| /* n2-drv.c: Niagara-2 RNG driver. |
| * |
| * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| #include <linux/preempt.h> |
| #include <linux/hw_random.h> |
| |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| |
| #include <asm/hypervisor.h> |
| |
| #include "n2rng.h" |
| |
| #define DRV_MODULE_NAME "n2rng" |
| #define PFX DRV_MODULE_NAME ": " |
| #define DRV_MODULE_VERSION "0.2" |
| #define DRV_MODULE_RELDATE "July 27, 2011" |
| |
| static char version[] = |
| DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; |
| |
| MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); |
| MODULE_DESCRIPTION("Niagara2 RNG driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_MODULE_VERSION); |
| |
| /* The Niagara2 RNG provides a 64-bit read-only random number |
| * register, plus a control register. Access to the RNG is |
| * virtualized through the hypervisor so that both guests and control |
| * nodes can access the device. |
| * |
| * The entropy source consists of raw entropy sources, each |
| * constructed from a voltage controlled oscillator whose phase is |
| * jittered by thermal noise sources. |
| * |
| * The oscillator in each of the three raw entropy sources run at |
| * different frequencies. Normally, all three generator outputs are |
| * gathered, xored together, and fed into a CRC circuit, the output of |
| * which is the 64-bit read-only register. |
| * |
| * Some time is necessary for all the necessary entropy to build up |
| * such that a full 64-bits of entropy are available in the register. |
| * In normal operating mode (RNG_CTL_LFSR is set), the chip implements |
| * an interlock which blocks register reads until sufficient entropy |
| * is available. |
| * |
| * A control register is provided for adjusting various aspects of RNG |
| * operation, and to enable diagnostic modes. Each of the three raw |
| * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also |
| * provided are fields for controlling the minimum time in cycles |
| * between read accesses to the register (RNG_CTL_WAIT, this controls |
| * the interlock described in the previous paragraph). |
| * |
| * The standard setting is to have the mode bit (RNG_CTL_LFSR) set, |
| * all three entropy sources enabled, and the interlock time set |
| * appropriately. |
| * |
| * The CRC polynomial used by the chip is: |
| * |
| * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 + |
| * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 + |
| * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1 |
| * |
| * The RNG_CTL_VCO value of each noise cell must be programmed |
| * separately. This is why 4 control register values must be provided |
| * to the hypervisor. During a write, the hypervisor writes them all, |
| * one at a time, to the actual RNG_CTL register. The first three |
| * values are used to setup the desired RNG_CTL_VCO for each entropy |
| * source, for example: |
| * |
| * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1 |
| * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2 |
| * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3 |
| * |
| * And then the fourth value sets the final chip state and enables |
| * desired. |
| */ |
| |
| static int n2rng_hv_err_trans(unsigned long hv_err) |
| { |
| switch (hv_err) { |
| case HV_EOK: |
| return 0; |
| case HV_EWOULDBLOCK: |
| return -EAGAIN; |
