffff);
isync();
tb_valid = 0;
local_irq_restore(flags);
}
#ifdef CONFIG_HOTPLUG_CPU
static void smp_85xx_mach_cpu_die(void)
{
unsigned int cpu = smp_processor_id();
u32 tmp;
local_irq_disable();
idle_task_exit();
generic_set_cpu_dead(cpu);
mb();
mtspr(SPRN_TCR, 0);
__flush_disable_L1();
tmp = (mfspr(SPRN_HID0) & ~(HID0_DOZE|HID0_SLEEP)) | HID0_NAP;
mtspr(SPRN_HID0, tmp);
isync();
/* Enter NAP mode. */
tmp = mfmsr();
tmp |= MSR_WE;
mb();
mtmsr(tmp);
isync();
while (1)
;
}
#endif
static inline void flush_spin_table(void *spin_table)
{
flush_dcache_range((ulong)spin_table,
(ulong)spin_table + sizeof(struct epapr_spin_table));
}
static inline u32 read_spin_table_addr_l(void *spin_table)
{
flush_dcache_range((ulong)spin_table,
(ulong)spin_table + sizeof(struct epapr_spin_table));
return in_be32(&((struct epapr_spin_table *)spin_table)->addr_l);
}
static int smp_85xx_kick_cpu(int nr)
{
unsigned long flags;
const u64 *cpu_rel_addr;
__iomem struct epapr_spin_table *spin_table;
struct device_node *np;
int hw_cpu = get_hard_smp_processor_id(nr);
int ioremappable;
int ret = 0;
WARN_ON(nr < 0 || nr >= NR_CPUS);
WARN_ON(hw_cpu < 0 || hw_cpu >= NR_CPUS);
pr_debug("smp_85xx_kick_cpu: kick CPU #%d\n", nr);
np = of_get_cpu_node(nr, NULL);
cpu_rel_addr = of_get_property(np, "cpu-release-addr", NULL);
if (cpu_rel_addr == NULL) {
printk(KERN_ERR "No cpu-release-addr for cpu %d\n", nr);
return -ENOENT;
}
/*
* A secondary core could be in a spinloop in the bootpage
* (0xfffff000), somewhere in highmem, or somewhere in lowmem.
* The bootpage and highmem can be accessed via ioremap(), but
* we need to directly access the spinloop if its in lowmem.
*/
ioremappable = *cpu_rel_addr > virt_to_phys(high_memory);
/* Map the spin table */
if (ioremappable)
spin_table = ioremap_prot(*cpu_rel_addr,
sizeof(struct epapr_spin_table), _PAGE_COHERENT);
else
spin_table = phys_to_virt(*cpu_rel_addr);
local_irq_save(flags);
#ifdef CONFIG_PPC32
#ifdef CONFIG_HOTPLUG_CPU
/* Corresponding to generic_set_cpu_dead() */
generic_set_cpu_up(nr);
if (system_state == SYSTEM_RUNNING) {
/*
* To keep it compatible with old boot program which uses
* cache-inhibit spin table, we need to flush the cache
* before accessing spin table to invalidate any staled data.
* We also need to flush the cache after writing to spin
* table to push data out.
*/
flush_spin_table(spin_table);
out_be32(&spin_table->addr_l, 0);
flush_spin_table(spin_table);
/*
* We don't set the BPTR register here since it already points
* to the boot page properly.
*/
mpic_reset_core(nr);
/*
* wait until core is ready...
* We need to invalidate the stale data, in case the boot
* loader uses a cache-inhibited spin table.
*/
if (!spin_event_timeout(
read_spin_table_addr_l(spin_table) == 1,
10000, 100)) {
pr_err("%s: timeout waiting for core %d to reset\n",
__func__, hw_cpu);
ret = -ENOENT;
goto out;
}
/* clear the acknowledge status */
__secondary_hold_acknowledge = -1;
}
#endif
flush_spin_table(spin_table);
out_be32(&spin_table->pir, hw_cpu);
out_be32(&spin_table->addr_l, __pa(__early_start));
flush_spin_table(spin_table);
/* Wait a bit for the CPU to ack. */
if (!spin_event_timeout(__secondary_hold_acknowledge == hw_cpu,
10000, 100)) {
pr_err("%s: timeout waiting for core %d to ack\n",
__func__, hw_cpu);
ret = -ENOENT;
goto out;
}
out:
#else
smp_generic_kick_cpu(nr);
flush_spin_table(spin_table);
out_be32(&spin_table->pir, hw_cpu);
out_be64((u64 *)(&spin_table->addr_h),
__pa((u64)*((unsigned long long *)generic_secondary_smp_init)));
flush_spin_table(spin_table);
#endif
local_irq_restore(flags);
if (ioremappable)
iounmap(spin_table);
return ret;
}
struct smp_ops_t smp_85xx_ops = {
.kick_cpu = smp_85xx_kick_cpu,
.cpu_bootable = smp_generic_cpu_bootable,
#ifdef CONFIG_HOTPLUG_CPU
.cpu_disable = generic_cpu_disable,
.cpu_die = generic_cpu_die,
#endif
#ifdef CONFIG_KEXEC
.give_timebase = smp_generic_give_timebase,
.take_timebase = smp_generic_take_timebase,
#endif
};
#ifdef CONFIG_KEXEC
atomic_t kexec_down_cpus = ATOMIC_INIT(0);
void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
{
local_irq_disable();
if (secondary) {
atomic_inc(&kexec_down_cpus);
/* loop forever */
while (1);
}
}
static void mpc85xx_smp_kexec_down(void *arg)
{
if (ppc_md.kexec_cpu_down)
ppc_md.kexec_cpu_down(0,1);
}
static void map_and_flush(unsigned long paddr)
{
struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
unsigned long kaddr = (unsigned long)kmap(page);
flush_dcache_range(kaddr, kaddr + PAGE_SIZE);
kunmap(page);
}
/**
* Before we reset the other cores, we need to flush relevant cache
* out to memory so we don't get anything corrupted, some of these flushes
* are performed out of an overabundance of caution as interrupts are not
* disabled yet and we can switch cores
*/
static void mpc85xx_smp_flush_dcache_kexec(struct kimage *image)
{
kimage_entry_t *ptr, entry;
unsigned long paddr;
int i;
if (image->type == KEXEC_TYPE_DEFAULT) {
/* normal kexec images are stored in temporary pages */
for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE);
ptr = (entry & IND_INDIRECTION) ?
