| /* |
| * arch/s390/kernel/ptrace.c |
| * |
| * S390 version |
| * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation |
| * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), |
| * Martin Schwidefsky (schwidefsky@de.ibm.com) |
| * |
| * Based on PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Derived from "arch/m68k/kernel/ptrace.c" |
| * Copyright (C) 1994 by Hamish Macdonald |
| * Taken from linux/kernel/ptrace.c and modified for M680x0. |
| * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds |
| * |
| * Modified by Cort Dougan (cort@cs.nmt.edu) |
| * |
| * |
| * This file is subject to the terms and conditions of the GNU General |
| * Public License. See the file README.legal in the main directory of |
| * this archive for more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/errno.h> |
| #include <linux/ptrace.h> |
| #include <linux/user.h> |
| #include <linux/security.h> |
| #include <linux/audit.h> |
| #include <linux/signal.h> |
| |
| #include <asm/segment.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/unistd.h> |
| |
| #ifdef CONFIG_COMPAT |
| #include "compat_ptrace.h" |
| #endif |
| |
| static void |
| FixPerRegisters(struct task_struct *task) |
| { |
| struct pt_regs *regs; |
| per_struct *per_info; |
| |
| regs = __KSTK_PTREGS(task); |
| per_info = (per_struct *) &task->thread.per_info; |
| per_info->control_regs.bits.em_instruction_fetch = |
| per_info->single_step | per_info->instruction_fetch; |
| |
| if (per_info->single_step) { |
| per_info->control_regs.bits.starting_addr = 0; |
| #ifdef CONFIG_COMPAT |
| if (test_thread_flag(TIF_31BIT)) |
| per_info->control_regs.bits.ending_addr = 0x7fffffffUL; |
| else |
| #endif |
| per_info->control_regs.bits.ending_addr = PSW_ADDR_INSN; |
| } else { |
| per_info->control_regs.bits.starting_addr = |
| per_info->starting_addr; |
| per_info->control_regs.bits.ending_addr = |
| per_info->ending_addr; |
| } |
| /* |
| * if any of the control reg tracing bits are on |
| * we switch on per in the psw |
| */ |
| if (per_info->control_regs.words.cr[0] & PER_EM_MASK) |
| regs->psw.mask |= PSW_MASK_PER; |
| else |
| regs->psw.mask &= ~PSW_MASK_PER; |
| |
| if (per_info->control_regs.bits.em_storage_alteration) |
| per_info->control_regs.bits.storage_alt_space_ctl = 1; |
| else |
| per_info->control_regs.bits.storage_alt_space_ctl = 0; |
| } |
| |
| void |
| set_single_step(struct task_struct *task) |
| { |
| task->thread.per_info.single_step = 1; |
| FixPerRegisters(task); |
| } |
| |
| void |
| clear_single_step(struct task_struct *task) |
| { |
| task->thread.per_info.single_step = 0; |
| FixPerRegisters(task); |
| } |
| |
| /* |
| * Called by kernel/ptrace.c when detaching.. |
| * |
| * Make sure single step bits etc are not set. |
| */ |
| void |
| ptrace_disable(struct task_struct *child) |
| { |
| /* make sure the single step bit is not set. */ |
| clear_single_step(child); |
| } |
| |
| #ifndef CONFIG_64BIT |
| # define __ADDR_MASK 3 |
| #else |
| # define __ADDR_MASK 7 |
| #endif |
| |
| /* |
| * Read the word at offset addr from the user area of a process. The |
| * trouble here is that the information is littered over different |
| * locations. The process registers are found on the kernel stack, |
| * the floating point stuff and the trace settings are stored in |