| case HV_ENOACCESS: |
| return -EPERM; |
| case HV_EIO: |
| return -EIO; |
| case HV_EBUSY: |
| return -EBUSY; |
| case HV_EBADALIGN: |
| case HV_ENORADDR: |
| return -EFAULT; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static unsigned long n2rng_generic_read_control_v2(unsigned long ra, |
| unsigned long unit) |
| { |
| unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status; |
| int block = 0, busy = 0; |
| |
| while (1) { |
| hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state, |
| &ticks, |
| &watchdog_delta, |
| &watchdog_status); |
| if (hv_err == HV_EOK) |
| break; |
| |
| if (hv_err == HV_EBUSY) { |
| if (++busy >= N2RNG_BUSY_LIMIT) |
| break; |
| |
| udelay(1); |
| } else if (hv_err == HV_EWOULDBLOCK) { |
| if (++block >= N2RNG_BLOCK_LIMIT) |
| break; |
| |
| __delay(ticks); |
| } else |
| break; |
| } |
| |
| return hv_err; |
| } |
| |
| /* In multi-socket situations, the hypervisor might need to |
| * queue up the RNG control register write if it's for a unit |
| * that is on a cpu socket other than the one we are executing on. |
| * |
| * We poll here waiting for a successful read of that control |
| * register to make sure the write has been actually performed. |
| */ |
| static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit) |
| { |
| unsigned long ra = __pa(&np->scratch_control[0]); |
| |
| return n2rng_generic_read_control_v2(ra, unit); |
| } |
| |
| static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit, |
| unsigned long state, |
| unsigned long control_ra, |
| unsigned long watchdog_timeout, |
| unsigned long *ticks) |
| { |
| unsigned long hv_err; |
| |
| if (np->hvapi_major == 1) { |
| hv_err = sun4v_rng_ctl_write_v1(control_ra, state, |
| watchdog_timeout, ticks); |
| } else { |
| hv_err = sun4v_rng_ctl_write_v2(control_ra, state, |
| watchdog_timeout, unit); |
| if (hv_err == HV_EOK) |
| hv_err = n2rng_control_settle_v2(np, unit); |
| *ticks = N2RNG_ACCUM_CYCLES_DEFAULT; |
| } |
| |
| return hv_err; |
| } |
| |
| static int n2rng_generic_read_data(unsigned long data_ra) |
| { |
| unsigned long ticks, hv_err; |
| int block = 0, hcheck = 0; |
| |
| while (1) { |
| hv_err = sun4v_rng_data_read(data_ra, &ticks); |
| if (hv_err == HV_EOK) |
| return 0; |
| |
| if (hv_err == HV_EWOULDBLOCK) { |
| if (++block >= N2RNG_BLOCK_LIMIT) |
| return -EWOULDBLOCK; |
| __delay(ticks); |
| } else if (hv_err == HV_ENOACCESS) { |
| return -EPERM; |
| } else if (hv_err == HV_EIO) { |
| if (++hcheck >= N2RNG_HCHECK_LIMIT) |
| return -EIO; |
| udelay(10000); |
| } else |
| return -ENODEV; |
| } |
| } |
| |
| static unsigned long n2rng_read_diag_data_one(struct n2rng *np, |
| unsigned long unit, |
| unsigned long data_ra, |
| unsigned long data_len, |
| unsigned long *ticks) |
| { |
| unsigned long hv_err; |
| |
| if (np->hvapi_major == 1) { |
| hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks); |
| } else { |
| hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len, |
| unit, ticks); |
| if (!*ticks) |
| *ticks = N2RNG_ACCUM_CYCLES_DEFAULT; |
| } |
| return hv_err; |
| } |
| |
| static int n2rng_generic_read_diag_data(struct n2rng *np, |
| unsigned long unit, |
| unsigned long data_ra, |
| unsigned long data_len) |
| { |
| unsigned long ticks, hv_err; |
| int block = 0; |
| |
| while (1) { |
| hv_err = n2rng_read_diag_data_one(np, unit, |
