| /* |
| * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd. |
| * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/bitmap.h> |
| #include <linux/bitops.h> |
| #include <linux/clk.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/log2.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_dma.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| |
| #include <dt-bindings/dma/nbpfaxi.h> |
| |
| #include "dmaengine.h" |
| |
| #define NBPF_REG_CHAN_OFFSET 0 |
| #define NBPF_REG_CHAN_SIZE 0x40 |
| |
| /* Channel Current Transaction Byte register */ |
| #define NBPF_CHAN_CUR_TR_BYTE 0x20 |
| |
| /* Channel Status register */ |
| #define NBPF_CHAN_STAT 0x24 |
| #define NBPF_CHAN_STAT_EN 1 |
| #define NBPF_CHAN_STAT_TACT 4 |
| #define NBPF_CHAN_STAT_ERR 0x10 |
| #define NBPF_CHAN_STAT_END 0x20 |
| #define NBPF_CHAN_STAT_TC 0x40 |
| #define NBPF_CHAN_STAT_DER 0x400 |
| |
| /* Channel Control register */ |
| #define NBPF_CHAN_CTRL 0x28 |
| #define NBPF_CHAN_CTRL_SETEN 1 |
| #define NBPF_CHAN_CTRL_CLREN 2 |
| #define NBPF_CHAN_CTRL_STG 4 |
| #define NBPF_CHAN_CTRL_SWRST 8 |
| #define NBPF_CHAN_CTRL_CLRRQ 0x10 |
| #define NBPF_CHAN_CTRL_CLREND 0x20 |
| #define NBPF_CHAN_CTRL_CLRTC 0x40 |
| #define NBPF_CHAN_CTRL_SETSUS 0x100 |
| #define NBPF_CHAN_CTRL_CLRSUS 0x200 |
| |
| /* Channel Configuration register */ |
| #define NBPF_CHAN_CFG 0x2c |
| #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */ |
| #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */ |
| #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */ |
| #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */ |
| #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */ |
| #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */ |
| #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */ |
| #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */ |
| #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */ |
| #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */ |
| #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */ |
| #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */ |
| #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */ |
| #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */ |
| #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */ |
| #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */ |
| #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */ |
| #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */ |
| |
| #define NBPF_CHAN_NXLA 0x38 |
| #define NBPF_CHAN_CRLA 0x3c |
| |
| /* Link Header field */ |
| #define NBPF_HEADER_LV 1 |
| #define NBPF_HEADER_LE 2 |
| #define NBPF_HEADER_WBD 4 |
| #define NBPF_HEADER_DIM 8 |
| |
| #define NBPF_CTRL 0x300 |
| #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */ |
| #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */ |
| |
| #define NBPF_DSTAT_ER 0x314 |
| #define NBPF_DSTAT_END 0x318 |
| |
| #define NBPF_DMA_BUSWIDTHS \ |
| (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) |
| |
| struct nbpf_config { |
| int num_channels; |
| int buffer_size; |
| }; |
| |
| /* |
| * We've got 3 types of objects, used to describe DMA transfers: |
| * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object |
| * in it, used to communicate with the user |
| * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer |
| * queuing, these must be DMAable, using either the streaming DMA API or |
| * allocated from coherent memory - one per SG segment |
| * 3. one per SG segment descriptors, used to manage HW link descriptors from |
| * (2). They do not have to be DMAable. They can either be (a) allocated |
| * together with link descriptors as mixed (DMA / CPU) objects, or (b) |
| * separately. Even if allocated separately it would be best to link them |
| * to link descriptors once during channel resource allocation and always |
| * use them as a single object. |
| * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be |
| * treated as a single SG segment descriptor. |
| */ |
| |
| struct nbpf_link_reg { |
| u32 header; |
| u32 src_addr; |
| u32 dst_addr; |
| u32 transaction_size; |
| u32 config; |
| u32 interval; |
| u32 extension; |
| u32 next; |
| } __packed; |
| |
| struct nbpf_device; |
| struct nbpf_channel; |
| struct nbpf_desc; |
| |
| struct nbpf_link_desc { |
| struct nbpf_link_reg *hwdesc; |
| dma_addr_t hwdesc_dma_addr; |
| struct nbpf_desc *desc; |
| struct list_head node; |
| }; |
| |
| /** |
| * struct nbpf_desc - DMA transfer descriptor |
| * @async_tx: dmaengine object |
| * @user_wait: waiting for a user ack |
| * @length: total transfer length |
| * @sg: list of hardware descriptors, represented by struct nbpf_link_desc |
| * @node: member in channel descriptor lists |
| */ |
| struct nbpf_desc { |
| struct dma_async_tx_descriptor async_tx; |
| bool user_wait; |
| size_t length; |
| struct nbpf_channel *chan; |
| struct list_head sg; |
| struct list_head node; |
| }; |
| |
| /* Take a wild guess: allocate 4 segments per descriptor */ |
| #define NBPF_SEGMENTS_PER_DESC 4 |
| #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \ |
| (sizeof(struct nbpf_desc) + \ |
| NBPF_SEGMENTS_PER_DESC * \ |
| (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg)))) |
| #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE) |
| |
| struct nbpf_desc_page { |
| struct list_head node; |
| struct nbpf_desc desc[NBPF_DESCS_PER_PAGE]; |
| struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE]; |
| struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE]; |
| }; |
| |
| /** |
| * struct nbpf_channel - one DMAC channel |
| * @dma_chan: standard dmaengine channel object |
| * @base: register address base |
| * @nbpf: DMAC |
| * @name: IRQ name |
| * @irq: IRQ number |
| * @slave_addr: address for slave DMA |
| * @slave_width:slave data size in bytes |
| * @slave_burst:maximum slave burst size in bytes |
| * @terminal: DMA terminal, assigned to this channel |
| * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG |
| * @flags: configuration flags from DT |
| * @lock: protect descriptor lists |
| * @free_links: list of free link descriptors |
| * @free: list of free descriptors |
| * @queued: list of queued descriptors |
| * @active: list of descriptors, scheduled for processing |
| * @done: list of completed descriptors, waiting post-processing |
| * @desc_page: list of additionally allocated descriptor pages - if any |
| */ |
| struct nbpf_channel { |
| struct dma_chan dma_chan; |
| struct tasklet_struct tasklet; |
| void __iomem *base; |
| struct nbpf_device *nbpf; |
| char name[16]; |
| int irq; |
| dma_addr_t slave_src_addr; |
| size_t slave_src_width; |
| size_t slave_src_burst; |
| dma_addr_t slave_dst_addr; |
| size_t slave_dst_width; |
| size_t slave_dst_burst; |
| unsigned int terminal; |
| u32 dmarq_cfg; |
| unsigned long flags; |
| spinlock_t lock; |
| struct list_head free_links; |
| struct list_head free; |
| struct list_head queued; |
| struct list_head active; |
| struct list_head done; |
| struct list_head desc_page; |
| struct nbpf_desc *running; |
| bool paused; |
| }; |
| |
| struct nbpf_device { |
| struct dma_device dma_dev; |
| void __iomem *base; |
| struct clk *clk; |
| const struct nbpf_config *config; |
| struct nbpf_channel chan[]; |
| }; |
| |
| enum nbpf_model { |
| NBPF1B4, |
| NBPF1B8, |
| NBPF1B16, |
| NBPF4B4, |
| NBPF4B8, |
| NBPF4B16, |
| NBPF8B4, |
| NBPF8B8, |
| NBPF8B16, |
| }; |
| |
| static struct nbpf_config nbpf_cfg[] = { |
| [NBPF1B4] = { |
| .num_channels = 1, |
| .buffer_size = 4, |
| }, |
| [NBPF1B8] = { |
| .num_channels = 1, |
| .buffer_size = 8, |
| }, |
| [NBPF1B16] = { |
| .num_channels = 1, |
| .buffer_size = 16, |
| }, |
| [NBPF4B4] = { |
| .num_channels = 4, |
| .buffer_size = 4, |
| }, |
| [NBPF4B8] = { |