| * the task structure. In addition the different structures in |
| * struct user contain pad bytes that should be read as zeroes. |
| * Lovely... |
| */ |
| static int |
| peek_user(struct task_struct *child, addr_t addr, addr_t data) |
| { |
| struct user *dummy = NULL; |
| addr_t offset, tmp, mask; |
| |
| /* |
| * Stupid gdb peeks/pokes the access registers in 64 bit with |
| * an alignment of 4. Programmers from hell... |
| */ |
| mask = __ADDR_MASK; |
| #ifdef CONFIG_64BIT |
| if (addr >= (addr_t) &dummy->regs.acrs && |
| addr < (addr_t) &dummy->regs.orig_gpr2) |
| mask = 3; |
| #endif |
| if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) |
| return -EIO; |
| |
| if (addr < (addr_t) &dummy->regs.acrs) { |
| /* |
| * psw and gprs are stored on the stack |
| */ |
| tmp = *(addr_t *)((addr_t) &__KSTK_PTREGS(child)->psw + addr); |
| if (addr == (addr_t) &dummy->regs.psw.mask) |
| /* Remove per bit from user psw. */ |
| tmp &= ~PSW_MASK_PER; |
| |
| } else if (addr < (addr_t) &dummy->regs.orig_gpr2) { |
| /* |
| * access registers are stored in the thread structure |
| */ |
| offset = addr - (addr_t) &dummy->regs.acrs; |
| #ifdef CONFIG_64BIT |
| /* |
| * Very special case: old & broken 64 bit gdb reading |
| * from acrs[15]. Result is a 64 bit value. Read the |
| * 32 bit acrs[15] value and shift it by 32. Sick... |
| */ |
| if (addr == (addr_t) &dummy->regs.acrs[15]) |
| tmp = ((unsigned long) child->thread.acrs[15]) << 32; |
| else |
| #endif |
| tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset); |
| |
| } else if (addr == (addr_t) &dummy->regs.orig_gpr2) { |
| /* |
| * orig_gpr2 is stored on the kernel stack |
| */ |
| tmp = (addr_t) __KSTK_PTREGS(child)->orig_gpr2; |
| |
| } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) { |
| /* |
| * floating point regs. are stored in the thread structure |
| */ |
| offset = addr - (addr_t) &dummy->regs.fp_regs; |
| tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset); |
| if (addr == (addr_t) &dummy->regs.fp_regs.fpc) |
| tmp &= (unsigned long) FPC_VALID_MASK |
| << (BITS_PER_LONG - 32); |
| |
| } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) { |
| /* |
| * per_info is found in the thread structure |
| */ |
| offset = addr - (addr_t) &dummy->regs.per_info; |
| tmp = *(addr_t *)((addr_t) &child->thread.per_info + offset); |
| |
| } else |
| tmp = 0; |
| |
| return put_user(tmp, (addr_t __user *) data); |
| } |
| |
| /* |
| * Write a word to the user area of a process at location addr. This |
| * operation does have an additional problem compared to peek_user. |
| * Stores to the program status word and on the floating point |
| * control register needs to get checked for validity. |
| */ |
| static int |
| poke_user(struct task_struct *child, addr_t addr, addr_t data) |
| { |
| struct user *dummy = NULL; |
| addr_t offset, mask; |
| |
| /* |
| * Stupid gdb peeks/pokes the access registers in 64 bit with |
| * an alignment of 4. Programmers from hell indeed... |
| */ |
| mask = __ADDR_MASK; |
| #ifdef CONFIG_64BIT |
| if (addr >= (addr_t) &dummy->regs.acrs && |
| addr < (addr_t) &dummy->regs.orig_gpr2) |
| mask = 3; |
| #endif |
| if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK) |
| return -EIO; |
| |
| if (addr < (addr_t) &dummy->regs.acrs) { |
