| /* |
| * arch/s390/kernel/smp.c |
| * |
| * Copyright IBM Corp. 1999,2007 |
| * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), |
| * Martin Schwidefsky (schwidefsky@de.ibm.com) |
| * Heiko Carstens (heiko.carstens@de.ibm.com) |
| * |
| * based on other smp stuff by |
| * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> |
| * (c) 1998 Ingo Molnar |
| * |
| * We work with logical cpu numbering everywhere we can. The only |
| * functions using the real cpu address (got from STAP) are the sigp |
| * functions. For all other functions we use the identity mapping. |
| * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is |
| * used e.g. to find the idle task belonging to a logical cpu. Every array |
| * in the kernel is sorted by the logical cpu number and not by the physical |
| * one which is causing all the confusion with __cpu_logical_map and |
| * cpu_number_map in other architectures. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/err.h> |
| #include <linux/spinlock.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/delay.h> |
| #include <linux/cache.h> |
| #include <linux/interrupt.h> |
| #include <linux/cpu.h> |
| #include <linux/timex.h> |
| #include <linux/bootmem.h> |
| #include <asm/ipl.h> |
| #include <asm/setup.h> |
| #include <asm/sigp.h> |
| #include <asm/pgalloc.h> |
| #include <asm/irq.h> |
| #include <asm/s390_ext.h> |
| #include <asm/cpcmd.h> |
| #include <asm/tlbflush.h> |
| #include <asm/timer.h> |
| #include <asm/lowcore.h> |
| #include <asm/sclp.h> |
| #include <asm/cpu.h> |
| #include "entry.h" |
| |
| /* |
| * An array with a pointer the lowcore of every CPU. |
| */ |
| struct _lowcore *lowcore_ptr[NR_CPUS]; |
| EXPORT_SYMBOL(lowcore_ptr); |
| |
| cpumask_t cpu_online_map = CPU_MASK_NONE; |
| EXPORT_SYMBOL(cpu_online_map); |
| |
| cpumask_t cpu_possible_map = CPU_MASK_ALL; |
| EXPORT_SYMBOL(cpu_possible_map); |
| |
| static struct task_struct *current_set[NR_CPUS]; |
| |
| static u8 smp_cpu_type; |
| static int smp_use_sigp_detection; |
| |
| enum s390_cpu_state { |
| CPU_STATE_STANDBY, |
| CPU_STATE_CONFIGURED, |
| }; |
| |
| DEFINE_MUTEX(smp_cpu_state_mutex); |
| int smp_cpu_polarization[NR_CPUS]; |
| static int smp_cpu_state[NR_CPUS]; |
| static int cpu_management; |
| |
| static DEFINE_PER_CPU(struct cpu, cpu_devices); |
| |
| static void smp_ext_bitcall(int, ec_bit_sig); |
| |
| /* |
| * Structure and data for __smp_call_function_map(). This is designed to |
| * minimise static memory requirements. It also looks cleaner. |
| */ |
| static DEFINE_SPINLOCK(call_lock); |
| |
| struct call_data_struct { |
| void (*func) (void *info); |
| void *info; |
| cpumask_t started; |
| cpumask_t finished; |
| int wait; |
| }; |
| |
| static struct call_data_struct *call_data; |
| |
| /* |
| * 'Call function' interrupt callback |
| */ |
| static void do_call_function(void) |
| { |
| void (*func) (void *info) = call_data->func; |
| void *info = call_data->info; |
| int wait = call_data->wait; |
| |
| cpu_set(smp_processor_id(), call_data->started); |
| (*func)(info); |
| if (wait) |
| cpu_set(smp_processor_id(), call_data->finished);; |
| } |
| |
| static void __smp_call_function_map(void (*func) (void *info), void *info, |
| int nonatomic, int wait, cpumask_t map) |
| { |
| struct call_data_struct data; |
| int cpu, local = 0; |
| |
| /* |
| * Can deadlock when interrupts are disabled or if in wrong context. |
| */ |
| WARN_ON(irqs_disabled() || in_irq()); |
| |
| /* |
| * Check for local function call. We have to have the same call order |
| * as in on_each_cpu() because of machine_restart_smp(). |
| */ |
| if (cpu_isset(smp_processor_id(), map)) { |
| local = 1; |
| cpu_clear(smp_processor_id(), map); |
| } |
| |
| cpus_and(map, map, cpu_online_map); |
| if (cpus_empty(map)) |
| goto out; |
| |
| data.func = func; |
| data.info = info; |
| data.started = CPU_MASK_NONE; |
| data.wait = wait; |
| if (wait) |
| data.finished = CPU_MASK_NONE; |
| |
| spin_lock(&call_lock); |
| call_data = &data; |
| |
| for_each_cpu_mask(cpu, map) |
| smp_ext_bitcall(cpu, ec_call_function); |