| data_ra, data_len, |
| &ticks); |
| if (hv_err == HV_EOK) |
| return 0; |
| |
| if (hv_err == HV_EWOULDBLOCK) { |
| if (++block >= N2RNG_BLOCK_LIMIT) |
| return -EWOULDBLOCK; |
| __delay(ticks); |
| } else if (hv_err == HV_ENOACCESS) { |
| return -EPERM; |
| } else if (hv_err == HV_EIO) { |
| return -EIO; |
| } else |
| return -ENODEV; |
| } |
| } |
| |
| |
| static int n2rng_generic_write_control(struct n2rng *np, |
| unsigned long control_ra, |
| unsigned long unit, |
| unsigned long state) |
| { |
| unsigned long hv_err, ticks; |
| int block = 0, busy = 0; |
| |
| while (1) { |
| hv_err = n2rng_write_ctl_one(np, unit, state, control_ra, |
| np->wd_timeo, &ticks); |
| if (hv_err == HV_EOK) |
| return 0; |
| |
| if (hv_err == HV_EWOULDBLOCK) { |
| if (++block >= N2RNG_BLOCK_LIMIT) |
| return -EWOULDBLOCK; |
| __delay(ticks); |
| } else if (hv_err == HV_EBUSY) { |
| if (++busy >= N2RNG_BUSY_LIMIT) |
| return -EBUSY; |
| udelay(1); |
| } else |
| return -ENODEV; |
| } |
| } |
| |
| /* Just try to see if we can successfully access the control register |
| * of the RNG on the domain on which we are currently executing. |
| */ |
| static int n2rng_try_read_ctl(struct n2rng *np) |
| { |
| unsigned long hv_err; |
| unsigned long x; |
| |
| if (np->hvapi_major == 1) { |
| hv_err = sun4v_rng_get_diag_ctl(); |
| } else { |
| /* We purposefully give invalid arguments, HV_NOACCESS |
| * is higher priority than the errors we'd get from |
| * these other cases, and that's the error we are |
| * truly interested in. |
| */ |
| hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x); |
| switch (hv_err) { |
| case HV_EWOULDBLOCK: |
| case HV_ENOACCESS: |
| break; |
| default: |
| hv_err = HV_EOK; |
| break; |
| } |
| } |
| |
| return n2rng_hv_err_trans(hv_err); |
| } |
| |
| #define CONTROL_DEFAULT_BASE \ |
| ((2 << RNG_CTL_ASEL_SHIFT) | \ |
| (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) | \ |
| RNG_CTL_LFSR) |
| |
| #define CONTROL_DEFAULT_0 \ |
| (CONTROL_DEFAULT_BASE | \ |
| (1 << RNG_CTL_VCO_SHIFT) | \ |
| RNG_CTL_ES1) |
| #define CONTROL_DEFAULT_1 \ |
| (CONTROL_DEFAULT_BASE | \ |
| (2 << RNG_CTL_VCO_SHIFT) | \ |
| RNG_CTL_ES2) |
| #define CONTROL_DEFAULT_2 \ |
| (CONTROL_DEFAULT_BASE | \ |
| (3 << RNG_CTL_VCO_SHIFT) | \ |
| RNG_CTL_ES3) |
| #define CONTROL_DEFAULT_3 \ |
| (CONTROL_DEFAULT_BASE | \ |
| RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3) |
| |
| static void n2rng_control_swstate_init(struct n2rng *np) |
| { |
| int i; |
| |
| np->flags |= N2RNG_FLAG_CONTROL; |
| |
| np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT; |
| np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT; |
| np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT; |
| |
| for (i = 0; i < np->num_units; i++) { |
| struct n2rng_unit *up = &np->units[i]; |
| |
| up->control[0] = CONTROL_DEFAULT_0; |
| up->control[1] = CONTROL_DEFAULT_1; |
| up->control[2] = CONTROL_DEFAULT_2; |
| up->control[3] = CONTROL_DEFAULT_3; |
| } |
| |
| np->hv_state = HV_RNG_STATE_UNCONFIGURED; |
| } |
| |
| static int n2rng_grab_diag_control(struct n2rng *np) |
| { |
| int i, busy_count, err = -ENODEV; |
| |
| busy_count = 0; |
| for (i = 0; i < 100; i++) { |
| err = n2rng_try_read_ctl(np); |
| if (err != -EAGAIN) |
| break; |
| |
| if (++busy_count > 100) { |
| dev_err(&np->op->dev, |
| "Grab diag control timeout.\n"); |