| /* |
| * psw and gprs are stored on the stack |
| */ |
| if (addr == (addr_t) &dummy->regs.psw.mask && |
| #ifdef CONFIG_COMPAT |
| data != PSW_MASK_MERGE(PSW_USER32_BITS, data) && |
| #endif |
| data != PSW_MASK_MERGE(PSW_USER_BITS, data)) |
| /* Invalid psw mask. */ |
| return -EINVAL; |
| #ifndef CONFIG_64BIT |
| if (addr == (addr_t) &dummy->regs.psw.addr) |
| /* I'd like to reject addresses without the |
| high order bit but older gdb's rely on it */ |
| data |= PSW_ADDR_AMODE; |
| #endif |
| *(addr_t *)((addr_t) &__KSTK_PTREGS(child)->psw + addr) = data; |
| |
| } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) { |
| /* |
| * access registers are stored in the thread structure |
| */ |
| offset = addr - (addr_t) &dummy->regs.acrs; |
| #ifdef CONFIG_64BIT |
| /* |
| * Very special case: old & broken 64 bit gdb writing |
| * to acrs[15] with a 64 bit value. Ignore the lower |
| * half of the value and write the upper 32 bit to |
| * acrs[15]. Sick... |
| */ |
| if (addr == (addr_t) &dummy->regs.acrs[15]) |
| child->thread.acrs[15] = (unsigned int) (data >> 32); |
| else |
| #endif |
| *(addr_t *)((addr_t) &child->thread.acrs + offset) = data; |
| |
| } else if (addr == (addr_t) &dummy->regs.orig_gpr2) { |
| /* |
| * orig_gpr2 is stored on the kernel stack |
| */ |
| __KSTK_PTREGS(child)->orig_gpr2 = data; |
| |
| } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) { |
| /* |
| * floating point regs. are stored in the thread structure |
| */ |
| if (addr == (addr_t) &dummy->regs.fp_regs.fpc && |
| (data & ~((unsigned long) FPC_VALID_MASK |
| << (BITS_PER_LONG - 32))) != 0) |
| return -EINVAL; |
| offset = addr - (addr_t) &dummy->regs.fp_regs; |
| *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data; |
| |
| } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) { |
| /* |
| * per_info is found in the thread structure |
| */ |
| offset = addr - (addr_t) &dummy->regs.per_info; |
| *(addr_t *)((addr_t) &child->thread.per_info + offset) = data; |
| |
| } |
| |
| FixPerRegisters(child); |
| return 0; |
| } |
| |
| static int |
| do_ptrace_normal(struct task_struct *child, long request, long addr, long data) |
| { |
| unsigned long tmp; |
| ptrace_area parea; |
| int copied, ret; |
| |
| switch (request) { |
| case PTRACE_PEEKTEXT: |
| case PTRACE_PEEKDATA: |
| /* Remove high order bit from address (only for 31 bit). */ |
| addr &= PSW_ADDR_INSN; |
| /* read word at location addr. */ |
| copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 0); |
| if (copied != sizeof(tmp)) |
| return -EIO; |
| return put_user(tmp, (unsigned long __user *) data); |
| |
| case PTRACE_PEEKUSR: |
| /* read the word at location addr in the USER area. */ |
| return peek_user(child, addr, data); |
| |
| case PTRACE_POKETEXT: |
| case PTRACE_POKEDATA: |
| /* Remove high order bit from address (only for 31 bit). */ |
| addr &= PSW_ADDR_INSN; |
| /* write the word at location addr. */ |
| copied = access_process_vm(child, addr, &data, sizeof(data),1); |
| if (copied != sizeof(data)) |
| return -EIO; |
| return 0; |
| |
| case PTRACE_POKEUSR: |
| /* write the word at location addr in the USER area */ |
| return poke_user(child, addr, data); |
| |
| case PTRACE_PEEKUSR_AREA: |
| case PTRACE_POKEUSR_AREA: |
| if (copy_from_user(&parea, (void __user *) addr, |