| |
| /* Wait for response */ |
| while (!cpus_equal(map, data.started)) |
| cpu_relax(); |
| if (wait) |
| while (!cpus_equal(map, data.finished)) |
| cpu_relax(); |
| spin_unlock(&call_lock); |
| out: |
| if (local) { |
| local_irq_disable(); |
| func(info); |
| local_irq_enable(); |
| } |
| } |
| |
| /* |
| * smp_call_function: |
| * @func: the function to run; this must be fast and non-blocking |
| * @info: an arbitrary pointer to pass to the function |
| * @nonatomic: unused |
| * @wait: if true, wait (atomically) until function has completed on other CPUs |
| * |
| * Run a function on all other CPUs. |
| * |
| * You must not call this function with disabled interrupts, from a |
| * hardware interrupt handler or from a bottom half. |
| */ |
| int smp_call_function(void (*func) (void *info), void *info, int nonatomic, |
| int wait) |
| { |
| cpumask_t map; |
| |
| preempt_disable(); |
| map = cpu_online_map; |
| cpu_clear(smp_processor_id(), map); |
| __smp_call_function_map(func, info, nonatomic, wait, map); |
| preempt_enable(); |
| return 0; |
| } |
| EXPORT_SYMBOL(smp_call_function); |
| |
| /* |
| * smp_call_function_single: |
| * @cpu: the CPU where func should run |
| * @func: the function to run; this must be fast and non-blocking |
| * @info: an arbitrary pointer to pass to the function |
| * @nonatomic: unused |
| * @wait: if true, wait (atomically) until function has completed on other CPUs |
| * |
| * Run a function on one processor. |
| * |
| * You must not call this function with disabled interrupts, from a |
| * hardware interrupt handler or from a bottom half. |
| */ |
| int smp_call_function_single(int cpu, void (*func) (void *info), void *info, |
| int nonatomic, int wait) |
| { |
| preempt_disable(); |
| __smp_call_function_map(func, info, nonatomic, wait, |
| cpumask_of_cpu(cpu)); |
| preempt_enable(); |
| return 0; |
| } |
| EXPORT_SYMBOL(smp_call_function_single); |
| |
| /** |
| * smp_call_function_mask(): Run a function on a set of other CPUs. |
| * @mask: The set of cpus to run on. Must not include the current cpu. |
| * @func: The function to run. This must be fast and non-blocking. |
| * @info: An arbitrary pointer to pass to the function. |
| * @wait: If true, wait (atomically) until function has completed on other CPUs. |
| * |
| * Returns 0 on success, else a negative status code. |
| * |
| * If @wait is true, then returns once @func has returned; otherwise |
| * it returns just before the target cpu calls @func. |
| * |
| * You must not call this function with disabled interrupts or from a |
| * hardware interrupt handler or from a bottom half handler. |
| */ |
| int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info, |
| int wait) |
| { |
| preempt_disable(); |
| cpu_clear(smp_processor_id(), mask); |
| __smp_call_function_map(func, info, 0, wait, mask); |
| preempt_enable(); |
| return 0; |
| } |
| EXPORT_SYMBOL(smp_call_function_mask); |
| |
| void smp_send_stop(void) |
| { |
| int cpu, rc; |
| |
| /* Disable all interrupts/machine checks */ |
| __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK); |
| |
| /* write magic number to zero page (absolute 0) */ |
| lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC; |
| |
| /* stop all processors */ |
| for_each_online_cpu(cpu) { |
| if (cpu == smp_processor_id()) |
| continue; |
| do { |
| rc = signal_processor(cpu, sigp_stop); |
| } while (rc == sigp_busy); |
| |
| while (!smp_cpu_not_running(cpu)) |
| cpu_relax(); |
| } |
| } |
| |
| /* |
| * This is the main routine where commands issued by other |
| * cpus are handled. |
| */ |
| |
| static void do_ext_call_interrupt(__u16 code) |
| { |
| unsigned long bits; |
| |
| /* |
| * handle bit signal external calls |
| * |
| * For the ec_schedule signal we have to do nothing. All the work |
| * is done automatically when we return from the interrupt. |
| */ |
| bits = xchg(&S390_lowcore.ext_call_fast, 0); |
| |
| if (test_bit(ec_call_function, &bits)) |
| do_call_function(); |
| } |
| |
| /* |
| * Send an external call sigp to another cpu and return without waiting |