| .num_channels = 4, |
| .buffer_size = 8, |
| }, |
| [NBPF4B16] = { |
| .num_channels = 4, |
| .buffer_size = 16, |
| }, |
| [NBPF8B4] = { |
| .num_channels = 8, |
| .buffer_size = 4, |
| }, |
| [NBPF8B8] = { |
| .num_channels = 8, |
| .buffer_size = 8, |
| }, |
| [NBPF8B16] = { |
| .num_channels = 8, |
| .buffer_size = 16, |
| }, |
| }; |
| |
| #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan) |
| |
| /* |
| * dmaengine drivers seem to have a lot in common and instead of sharing more |
| * code, they reimplement those common algorithms independently. In this driver |
| * we try to separate the hardware-specific part from the (largely) generic |
| * part. This improves code readability and makes it possible in the future to |
| * reuse the generic code in form of a helper library. That generic code should |
| * be suitable for various DMA controllers, using transfer descriptors in RAM |
| * and pushing one SG list at a time to the DMA controller. |
| */ |
| |
| /* Hardware-specific part */ |
| |
| static inline u32 nbpf_chan_read(struct nbpf_channel *chan, |
| unsigned int offset) |
| { |
| u32 data = ioread32(chan->base + offset); |
| dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n", |
| __func__, chan->base, offset, data); |
| return data; |
| } |
| |
| static inline void nbpf_chan_write(struct nbpf_channel *chan, |
| unsigned int offset, u32 data) |
| { |
| iowrite32(data, chan->base + offset); |
| dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n", |
| __func__, chan->base, offset, data); |
| } |
| |
| static inline u32 nbpf_read(struct nbpf_device *nbpf, |
| unsigned int offset) |
| { |
| u32 data = ioread32(nbpf->base + offset); |
| dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n", |
| __func__, nbpf->base, offset, data); |
| return data; |
| } |
| |
| static inline void nbpf_write(struct nbpf_device *nbpf, |
| unsigned int offset, u32 data) |
| { |
| iowrite32(data, nbpf->base + offset); |
| dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n", |
| __func__, nbpf->base, offset, data); |
| } |
| |
| static void nbpf_chan_halt(struct nbpf_channel *chan) |
| { |
| nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN); |
| } |
| |
| static bool nbpf_status_get(struct nbpf_channel *chan) |
| { |
| u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END); |
| |
| return status & BIT(chan - chan->nbpf->chan); |
| } |
| |
| static void nbpf_status_ack(struct nbpf_channel *chan) |
| { |
| nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND); |
| } |
| |
| static u32 nbpf_error_get(struct nbpf_device *nbpf) |
| { |
| return nbpf_read(nbpf, NBPF_DSTAT_ER); |
| } |
| |
| static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error) |
| { |
| return nbpf->chan + __ffs(error); |
| } |
| |
| static void nbpf_error_clear(struct nbpf_channel *chan) |
| { |
| u32 status; |
| int i; |
| |
| /* Stop the channel, make sure DMA has been aborted */ |
| nbpf_chan_halt(chan); |
| |
| for (i = 1000; i; i--) { |
| status = nbpf_chan_read(chan, NBPF_CHAN_STAT); |
| if (!(status & NBPF_CHAN_STAT_TACT)) |
| break; |
| cpu_relax(); |
| } |
| |
| if (!i) |
| dev_err(chan->dma_chan.device->dev, |
| "%s(): abort timeout, channel status 0x%x\n", __func__, status); |
| |
| nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST); |
| } |
| |
| static int nbpf_start(struct nbpf_desc *desc) |
| { |
| struct nbpf_channel *chan = desc->chan; |
| struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node); |
| |
| nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr); |
| nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS); |
| chan->paused = false; |
| |
| /* Software trigger MEMCPY - only MEMCPY uses the block mode */ |
| if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM) |
| nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG); |
| |
| dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__, |
| nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA)); |
| |
| return 0; |
| } |
| |
| static void nbpf_chan_prepare(struct nbpf_channel *chan) |
| { |
| chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) | |
| (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) | |
| (chan->flags & NBPF_SLAVE_RQ_LEVEL ? |
| NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) | |
| chan->terminal; |
| } |
| |
| static void nbpf_chan_prepare_default(struct nbpf_channel *chan) |
| { |
| /* Don't output DMAACK */ |
| chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400; |
| chan->terminal = 0; |
| chan->flags = 0; |
| } |
| |
| static void nbpf_chan_configure(struct nbpf_channel *chan) |
| { |
| /* |
| * We assume, that only the link mode and DMA request line configuration |
| * have to be set in the configuration register manually. Dynamic |
| * per-transfer configuration will be loaded from transfer descriptors. |
| */ |
| nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg); |
| } |
| |
| static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size) |
| { |
| /* Maximum supported bursts depend on the buffer size */ |
| return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8)); |
| } |
| |
| static size_t nbpf_xfer_size(struct nbpf_device *nbpf, |
| enum dma_slave_buswidth width, u32 burst) |
| { |
| size_t size; |
| |
| if (!burst) |
| burst = 1; |
| |
| switch (width) { |
| case DMA_SLAVE_BUSWIDTH_8_BYTES: |
| size = 8 * burst; |
| break; |
| |
| case DMA_SLAVE_BUSWIDTH_4_BYTES: |
| size = 4 * burst; |
| break; |
| |
| case DMA_SLAVE_BUSWIDTH_2_BYTES: |
| size = 2 * burst; |
| break; |
| |
| default: |
| pr_warn("%s(): invalid bus width %u\n", __func__, width); |
| case DMA_SLAVE_BUSWIDTH_1_BYTE: |
| size = burst; |
| } |
| |
| return nbpf_xfer_ds(nbpf, size); |
| } |
| |
| /* |
| * We need a way to recognise slaves, whose data is sent "raw" over the bus, |
| * i.e. it isn't known in advance how many bytes will be received. Therefore |
| * the slave driver has to provide a "large enough" buffer and either read the |
| * buffer, when it is full, or detect, that some data has arrived, then wait for |
| * a timeout, if no more data arrives - receive what's already there. We want to |
| * handle such slaves in a special way to allow an optimised mode for other |
| * users, for whom the amount of data is known in advance. So far there's no way |
| * to recognise such slaves. We use a data-width check to distinguish between |
| * the SD host and the PL011 UART. |
| */ |
| |
| static int nbpf_prep_one(struct nbpf_link_desc *ldesc, |
| enum dma_transfer_direction direction, |
| dma_addr_t src, dma_addr_t dst, size_t size, bool last) |
| { |
| struct nbpf_link_reg *hwdesc = ldesc->hwdesc; |
| struct nbpf_desc *desc = ldesc->desc; |
| struct nbpf_channel *chan = desc->chan; |
| struct device *dev = chan->dma_chan.device->dev; |
| size_t mem_xfer, slave_xfer; |
| bool can_burst; |
| |
| hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV | |
| (last ? NBPF_HEADER_LE : 0); |
| |
| hwdesc->src_addr = src; |
| hwdesc->dst_addr = dst; |
| hwdesc->transaction_size = size; |
| |
| /* |
| * set config: SAD, DAD, DDS, SDS, etc. |
| * Note on transfer sizes: the DMAC can perform unaligned DMA transfers, |
| * but it is important to have transaction size a multiple of both |
| * receiver and transmitter transfer sizes. It is also possible to use |
| * different RAM and device transfer sizes, and it does work well with |
| * some devices, e.g. with V08R07S01E SD host controllers, which can use |
| * 128 byte transfers. But this doesn't work with other devices, |
| * especially when the transaction size is unknown. This is the case, |
| * e.g. with serial drivers like amba-pl011.c. For reception it sets up |
| * the transaction size of 4K and if fewer bytes are received, it |