| sizeof(parea))) |
| return -EFAULT; |
| addr = parea.kernel_addr; |
| data = parea.process_addr; |
| copied = 0; |
| while (copied < parea.len) { |
| if (request == PTRACE_PEEKUSR_AREA) |
| ret = peek_user(child, addr, data); |
| else { |
| addr_t tmp; |
| if (get_user (tmp, (addr_t __user *) data)) |
| return -EFAULT; |
| ret = poke_user(child, addr, tmp); |
| } |
| if (ret) |
| return ret; |
| addr += sizeof(unsigned long); |
| data += sizeof(unsigned long); |
| copied += sizeof(unsigned long); |
| } |
| return 0; |
| } |
| return ptrace_request(child, request, addr, data); |
| } |
| |
| #ifdef CONFIG_COMPAT |
| /* |
| * Now the fun part starts... a 31 bit program running in the |
| * 31 bit emulation tracing another program. PTRACE_PEEKTEXT, |
| * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy |
| * to handle, the difference to the 64 bit versions of the requests |
| * is that the access is done in multiples of 4 byte instead of |
| * 8 bytes (sizeof(unsigned long) on 31/64 bit). |
| * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA, |
| * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program |
| * is a 31 bit program too, the content of struct user can be |
| * emulated. A 31 bit program peeking into the struct user of |
| * a 64 bit program is a no-no. |
| */ |
| |
| /* |
| * Same as peek_user but for a 31 bit program. |
| */ |
| static int |
| peek_user_emu31(struct task_struct *child, addr_t addr, addr_t data) |
| { |
| struct user32 *dummy32 = NULL; |
| per_struct32 *dummy_per32 = NULL; |
| addr_t offset; |
| __u32 tmp; |
| |
| if (!test_thread_flag(TIF_31BIT) || |
| (addr & 3) || addr > sizeof(struct user) - 3) |
| return -EIO; |
| |
| if (addr < (addr_t) &dummy32->regs.acrs) { |
| /* |
| * psw and gprs are stored on the stack |
| */ |
| if (addr == (addr_t) &dummy32->regs.psw.mask) { |
| /* Fake a 31 bit psw mask. */ |
| tmp = (__u32)(__KSTK_PTREGS(child)->psw.mask >> 32); |
| tmp = PSW32_MASK_MERGE(PSW32_USER_BITS, tmp); |
| } else if (addr == (addr_t) &dummy32->regs.psw.addr) { |
| /* Fake a 31 bit psw address. */ |
| tmp = (__u32) __KSTK_PTREGS(child)->psw.addr | |
| PSW32_ADDR_AMODE31; |
| } else { |
| /* gpr 0-15 */ |
| tmp = *(__u32 *)((addr_t) &__KSTK_PTREGS(child)->psw + |
| addr*2 + 4); |
| } |
| } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) { |
| /* |
| * access registers are stored in the thread structure |
| */ |
| offset = addr - (addr_t) &dummy32->regs.acrs; |
| tmp = *(__u32*)((addr_t) &child->thread.acrs + offset); |
| |
| } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) { |
| /* |
| * orig_gpr2 is stored on the kernel stack |
| */ |
| tmp = *(__u32*)((addr_t) &__KSTK_PTREGS(child)->orig_gpr2 + 4); |
| |
| } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) { |
| /* |
| * floating point regs. are stored in the thread structure |
| */ |
| offset = addr - (addr_t) &dummy32->regs.fp_regs; |
| tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset); |
| |
| } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) { |
| /* |
| * per_info is found in the thread structure |
| */ |
| offset = addr - (addr_t) &dummy32->regs.per_info; |
| /* This is magic. See per_struct and per_struct32. */ |
| if ((offset >= (addr_t) &dummy_per32->control_regs && |