| * for its completion. |
| */ |
| static void smp_ext_bitcall(int cpu, ec_bit_sig sig) |
| { |
| /* |
| * Set signaling bit in lowcore of target cpu and kick it |
| */ |
| set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast); |
| while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy) |
| udelay(10); |
| } |
| |
| #ifndef CONFIG_64BIT |
| /* |
| * this function sends a 'purge tlb' signal to another CPU. |
| */ |
| static void smp_ptlb_callback(void *info) |
| { |
| __tlb_flush_local(); |
| } |
| |
| void smp_ptlb_all(void) |
| { |
| on_each_cpu(smp_ptlb_callback, NULL, 0, 1); |
| } |
| EXPORT_SYMBOL(smp_ptlb_all); |
| #endif /* ! CONFIG_64BIT */ |
| |
| /* |
| * this function sends a 'reschedule' IPI to another CPU. |
| * it goes straight through and wastes no time serializing |
| * anything. Worst case is that we lose a reschedule ... |
| */ |
| void smp_send_reschedule(int cpu) |
| { |
| smp_ext_bitcall(cpu, ec_schedule); |
| } |
| |
| /* |
| * parameter area for the set/clear control bit callbacks |
| */ |
| struct ec_creg_mask_parms { |
| unsigned long orvals[16]; |
| unsigned long andvals[16]; |
| }; |
| |
| /* |
| * callback for setting/clearing control bits |
| */ |
| static void smp_ctl_bit_callback(void *info) |
| { |
| struct ec_creg_mask_parms *pp = info; |
| unsigned long cregs[16]; |
| int i; |
| |
| __ctl_store(cregs, 0, 15); |
| for (i = 0; i <= 15; i++) |
| cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i]; |
| __ctl_load(cregs, 0, 15); |
| } |
| |
| /* |
| * Set a bit in a control register of all cpus |
| */ |
| void smp_ctl_set_bit(int cr, int bit) |
| { |
| struct ec_creg_mask_parms parms; |
| |
| memset(&parms.orvals, 0, sizeof(parms.orvals)); |
| memset(&parms.andvals, 0xff, sizeof(parms.andvals)); |
| parms.orvals[cr] = 1 << bit; |
| on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1); |
| } |
| EXPORT_SYMBOL(smp_ctl_set_bit); |
| |
| /* |
| * Clear a bit in a control register of all cpus |
| */ |
| void smp_ctl_clear_bit(int cr, int bit) |
| { |
| struct ec_creg_mask_parms parms; |
| |
| memset(&parms.orvals, 0, sizeof(parms.orvals)); |
| memset(&parms.andvals, 0xff, sizeof(parms.andvals)); |
| parms.andvals[cr] = ~(1L << bit); |
| on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1); |
| } |
| EXPORT_SYMBOL(smp_ctl_clear_bit); |
| |
| /* |
| * In early ipl state a temp. logically cpu number is needed, so the sigp |
| * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on |
| * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1. |
| */ |
| #define CPU_INIT_NO 1 |
| |
| #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE) |
| |
| /* |
| * zfcpdump_prefix_array holds prefix registers for the following scenario: |
| * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to |
| * save its prefix registers, since they get lost, when switching from 31 bit |
| * to 64 bit. |
| */ |
| unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \ |
| __attribute__((__section__(".data"))); |
| |
| static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) |
| { |
| if (ipl_info.type != IPL_TYPE_FCP_DUMP) |
| return; |
| if (cpu >= NR_CPUS) { |
| printk(KERN_WARNING "Registers for cpu %i not saved since dump " |
| "kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS); |
| return; |
| } |
| zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL); |
| __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu; |
| while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) == |
| sigp_busy) |
| cpu_relax(); |
| memcpy(zfcpdump_save_areas[cpu], |
| (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE, |
| SAVE_AREA_SIZE); |
| #ifdef CONFIG_64BIT |
| /* copy original prefix register */ |
| zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu]; |
| #endif |
| } |
| |
| union save_area *zfcpdump_save_areas[NR_CPUS + 1]; |
| EXPORT_SYMBOL_GPL(zfcpdump_save_areas); |
| |
| #else |
| |
| static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { } |
| |
| #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */ |
| |