| return -ENODEV; |
| } |
| |
| udelay(1); |
| } |
| |
| return err; |
| } |
| |
| static int n2rng_init_control(struct n2rng *np) |
| { |
| int err = n2rng_grab_diag_control(np); |
| |
| /* Not in the control domain, that's OK we are only a consumer |
| * of the RNG data, we don't setup and program it. |
| */ |
| if (err == -EPERM) |
| return 0; |
| if (err) |
| return err; |
| |
| n2rng_control_swstate_init(np); |
| |
| return 0; |
| } |
| |
| static int n2rng_data_read(struct hwrng *rng, u32 *data) |
| { |
| struct n2rng *np = (struct n2rng *) rng->priv; |
| unsigned long ra = __pa(&np->test_data); |
| int len; |
| |
| if (!(np->flags & N2RNG_FLAG_READY)) { |
| len = 0; |
| } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) { |
| np->flags &= ~N2RNG_FLAG_BUFFER_VALID; |
| *data = np->buffer; |
| len = 4; |
| } else { |
| int err = n2rng_generic_read_data(ra); |
| if (!err) { |
| np->buffer = np->test_data >> 32; |
| *data = np->test_data & 0xffffffff; |
| len = 4; |
| } else { |
| dev_err(&np->op->dev, "RNG error, restesting\n"); |
| np->flags &= ~N2RNG_FLAG_READY; |
| if (!(np->flags & N2RNG_FLAG_SHUTDOWN)) |
| schedule_delayed_work(&np->work, 0); |
| len = 0; |
| } |
| } |
| |
| return len; |
| } |
| |
| /* On a guest node, just make sure we can read random data properly. |
| * If a control node reboots or reloads it's n2rng driver, this won't |
| * work during that time. So we have to keep probing until the device |
| * becomes usable. |
| */ |
| static int n2rng_guest_check(struct n2rng *np) |
| { |
| unsigned long ra = __pa(&np->test_data); |
| |
| return n2rng_generic_read_data(ra); |
| } |
| |
| static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit, |
| u64 *pre_control, u64 pre_state, |
| u64 *buffer, unsigned long buf_len, |
| u64 *post_control, u64 post_state) |
| { |
| unsigned long post_ctl_ra = __pa(post_control); |
| unsigned long pre_ctl_ra = __pa(pre_control); |
| unsigned long buffer_ra = __pa(buffer); |
| int err; |
| |
| err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state); |
| if (err) |
| return err; |
| |
| err = n2rng_generic_read_diag_data(np, unit, |
| buffer_ra, buf_len); |
| |
| (void) n2rng_generic_write_control(np, post_ctl_ra, unit, |
| post_state); |
| |
| return err; |
| } |
| |
| static u64 advance_polynomial(u64 poly, u64 val, int count) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) { |
| int highbit_set = ((s64)val < 0); |
| |
| val <<= 1; |
| if (highbit_set) |
| val ^= poly; |
| } |
| |
| return val; |
| } |
| |
| static int n2rng_test_buffer_find(struct n2rng *np, u64 val) |
| { |
| int i, count = 0; |
| |
| /* Purposefully skip over the first word. */ |
| for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) { |
| if (np->test_buffer[i] == val) |
| count++; |
| } |
| return count; |
| } |
| |
| static void n2rng_dump_test_buffer(struct n2rng *np) |
| { |
| int i; |
| |
| for (i = 0; i < SELFTEST_BUFFER_WORDS; i++) |
| dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n", |
| i, np->test_buffer[i]); |
| } |
| |
| static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit) |
| { |
| u64 val = SELFTEST_VAL; |
| int err, matches, limit; |
| |
| matches = 0; |
| for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) { |
| matches += n2rng_test_buffer_find(np, val); |
| if (matches >= SELFTEST_MATCH_GOAL) |
| break; |