| offset < (addr_t) (&dummy_per32->control_regs + 1)) || |
| (offset >= (addr_t) &dummy_per32->starting_addr && |
| offset <= (addr_t) &dummy_per32->ending_addr) || |
| offset == (addr_t) &dummy_per32->lowcore.words.address) |
| offset = offset*2 + 4; |
| else |
| offset = offset*2; |
| tmp = *(__u32 *)((addr_t) &child->thread.per_info + offset); |
| |
| } else |
| tmp = 0; |
| |
| return put_user(tmp, (__u32 __user *) data); |
| } |
| |
| /* |
| * Same as poke_user but for a 31 bit program. |
| */ |
| static int |
| poke_user_emu31(struct task_struct *child, addr_t addr, addr_t data) |
| { |
| struct user32 *dummy32 = NULL; |
| per_struct32 *dummy_per32 = NULL; |
| addr_t offset; |
| __u32 tmp; |
| |
| if (!test_thread_flag(TIF_31BIT) || |
| (addr & 3) || addr > sizeof(struct user32) - 3) |
| return -EIO; |
| |
| tmp = (__u32) data; |
| |
| if (addr < (addr_t) &dummy32->regs.acrs) { |
| /* |
| * psw, gprs, acrs and orig_gpr2 are stored on the stack |
| */ |
| if (addr == (addr_t) &dummy32->regs.psw.mask) { |
| /* Build a 64 bit psw mask from 31 bit mask. */ |
| if (tmp != PSW32_MASK_MERGE(PSW32_USER_BITS, tmp)) |
| /* Invalid psw mask. */ |
| return -EINVAL; |
| __KSTK_PTREGS(child)->psw.mask = |
| PSW_MASK_MERGE(PSW_USER32_BITS, (__u64) tmp << 32); |
| } else if (addr == (addr_t) &dummy32->regs.psw.addr) { |
| /* Build a 64 bit psw address from 31 bit address. */ |
| __KSTK_PTREGS(child)->psw.addr = |
| (__u64) tmp & PSW32_ADDR_INSN; |
| } else { |
| /* gpr 0-15 */ |
| *(__u32*)((addr_t) &__KSTK_PTREGS(child)->psw |
| + addr*2 + 4) = tmp; |
| } |
| } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) { |
| /* |
| * access registers are stored in the thread structure |
| */ |
| offset = addr - (addr_t) &dummy32->regs.acrs; |
| *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp; |
| |
| } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) { |
| /* |
| * orig_gpr2 is stored on the kernel stack |
| */ |
| *(__u32*)((addr_t) &__KSTK_PTREGS(child)->orig_gpr2 + 4) = tmp; |
| |
| } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) { |
| /* |
| * floating point regs. are stored in the thread structure |
| */ |
| if (addr == (addr_t) &dummy32->regs.fp_regs.fpc && |
| (tmp & ~FPC_VALID_MASK) != 0) |
| /* Invalid floating point control. */ |
| return -EINVAL; |
| offset = addr - (addr_t) &dummy32->regs.fp_regs; |
| *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp; |
| |
| } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) { |
| /* |
| * per_info is found in the thread structure. |
| */ |
| offset = addr - (addr_t) &dummy32->regs.per_info; |
| /* |
| * This is magic. See per_struct and per_struct32. |
| * By incident the offsets in per_struct are exactly |
| * twice the offsets in per_struct32 for all fields. |
| * The 8 byte fields need special handling though, |
| * because the second half (bytes 4-7) is needed and |
| * not the first half. |
| */ |
| if ((offset >= (addr_t) &dummy_per32->control_regs && |
| offset < (addr_t) (&dummy_per32->control_regs + 1)) || |
| (offset >= (addr_t) &dummy_per32->starting_addr && |
| offset <= (addr_t) &dummy_per32->ending_addr) || |
| offset == (addr_t) &dummy_per32->lowcore.words.address) |
| offset = offset*2 + 4; |
| else |
| offset = offset*2; |
| *(__u32 *)((addr_t) &child->thread.per_info + offset) = tmp; |
| |