| static int cpu_stopped(int cpu) |
| { |
| __u32 status; |
| |
| /* Check for stopped state */ |
| if (signal_processor_ps(&status, 0, cpu, sigp_sense) == |
| sigp_status_stored) { |
| if (status & 0x40) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int cpu_known(int cpu_id) |
| { |
| int cpu; |
| |
| for_each_present_cpu(cpu) { |
| if (__cpu_logical_map[cpu] == cpu_id) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int smp_rescan_cpus_sigp(cpumask_t avail) |
| { |
| int cpu_id, logical_cpu; |
| |
| logical_cpu = first_cpu(avail); |
| if (logical_cpu == NR_CPUS) |
| return 0; |
| for (cpu_id = 0; cpu_id <= 65535; cpu_id++) { |
| if (cpu_known(cpu_id)) |
| continue; |
| __cpu_logical_map[logical_cpu] = cpu_id; |
| smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN; |
| if (!cpu_stopped(logical_cpu)) |
| continue; |
| cpu_set(logical_cpu, cpu_present_map); |
| smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED; |
| logical_cpu = next_cpu(logical_cpu, avail); |
| if (logical_cpu == NR_CPUS) |
| break; |
| } |
| return 0; |
| } |
| |
| static int smp_rescan_cpus_sclp(cpumask_t avail) |
| { |
| struct sclp_cpu_info *info; |
| int cpu_id, logical_cpu, cpu; |
| int rc; |
| |
| logical_cpu = first_cpu(avail); |
| if (logical_cpu == NR_CPUS) |
| return 0; |
| info = kmalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| rc = sclp_get_cpu_info(info); |
| if (rc) |
| goto out; |
| for (cpu = 0; cpu < info->combined; cpu++) { |
| if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type) |
| continue; |
| cpu_id = info->cpu[cpu].address; |
| if (cpu_known(cpu_id)) |
| continue; |
| __cpu_logical_map[logical_cpu] = cpu_id; |
| smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN; |
| cpu_set(logical_cpu, cpu_present_map); |
| if (cpu >= info->configured) |
| smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY; |
| else |
| smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED; |
| logical_cpu = next_cpu(logical_cpu, avail); |
| if (logical_cpu == NR_CPUS) |
| break; |
| } |
| out: |
| kfree(info); |
| return rc; |
| } |
| |
| static int smp_rescan_cpus(void) |
| { |
| cpumask_t avail; |
| |
| cpus_xor(avail, cpu_possible_map, cpu_present_map); |
| if (smp_use_sigp_detection) |
| return smp_rescan_cpus_sigp(avail); |
| else |
| return smp_rescan_cpus_sclp(avail); |
| } |
| |
| static void __init smp_detect_cpus(void) |
| { |
| unsigned int cpu, c_cpus, s_cpus; |
| struct sclp_cpu_info *info; |
| u16 boot_cpu_addr, cpu_addr; |
| |
| c_cpus = 1; |
| s_cpus = 0; |
| boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr; |
| info = kmalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) |
| panic("smp_detect_cpus failed to allocate memory\n"); |
| /* Use sigp detection algorithm if sclp doesn't work. */ |
| if (sclp_get_cpu_info(info)) { |
| smp_use_sigp_detection = 1; |
| for (cpu = 0; cpu <= 65535; cpu++) { |
| if (cpu == boot_cpu_addr) |
| continue; |
| __cpu_logical_map[CPU_INIT_NO] = cpu; |
| if (!cpu_stopped(CPU_INIT_NO)) |
| continue; |
| smp_get_save_area(c_cpus, cpu); |
| c_cpus++; |
| } |
| goto out; |
| } |
| |
| if (info->has_cpu_type) { |
| for (cpu = 0; cpu < info->combined; cpu++) { |
| if (info->cpu[cpu].address == boot_cpu_addr) { |
| smp_cpu_type = info->cpu[cpu].type; |
| break; |
| } |
| } |
| } |
| |
| for (cpu = 0; cpu < info->combined; cpu++) { |
| if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type) |
| continue; |
| cpu_addr = info->cpu[cpu].address; |
| if (cpu_addr == boot_cpu_addr) |
| continue; |
| __cpu_logical_map[CPU_INIT_NO] = cpu_addr; |
| if (!cpu_stopped(CPU_INIT_NO)) { |
| s_cpus++; |
| continue; |
| } |
| smp_get_save_area(c_cpus, cpu_addr); |
| c_cpus++; |
| } |
| out: |
| kfree(info); |
| printk(KERN_INFO "CPUs: %d configured, %d standby\n", c_cpus, s_cpus); |
| get_online_cpus(); |
| smp_rescan_cpus(); |
| put_online_cpus(); |
| } |
| |
| /* |
| * Activate a secondary processor. |
| */ |
| int __cpuinit start_secondary(void *cpuvoid) |
| { |
| /* Setup the cpu */ |
| cpu_init(); |
| preempt_disable(); |
| /* Enable TOD clock interrupts on the secondary cpu. */ |