| val = advance_polynomial(SELFTEST_POLY, val, 1); |
| } |
| |
| err = 0; |
| if (limit >= SELFTEST_LOOPS_MAX) { |
| err = -ENODEV; |
| dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit); |
| n2rng_dump_test_buffer(np); |
| } else |
| dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit); |
| |
| return err; |
| } |
| |
| static int n2rng_control_selftest(struct n2rng *np, unsigned long unit) |
| { |
| int err; |
| |
| np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT); |
| np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT); |
| np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT); |
| np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) | |
| RNG_CTL_LFSR | |
| ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT)); |
| |
| |
| err = n2rng_entropy_diag_read(np, unit, np->test_control, |
| HV_RNG_STATE_HEALTHCHECK, |
| np->test_buffer, |
| sizeof(np->test_buffer), |
| &np->units[unit].control[0], |
| np->hv_state); |
| if (err) |
| return err; |
| |
| return n2rng_check_selftest_buffer(np, unit); |
| } |
| |
| static int n2rng_control_check(struct n2rng *np) |
| { |
| int i; |
| |
| for (i = 0; i < np->num_units; i++) { |
| int err = n2rng_control_selftest(np, i); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| |
| /* The sanity checks passed, install the final configuration into the |
| * chip, it's ready to use. |
| */ |
| static int n2rng_control_configure_units(struct n2rng *np) |
| { |
| int unit, err; |
| |
| err = 0; |
| for (unit = 0; unit < np->num_units; unit++) { |
| struct n2rng_unit *up = &np->units[unit]; |
| unsigned long ctl_ra = __pa(&up->control[0]); |
| int esrc; |
| u64 base; |
| |
| base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) | |
| (2 << RNG_CTL_ASEL_SHIFT) | |
| RNG_CTL_LFSR); |
| |
| /* XXX This isn't the best. We should fetch a bunch |
| * XXX of words using each entropy source combined XXX |
| * with each VCO setting, and see which combinations |
| * XXX give the best random data. |
| */ |
| for (esrc = 0; esrc < 3; esrc++) |
| up->control[esrc] = base | |
| (esrc << RNG_CTL_VCO_SHIFT) | |
| (RNG_CTL_ES1 << esrc); |
| |
| up->control[3] = base | |
| (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3); |
| |
| err = n2rng_generic_write_control(np, ctl_ra, unit, |
| HV_RNG_STATE_CONFIGURED); |
| if (err) |
| break; |
| } |
| |
| return err; |
| } |
| |
| static void n2rng_work(struct work_struct *work) |
| { |
| struct n2rng *np = container_of(work, struct n2rng, work.work); |
| int err = 0; |
| |
| if (!(np->flags & N2RNG_FLAG_CONTROL)) { |
| err = n2rng_guest_check(np); |
| } else { |
| preempt_disable(); |
| err = n2rng_control_check(np); |
| preempt_enable(); |
| |
| if (!err) |
| err = n2rng_control_configure_units(np); |
| } |
| |
| if (!err) { |
| np->flags |= N2RNG_FLAG_READY; |
| dev_info(&np->op->dev, "RNG ready\n"); |
| } |
| |
| if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN)) |
| schedule_delayed_work(&np->work, HZ * 2); |
| } |
| |
| static void __devinit n2rng_driver_version(void) |
| { |
| static int n2rng_version_printed; |
| |
| if (n2rng_version_printed++ == 0) |
| pr_info("%s", version); |
| } |
| |
| static const struct of_device_id n2rng_match[]; |
| static int __devinit n2rng_probe(struct platform_device *op) |
| { |
| const struct of_device_id *match; |
| int multi_capable; |