| } |
| |
| FixPerRegisters(child); |
| return 0; |
| } |
| |
| static int |
| do_ptrace_emu31(struct task_struct *child, long request, long addr, long data) |
| { |
| unsigned int tmp; /* 4 bytes !! */ |
| ptrace_area_emu31 parea; |
| int copied, ret; |
| |
| switch (request) { |
| case PTRACE_PEEKTEXT: |
| case PTRACE_PEEKDATA: |
| /* read word at location addr. */ |
| copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 0); |
| if (copied != sizeof(tmp)) |
| return -EIO; |
| return put_user(tmp, (unsigned int __user *) data); |
| |
| case PTRACE_PEEKUSR: |
| /* read the word at location addr in the USER area. */ |
| return peek_user_emu31(child, addr, data); |
| |
| case PTRACE_POKETEXT: |
| case PTRACE_POKEDATA: |
| /* write the word at location addr. */ |
| tmp = data; |
| copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 1); |
| if (copied != sizeof(tmp)) |
| return -EIO; |
| return 0; |
| |
| case PTRACE_POKEUSR: |
| /* write the word at location addr in the USER area */ |
| return poke_user_emu31(child, addr, data); |
| |
| case PTRACE_PEEKUSR_AREA: |
| case PTRACE_POKEUSR_AREA: |
| if (copy_from_user(&parea, (void __user *) addr, |
| sizeof(parea))) |
| return -EFAULT; |
| addr = parea.kernel_addr; |
| data = parea.process_addr; |
| copied = 0; |
| while (copied < parea.len) { |
| if (request == PTRACE_PEEKUSR_AREA) |
| ret = peek_user_emu31(child, addr, data); |
| else { |
| __u32 tmp; |
| if (get_user (tmp, (__u32 __user *) data)) |
| return -EFAULT; |
| ret = poke_user_emu31(child, addr, tmp); |
| } |
| if (ret) |
| return ret; |
| addr += sizeof(unsigned int); |
| data += sizeof(unsigned int); |
| copied += sizeof(unsigned int); |
| } |
| return 0; |
| case PTRACE_GETEVENTMSG: |
| return put_user((__u32) child->ptrace_message, |
| (unsigned int __user *) data); |
| case PTRACE_GETSIGINFO: |
| if (child->last_siginfo == NULL) |
| return -EINVAL; |
| return copy_siginfo_to_user32((compat_siginfo_t __user *) data, |
| child->last_siginfo); |
| case PTRACE_SETSIGINFO: |
| if (child->last_siginfo == NULL) |
| return -EINVAL; |
| return copy_siginfo_from_user32(child->last_siginfo, |
| (compat_siginfo_t __user *) data); |
| } |
| return ptrace_request(child, request, addr, data); |
| } |
| #endif |
| |
| #define PT32_IEEE_IP 0x13c |
| |
| static int |
| do_ptrace(struct task_struct *child, long request, long addr, long data) |
| { |
| int ret; |
| |
| if (request == PTRACE_ATTACH) |
| return ptrace_attach(child); |
| |
| /* |
| * Special cases to get/store the ieee instructions pointer. |
| */ |
| if (child == current) { |
| if (request == PTRACE_PEEKUSR && addr == PT_IEEE_IP) |
| return peek_user(child, addr, data); |
| if (request == PTRACE_POKEUSR && addr == PT_IEEE_IP) |
| return poke_user(child, addr, data); |
| #ifdef CONFIG_COMPAT |
| if (request == PTRACE_PEEKUSR && |
| addr == PT32_IEEE_IP && test_thread_flag(TIF_31BIT)) |
| return peek_user_emu31(child, addr, data); |
| if (request == PTRACE_POKEUSR && |
| addr == PT32_IEEE_IP && test_thread_flag(TIF_31BIT)) |
| return poke_user_emu31(child, addr, data); |
| #endif |
| } |
| |
| ret = ptrace_check_attach(child, request == PTRACE_KILL); |
| if (ret < 0) |
| return ret; |
| |
| switch (request) { |
| case PTRACE_SYSCALL: |
| /* continue and stop at next (return from) syscall */ |