| init_cpu_timer(); |
| #ifdef CONFIG_VIRT_TIMER |
| /* Enable cpu timer interrupts on the secondary cpu. */ |
| init_cpu_vtimer(); |
| #endif |
| /* Enable pfault pseudo page faults on this cpu. */ |
| pfault_init(); |
| |
| /* Mark this cpu as online */ |
| cpu_set(smp_processor_id(), cpu_online_map); |
| /* Switch on interrupts */ |
| local_irq_enable(); |
| /* Print info about this processor */ |
| print_cpu_info(&S390_lowcore.cpu_data); |
| /* cpu_idle will call schedule for us */ |
| cpu_idle(); |
| return 0; |
| } |
| |
| static void __init smp_create_idle(unsigned int cpu) |
| { |
| struct task_struct *p; |
| |
| /* |
| * don't care about the psw and regs settings since we'll never |
| * reschedule the forked task. |
| */ |
| p = fork_idle(cpu); |
| if (IS_ERR(p)) |
| panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p)); |
| current_set[cpu] = p; |
| spin_lock_init(&(&per_cpu(s390_idle, cpu))->lock); |
| } |
| |
| static int __cpuinit smp_alloc_lowcore(int cpu) |
| { |
| unsigned long async_stack, panic_stack; |
| struct _lowcore *lowcore; |
| int lc_order; |
| |
| lc_order = sizeof(long) == 8 ? 1 : 0; |
| lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order); |
| if (!lowcore) |
| return -ENOMEM; |
| async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); |
| panic_stack = __get_free_page(GFP_KERNEL); |
| if (!panic_stack || !async_stack) |
| goto out; |
| memcpy(lowcore, &S390_lowcore, 512); |
| memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512); |
| lowcore->async_stack = async_stack + ASYNC_SIZE; |
| lowcore->panic_stack = panic_stack + PAGE_SIZE; |
| |
| #ifndef CONFIG_64BIT |
| if (MACHINE_HAS_IEEE) { |
| unsigned long save_area; |
| |
| save_area = get_zeroed_page(GFP_KERNEL); |
| if (!save_area) |
| goto out_save_area; |
| lowcore->extended_save_area_addr = (u32) save_area; |
| } |
| #endif |
| lowcore_ptr[cpu] = lowcore; |
| return 0; |
| |
| #ifndef CONFIG_64BIT |
| out_save_area: |
| free_page(panic_stack); |
| #endif |
| out: |
| free_pages(async_stack, ASYNC_ORDER); |
| free_pages((unsigned long) lowcore, lc_order); |
| return -ENOMEM; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void smp_free_lowcore(int cpu) |
| { |
| struct _lowcore *lowcore; |
| int lc_order; |
| |
| lc_order = sizeof(long) == 8 ? 1 : 0; |
| lowcore = lowcore_ptr[cpu]; |
| #ifndef CONFIG_64BIT |
| if (MACHINE_HAS_IEEE) |
| free_page((unsigned long) lowcore->extended_save_area_addr); |
| #endif |
| free_page(lowcore->panic_stack - PAGE_SIZE); |
| free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER); |
| free_pages((unsigned long) lowcore, lc_order); |
| lowcore_ptr[cpu] = NULL; |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| /* Upping and downing of CPUs */ |
| int __cpuinit __cpu_up(unsigned int cpu) |
| { |
| struct task_struct *idle; |
| struct _lowcore *cpu_lowcore; |
| struct stack_frame *sf; |
| sigp_ccode ccode; |
| |
| if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED) |
| return -EIO; |
| if (smp_alloc_lowcore(cpu)) |
| return -ENOMEM; |
| |
| ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]), |
| cpu, sigp_set_prefix); |
| if (ccode) { |
| printk("sigp_set_prefix failed for cpu %d " |
| "with condition code %d\n", |
| (int) cpu, (int) ccode); |
| return -EIO; |
| } |
| |
| idle = current_set[cpu]; |
| cpu_lowcore = lowcore_ptr[cpu]; |
| cpu_lowcore->kernel_stack = (unsigned long) |
| task_stack_page(idle) + THREAD_SIZE; |
| cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle); |
| sf = (struct stack_frame *) (cpu_lowcore->kernel_stack |
| - sizeof(struct pt_regs) |
| - sizeof(struct stack_frame)); |
| memset(sf, 0, sizeof(struct stack_frame)); |
| sf->gprs[9] = (unsigned long) sf; |
| cpu_lowcore->save_area[15] = (unsigned long) sf; |
| __ctl_store(cpu_lowcore->cregs_save_area[0], 0, 15); |
| asm volatile( |
| " stam 0,15,0(%0)" |
| : : "a" (&cpu_lowcore->access_regs_save_area) : "memory"); |
| cpu_lowcore->percpu_offset = __per_cpu_offset[cpu]; |
| cpu_lowcore->current_task = (unsigned long) idle; |