phys_to_virt(entry & PAGE_MASK) : ptr + 1) {
if (!(entry & IND_DESTINATION)) {
map_and_flush(entry);
}
}
/* flush out last IND_DONE page */
map_and_flush(entry);
} else {
/* crash type kexec images are copied to the crash region */
for (i = 0; i < image->nr_segments; i++) {
struct kexec_segment *seg = &image->segment[i];
for (paddr = seg->mem; paddr < seg->mem + seg->memsz;
paddr += PAGE_SIZE) {
map_and_flush(paddr);
}
}
}
/* also flush the kimage struct to be passed in as well */
flush_dcache_range((unsigned long)image,
(unsigned long)image + sizeof(*image));
}
static void mpc85xx_smp_machine_kexec(struct kimage *image)
{
int timeout = INT_MAX;
int i, num_cpus = num_present_cpus();
mpc85xx_smp_flush_dcache_kexec(image);
if (image->type == KEXEC_TYPE_DEFAULT)
smp_call_function(mpc85xx_smp_kexec_down, NULL, 0);
while ( (atomic_read(&kexec_down_cpus) != (num_cpus - 1)) &&
( timeout > 0 ) )
{
timeout--;
}
if ( !timeout )
printk(KERN_ERR "Unable to bring down secondary cpu(s)");
for_each_online_cpu(i)
{
if ( i == smp_processor_id() ) continue;
mpic_reset_core(i);
}
default_machine_kexec(image);
}
#endif /* CONFIG_KEXEC */
static void smp_85xx_setup_cpu(int cpu_nr)
{
if (smp_85xx_ops.probe == smp_mpic_probe)
mpic_setup_this_cpu();
if (cpu_has_feature(CPU_FTR_DBELL))
doorbell_setup_this_cpu();
}
static const struct of_device_id mpc85xx_smp_guts_ids[] = {
{ .compatible = "fsl,mpc8572-guts", },
{ .compatible = "fsl,p1020-guts", },
{ .compatible = "fsl,p1021-guts", },
{ .compatible = "fsl,p1022-guts", },
{ .compatible = "fsl,p1023-guts", },
{ .compatible = "fsl,p2020-guts", },
{},
};
void __init mpc85xx_smp_init(void)
{
struct device_node *np;
smp_85xx_ops.setup_cpu = smp_85xx_setup_cpu;
np = of_find_node_by_type(NULL, "open-pic");
if (np) {
smp_85xx_ops.probe = smp_mpic_probe;
smp_85xx_ops.message_pass = smp_mpic_message_pass;
}
if (cpu_has_feature(CPU_FTR_DBELL)) {
/*
* If left NULL, .message_pass defaults to
* smp_muxed_ipi_message_pass
*/
smp_85xx_ops.message_pass = NULL;
smp_85xx_ops.cause_ipi = doorbell_cause_ipi;
}
np = of_find_matching_node(NULL, mpc85xx_smp_guts_ids);
if (np) {
guts = of_iomap(np, 0);
of_node_put(np);
if (!guts) {
pr_err("%s: Could not map guts node address\n",
__func__);
return;
}
smp_85xx_ops.give_timebase = mpc85xx_give_timebase;
smp_85xx_ops.take_timebase = mpc85xx_take_timebase;
#ifdef CONFIG_HOTPLUG_CPU
ppc_md.cpu_die = smp_85xx_mach_cpu_die;
#endif
}
smp_ops = &smp_85xx_ops;
#ifdef CONFIG_KEXEC
ppc_md.kexec_cpu_down = mpc85xx_smp_kexec_cpu_down;
ppc_md.machine_kexec = mpc85xx_smp_machine_kexec;
#endif
}