| case PTRACE_CONT: |
| /* restart after signal. */ |
| if (!valid_signal(data)) |
| return -EIO; |
| if (request == PTRACE_SYSCALL) |
| set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| else |
| clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| child->exit_code = data; |
| /* make sure the single step bit is not set. */ |
| clear_single_step(child); |
| wake_up_process(child); |
| return 0; |
| |
| case PTRACE_KILL: |
| /* |
| * make the child exit. Best I can do is send it a sigkill. |
| * perhaps it should be put in the status that it wants to |
| * exit. |
| */ |
| if (child->exit_state == EXIT_ZOMBIE) /* already dead */ |
| return 0; |
| child->exit_code = SIGKILL; |
| /* make sure the single step bit is not set. */ |
| clear_single_step(child); |
| wake_up_process(child); |
| return 0; |
| |
| case PTRACE_SINGLESTEP: |
| /* set the trap flag. */ |
| if (!valid_signal(data)) |
| return -EIO; |
| clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| child->exit_code = data; |
| if (data) |
| set_tsk_thread_flag(child, TIF_SINGLE_STEP); |
| else |
| set_single_step(child); |
| /* give it a chance to run. */ |
| wake_up_process(child); |
| return 0; |
| |
| case PTRACE_DETACH: |
| /* detach a process that was attached. */ |
| return ptrace_detach(child, data); |
| |
| |
| /* Do requests that differ for 31/64 bit */ |
| default: |
| #ifdef CONFIG_COMPAT |
| if (test_thread_flag(TIF_31BIT)) |
| return do_ptrace_emu31(child, request, addr, data); |
| #endif |
| return do_ptrace_normal(child, request, addr, data); |
| } |
| /* Not reached. */ |
| return -EIO; |
| } |
| |
| asmlinkage long |
| sys_ptrace(long request, long pid, long addr, long data) |
| { |
| struct task_struct *child; |
| int ret; |
| |
| lock_kernel(); |
| if (request == PTRACE_TRACEME) { |
| ret = ptrace_traceme(); |
| goto out; |
| } |
| |
| child = ptrace_get_task_struct(pid); |
| if (IS_ERR(child)) { |
| ret = PTR_ERR(child); |
| goto out; |
| } |
| |
| ret = do_ptrace(child, request, addr, data); |
| put_task_struct(child); |
| out: |
| unlock_kernel(); |
| return ret; |
| } |
| |
| asmlinkage void |
| syscall_trace(struct pt_regs *regs, int entryexit) |
| { |
| if (unlikely(current->audit_context) && entryexit) |
| audit_syscall_exit(current, AUDITSC_RESULT(regs->gprs[2]), regs->gprs[2]); |
| |
| if (!test_thread_flag(TIF_SYSCALL_TRACE)) |
| goto out; |
| if (!(current->ptrace & PT_PTRACED)) |
| goto out; |
| ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) |
| ? 0x80 : 0)); |
| |
| /* |
| * If the debuffer has set an invalid system call number, |
| * we prepare to skip the system call restart handling. |
| */ |
| if (!entryexit && regs->gprs[2] >= NR_syscalls) |
| regs->trap = -1; |
| |
| /* |
| * this isn't the same as continuing with a signal, but it will do |
| * for normal use. strace only continues with a signal if the |
| * stopping signal is not SIGTRAP. -brl |
| */ |
| if (current->exit_code) { |
| send_sig(current->exit_code, current, 1); |
| current->exit_code = 0; |
| } |
| out: |
| if (unlikely(current->audit_context) && !entryexit) |
| audit_syscall_entry(current, |
| test_thread_flag(TIF_31BIT)?AUDIT_ARCH_S390:AUDIT_ARCH_S390X, |
| regs->gprs[2], regs->orig_gpr2, regs->gprs[3], |
| regs->gprs[4], regs->gprs[5]); |
| } |