| cpu_lowcore->cpu_data.cpu_nr = cpu; |
| cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce; |
| cpu_lowcore->ipl_device = S390_lowcore.ipl_device; |
| eieio(); |
| |
| while (signal_processor(cpu, sigp_restart) == sigp_busy) |
| udelay(10); |
| |
| while (!cpu_online(cpu)) |
| cpu_relax(); |
| return 0; |
| } |
| |
| static int __init setup_possible_cpus(char *s) |
| { |
| int pcpus, cpu; |
| |
| pcpus = simple_strtoul(s, NULL, 0); |
| cpu_possible_map = cpumask_of_cpu(0); |
| for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++) |
| cpu_set(cpu, cpu_possible_map); |
| return 0; |
| } |
| early_param("possible_cpus", setup_possible_cpus); |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| int __cpu_disable(void) |
| { |
| struct ec_creg_mask_parms cr_parms; |
| int cpu = smp_processor_id(); |
| |
| cpu_clear(cpu, cpu_online_map); |
| |
| /* Disable pfault pseudo page faults on this cpu. */ |
| pfault_fini(); |
| |
| memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals)); |
| memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals)); |
| |
| /* disable all external interrupts */ |
| cr_parms.orvals[0] = 0; |
| cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 | |
| 1 << 11 | 1 << 10 | 1 << 6 | 1 << 4); |
| /* disable all I/O interrupts */ |
| cr_parms.orvals[6] = 0; |
| cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 | |
| 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24); |
| /* disable most machine checks */ |
| cr_parms.orvals[14] = 0; |
| cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 | |
| 1 << 25 | 1 << 24); |
| |
| smp_ctl_bit_callback(&cr_parms); |
| |
| return 0; |
| } |
| |
| void __cpu_die(unsigned int cpu) |
| { |
| /* Wait until target cpu is down */ |
| while (!smp_cpu_not_running(cpu)) |
| cpu_relax(); |
| smp_free_lowcore(cpu); |
| printk(KERN_INFO "Processor %d spun down\n", cpu); |
| } |
| |
| void cpu_die(void) |
| { |
| idle_task_exit(); |
| signal_processor(smp_processor_id(), sigp_stop); |
| BUG(); |
| for (;;); |
| } |
| |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| #ifndef CONFIG_64BIT |
| unsigned long save_area = 0; |
| #endif |
| unsigned long async_stack, panic_stack; |
| struct _lowcore *lowcore; |
| unsigned int cpu; |
| int lc_order; |
| |
| smp_detect_cpus(); |
| |
| /* request the 0x1201 emergency signal external interrupt */ |
| if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0) |
| panic("Couldn't request external interrupt 0x1201"); |
| print_cpu_info(&S390_lowcore.cpu_data); |
| |
| /* Reallocate current lowcore, but keep its contents. */ |
| lc_order = sizeof(long) == 8 ? 1 : 0; |
| lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order); |
| panic_stack = __get_free_page(GFP_KERNEL); |
| async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); |
| #ifndef CONFIG_64BIT |
| if (MACHINE_HAS_IEEE) |
| save_area = get_zeroed_page(GFP_KERNEL); |
| #endif |
| local_irq_disable(); |
| local_mcck_disable(); |
| lowcore_ptr[smp_processor_id()] = lowcore; |
| *lowcore = S390_lowcore; |
| lowcore->panic_stack = panic_stack + PAGE_SIZE; |
| lowcore->async_stack = async_stack + ASYNC_SIZE; |
| #ifndef CONFIG_64BIT |
| if (MACHINE_HAS_IEEE) |
| lowcore->extended_save_area_addr = (u32) save_area; |
| #endif |
| set_prefix((u32)(unsigned long) lowcore); |
| local_mcck_enable(); |
| local_irq_enable(); |
| for_each_possible_cpu(cpu) |
| if (cpu != smp_processor_id()) |
| smp_create_idle(cpu); |
| } |
| |
| void __init smp_prepare_boot_cpu(void) |
| { |
| BUG_ON(smp_processor_id() != 0); |
| |
| current_thread_info()->cpu = 0; |
| cpu_set(0, cpu_present_map); |
| cpu_set(0, cpu_online_map); |
| S390_lowcore.percpu_offset = __per_cpu_offset[0]; |
| current_set[0] = current; |
| smp_cpu_state[0] = CPU_STATE_CONFIGURED; |
| smp_cpu_polarization[0] = POLARIZATION_UNKNWN; |
| spin_lock_init(&(&__get_cpu_var(s390_idle))->lock); |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| } |
| |
| /* |
| * the frequency of the profiling timer can be changed |
| * by writing a multiplier value into /proc/profile. |