| int err = -ENOMEM; |
| struct n2rng *np; |
| |
| match = of_match_device(n2rng_match, &op->dev); |
| if (!match) |
| return -EINVAL; |
| multi_capable = (match->data != NULL); |
| |
| n2rng_driver_version(); |
| np = kzalloc(sizeof(*np), GFP_KERNEL); |
| if (!np) |
| goto out; |
| np->op = op; |
| |
| INIT_DELAYED_WORK(&np->work, n2rng_work); |
| |
| if (multi_capable) |
| np->flags |= N2RNG_FLAG_MULTI; |
| |
| err = -ENODEV; |
| np->hvapi_major = 2; |
| if (sun4v_hvapi_register(HV_GRP_RNG, |
| np->hvapi_major, |
| &np->hvapi_minor)) { |
| np->hvapi_major = 1; |
| if (sun4v_hvapi_register(HV_GRP_RNG, |
| np->hvapi_major, |
| &np->hvapi_minor)) { |
| dev_err(&op->dev, "Cannot register suitable " |
| "HVAPI version.\n"); |
| goto out_free; |
| } |
| } |
| |
| if (np->flags & N2RNG_FLAG_MULTI) { |
| if (np->hvapi_major < 2) { |
| dev_err(&op->dev, "multi-unit-capable RNG requires " |
| "HVAPI major version 2 or later, got %lu\n", |
| np->hvapi_major); |
| goto out_hvapi_unregister; |
| } |
| np->num_units = of_getintprop_default(op->dev.of_node, |
| "rng-#units", 0); |
| if (!np->num_units) { |
| dev_err(&op->dev, "VF RNG lacks rng-#units property\n"); |
| goto out_hvapi_unregister; |
| } |
| } else |
| np->num_units = 1; |
| |
| dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n", |
| np->hvapi_major, np->hvapi_minor); |
| |
| np->units = kzalloc(sizeof(struct n2rng_unit) * np->num_units, |
| GFP_KERNEL); |
| err = -ENOMEM; |
| if (!np->units) |
| goto out_hvapi_unregister; |
| |
| err = n2rng_init_control(np); |
| if (err) |
| goto out_free_units; |
| |
| dev_info(&op->dev, "Found %s RNG, units: %d\n", |
| ((np->flags & N2RNG_FLAG_MULTI) ? |
| "multi-unit-capable" : "single-unit"), |
| np->num_units); |
| |
| np->hwrng.name = "n2rng"; |
| np->hwrng.data_read = n2rng_data_read; |
| np->hwrng.priv = (unsigned long) np; |
| |
| err = hwrng_register(&np->hwrng); |
| if (err) |
| goto out_free_units; |
| |
| dev_set_drvdata(&op->dev, np); |
| |
| schedule_delayed_work(&np->work, 0); |
| |
| return 0; |
| |
| out_free_units: |
| kfree(np->units); |
| np->units = NULL; |
| |
| out_hvapi_unregister: |
| sun4v_hvapi_unregister(HV_GRP_RNG); |
| |
| out_free: |
| kfree(np); |
| out: |
| return err; |
| } |
| |
| static int __devexit n2rng_remove(struct platform_device *op) |
| { |
| struct n2rng *np = dev_get_drvdata(&op->dev); |
| |
| np->flags |= N2RNG_FLAG_SHUTDOWN; |
| |
| cancel_delayed_work_sync(&np->work); |
| |
| hwrng_unregister(&np->hwrng); |
| |
| sun4v_hvapi_unregister(HV_GRP_RNG); |
| |
| kfree(np->units); |
| np->units = NULL; |
| |
| kfree(np); |
| |
| dev_set_drvdata(&op->dev, NULL); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id n2rng_match[] = { |
| { |
| .name = "random-number-generator", |
| .compatible = "SUNW,n2-rng", |
| }, |
| { |
| .name = "random-number-generator", |
| .compatible = "SUNW,vf-rng", |
| .data = (void *) 1, |
| }, |
| { |
| .name = "random-number-generator", |
| .compatible = "SUNW,kt-rng", |
| .data = (void *) 1, |
| }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, n2rng_match); |
| |
| static struct platform_driver n2rng_driver = { |
| .driver = { |
| .name = "n2rng", |
| .owner = THIS_MODULE, |
| .of_match_table = n2rng_match, |
| }, |
| .probe = n2rng_probe, |
| .remove = __devexit_p(n2rng_remove), |
| }; |
| |
| module_platform_driver(n2rng_driver); |