| * |
| * usually you want to run this on all CPUs ;) |
| */ |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return 0; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static ssize_t cpu_configure_show(struct sys_device *dev, char *buf) |
| { |
| ssize_t count; |
| |
| mutex_lock(&smp_cpu_state_mutex); |
| count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]); |
| mutex_unlock(&smp_cpu_state_mutex); |
| return count; |
| } |
| |
| static ssize_t cpu_configure_store(struct sys_device *dev, const char *buf, |
| size_t count) |
| { |
| int cpu = dev->id; |
| int val, rc; |
| char delim; |
| |
| if (sscanf(buf, "%d %c", &val, &delim) != 1) |
| return -EINVAL; |
| if (val != 0 && val != 1) |
| return -EINVAL; |
| |
| get_online_cpus(); |
| mutex_lock(&smp_cpu_state_mutex); |
| rc = -EBUSY; |
| if (cpu_online(cpu)) |
| goto out; |
| rc = 0; |
| switch (val) { |
| case 0: |
| if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) { |
| rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]); |
| if (!rc) { |
| smp_cpu_state[cpu] = CPU_STATE_STANDBY; |
| smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN; |
| } |
| } |
| break; |
| case 1: |
| if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) { |
| rc = sclp_cpu_configure(__cpu_logical_map[cpu]); |
| if (!rc) { |
| smp_cpu_state[cpu] = CPU_STATE_CONFIGURED; |
| smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN; |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| out: |
| mutex_unlock(&smp_cpu_state_mutex); |
| put_online_cpus(); |
| return rc ? rc : count; |
| } |
| static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| static ssize_t cpu_polarization_show(struct sys_device *dev, char *buf) |
| { |
| int cpu = dev->id; |
| ssize_t count; |
| |
| mutex_lock(&smp_cpu_state_mutex); |
| switch (smp_cpu_polarization[cpu]) { |
| case POLARIZATION_HRZ: |
| count = sprintf(buf, "horizontal\n"); |
| break; |
| case POLARIZATION_VL: |
| count = sprintf(buf, "vertical:low\n"); |
| break; |
| case POLARIZATION_VM: |
| count = sprintf(buf, "vertical:medium\n"); |
| break; |
| case POLARIZATION_VH: |
| count = sprintf(buf, "vertical:high\n"); |
| break; |
| default: |
| count = sprintf(buf, "unknown\n"); |
| break; |
| } |
| mutex_unlock(&smp_cpu_state_mutex); |
| return count; |
| } |
| static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL); |
| |
| static ssize_t show_cpu_address(struct sys_device *dev, char *buf) |
| { |
| return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]); |
| } |
| static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL); |
| |
| |
| static struct attribute *cpu_common_attrs[] = { |
| #ifdef CONFIG_HOTPLUG_CPU |
| &attr_configure.attr, |
| #endif |
| &attr_address.attr, |
| &attr_polarization.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group cpu_common_attr_group = { |
| .attrs = cpu_common_attrs, |
| }; |
| |
| static ssize_t show_capability(struct sys_device *dev, char *buf) |
| { |
| unsigned int capability; |
| int rc; |
| |
| rc = get_cpu_capability(&capability); |
| if (rc) |
| return rc; |
| return sprintf(buf, "%u\n", capability); |
| } |
| static SYSDEV_ATTR(capability, 0444, show_capability, NULL); |
| |
| static ssize_t show_idle_count(struct sys_device *dev, char *buf) |
| { |
| struct s390_idle_data *idle; |
| unsigned long long idle_count; |
| |
| idle = &per_cpu(s390_idle, dev->id); |
| spin_lock_irq(&idle->lock); |
| idle_count = idle->idle_count; |
| spin_unlock_irq(&idle->lock); |
| return sprintf(buf, "%llu\n", idle_count); |
| } |
| static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL); |
| |
| static ssize_t show_idle_time(struct sys_device *dev, char *buf) |
| { |
| struct s390_idle_data *idle; |
| unsigned long long new_time; |
| |
| idle = &per_cpu(s390_idle, dev->id); |
| spin_lock_irq(&idle->lock); |
| if (idle->in_idle) { |
| new_time = get_clock(); |
| idle->idle_time += new_time - idle->idle_enter; |
| idle->idle_enter = new_time; |
| } |
| new_time = idle->idle_time; |
| spin_unlock_irq(&idle->lock); |
| return sprintf(buf, "%llu\n", new_time >> 12); |
| } |
| static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL); |
| |
| static struct attribute *cpu_online_attrs[] = { |
| &attr_capability.attr, |
| &attr_idle_count.attr, |
| &attr_idle_time_us.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group cpu_online_attr_group = { |
| .attrs = cpu_online_attrs, |
| }; |
| |
| static int __cpuinit smp_cpu_notify(struct notifier_block *self, |
| unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (unsigned int)(long)hcpu; |
| struct cpu *c = &per_cpu(cpu_devices, cpu); |
| struct sys_device *s = &c->sysdev; |
| struct s390_idle_data *idle; |
| |
| switch (action) { |
| case CPU_ONLINE: |
| case CPU_ONLINE_FROZEN: |
| idle = &per_cpu(s390_idle, cpu); |
| spin_lock_irq(&idle->lock); |
| idle->idle_enter = 0; |
| idle->idle_time = 0; |
| idle->idle_count = 0; |
| spin_unlock_irq(&idle->lock); |
| if (sysfs_create_group(&s->kobj, &cpu_online_attr_group)) |
| return NOTIFY_BAD; |
| break; |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| sysfs_remove_group(&s->kobj, &cpu_online_attr_group); |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block __cpuinitdata smp_cpu_nb = { |
| .notifier_call = smp_cpu_notify, |
| }; |
| |
| static int __devinit smp_add_present_cpu(int cpu) |
| { |
| struct cpu *c = &per_cpu(cpu_devices, cpu); |
| struct sys_device *s = &c->sysdev; |
| int rc; |
| |
| c->hotpluggable = 1; |
| rc = register_cpu(c, cpu); |
| if (rc) |
| goto out; |
| rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); |
| if (rc) |
| goto out_cpu; |
| if (!cpu_online(cpu)) |
| goto out; |
| rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); |
| if (!rc) |
| return 0; |
| sysfs_remove_group(&s->kobj, &cpu_common_attr_group); |
| out_cpu: |
| #ifdef CONFIG_HOTPLUG_CPU |
| unregister_cpu(c); |
| #endif |
| out: |
| return rc; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static ssize_t __ref rescan_store(struct sys_device *dev, |
| const char *buf, size_t count) |
| { |
| cpumask_t newcpus; |
| int cpu; |
| int rc; |
| |
| get_online_cpus(); |
| mutex_lock(&smp_cpu_state_mutex); |
| newcpus = cpu_present_map; |
| rc = smp_rescan_cpus(); |
| if (rc) |
| goto out; |
| cpus_andnot(newcpus, cpu_present_map, newcpus); |
| for_each_cpu_mask(cpu, newcpus) { |
| rc = smp_add_present_cpu(cpu); |
| if (rc) |
| cpu_clear(cpu, cpu_present_map); |
| } |
| rc = 0; |
| out: |
| mutex_unlock(&smp_cpu_state_mutex); |
| put_online_cpus(); |
| if (!cpus_empty(newcpus)) |
| topology_schedule_update(); |
| return rc ? rc : count; |
| } |
| static SYSDEV_ATTR(rescan, 0200, NULL, rescan_store); |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| static ssize_t dispatching_show(struct sys_device *dev, char *buf) |
| { |
| ssize_t count; |
| |
| mutex_lock(&smp_cpu_state_mutex); |
| count = sprintf(buf, "%d\n", cpu_management); |
| mutex_unlock(&smp_cpu_state_mutex); |
| return count; |
| } |
| |
| static ssize_t dispatching_store(struct sys_device *dev, const char *buf, |
| size_t count) |
| { |
| int val, rc; |
| char delim; |
| |
| if (sscanf(buf, "%d %c", &val, &delim) != 1) |
| return -EINVAL; |
| if (val != 0 && val != 1) |
| return -EINVAL; |
| rc = 0; |
| get_online_cpus(); |
| mutex_lock(&smp_cpu_state_mutex); |
| if (cpu_management == val) |
| goto out; |
| rc = topology_set_cpu_management(val); |
| if (!rc) |
| cpu_management = val; |
| out: |
| mutex_unlock(&smp_cpu_state_mutex); |
| put_online_cpus(); |
| return rc ? rc : count; |
| } |
| static SYSDEV_ATTR(dispatching, 0644, dispatching_show, dispatching_store); |
| |
| static int __init topology_init(void) |
| { |
| int cpu; |
| int rc; |
| |
| register_cpu_notifier(&smp_cpu_nb); |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj, |
| &attr_rescan.attr); |
| if (rc) |
| return rc; |
| #endif |
| rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj, |
| &attr_dispatching.attr); |
| if (rc) |
| return rc; |
| for_each_present_cpu(cpu) { |
| rc = smp_add_present_cpu(cpu); |
| if (rc) |
| return rc; |
| } |
| return 0; |
| } |
| subsys_initcall(topology_init); |