| * pauses DMA and reads out data received via DMA as well as those left |
| * in the Rx FIFO. For this to work with the RAM side using burst |
| * transfers we enable the SBE bit and terminate the transfer in our |
| * DMA_PAUSE handler. |
| */ |
| mem_xfer = nbpf_xfer_ds(chan->nbpf, size); |
| |
| switch (direction) { |
| case DMA_DEV_TO_MEM: |
| can_burst = chan->slave_src_width >= 3; |
| slave_xfer = min(mem_xfer, can_burst ? |
| chan->slave_src_burst : chan->slave_src_width); |
| /* |
| * Is the slave narrower than 64 bits, i.e. isn't using the full |
| * bus width and cannot use bursts? |
| */ |
| if (mem_xfer > chan->slave_src_burst && !can_burst) |
| mem_xfer = chan->slave_src_burst; |
| /* Device-to-RAM DMA is unreliable without REQD set */ |
| hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) | |
| (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD | |
| NBPF_CHAN_CFG_SBE; |
| break; |
| |
| case DMA_MEM_TO_DEV: |
| slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ? |
| chan->slave_dst_burst : chan->slave_dst_width); |
| hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) | |
| (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD; |
| break; |
| |
| case DMA_MEM_TO_MEM: |
| hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM | |
| (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) | |
| (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) | |
| NBPF_CHAN_CFG_DMS; |
| |
| dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n", |
| __func__, &ldesc->hwdesc_dma_addr, hwdesc->header, |
| hwdesc->config, size, &src, &dst); |
| |
| dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc), |
| DMA_TO_DEVICE); |
| |
| return 0; |
| } |
| |
| static size_t nbpf_bytes_left(struct nbpf_channel *chan) |
| { |
| return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE); |
| } |
| |
| static void nbpf_configure(struct nbpf_device *nbpf) |
| { |
| nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT); |
| } |
| |
| static void nbpf_pause(struct nbpf_channel *chan) |
| { |
| nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS); |
| /* See comment in nbpf_prep_one() */ |
| nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN); |
| } |
| |
| /* Generic part */ |
| |
| /* DMA ENGINE functions */ |
| static void nbpf_issue_pending(struct dma_chan *dchan) |
| { |
| struct nbpf_channel *chan = nbpf_to_chan(dchan); |
| unsigned long flags; |
| |
| dev_dbg(dchan->device->dev, "Entry %s()\n", __func__); |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| if (list_empty(&chan->queued)) |
| goto unlock; |
| |
| list_splice_tail_init(&chan->queued, &chan->active); |
| |
| if (!chan->running) { |
| struct nbpf_desc *desc = list_first_entry(&chan->active, |
| struct nbpf_desc, node); |
| if (!nbpf_start(desc)) |
| chan->running = desc; |
| } |
| |
| unlock: |
| spin_unlock_irqrestore(&chan->lock, flags); |
| } |
| |
| static enum dma_status nbpf_tx_status(struct dma_chan *dchan, |
| dma_cookie_t cookie, struct dma_tx_state *state) |
| { |
| struct nbpf_channel *chan = nbpf_to_chan(dchan); |
| enum dma_status status = dma_cookie_status(dchan, cookie, state); |
| |
| if (state) { |
| dma_cookie_t running; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| running = chan->running ? chan->running->async_tx.cookie : -EINVAL; |
| |
| if (cookie == running) { |
| state->residue = nbpf_bytes_left(chan); |
| dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__, |
| state->residue); |
| } else if (status == DMA_IN_PROGRESS) { |
| struct nbpf_desc *desc; |
| bool found = false; |
| |
| list_for_each_entry(desc, &chan->active, node) |
| if (desc->async_tx.cookie == cookie) { |
| found = true; |
| break; |
| } |
| |
| if (!found) |
| list_for_each_entry(desc, &chan->queued, node) |
| if (desc->async_tx.cookie == cookie) { |
| found = true; |
| break; |
| |
| } |
| |
| state->residue = found ? desc->length : 0; |
| } |
| |
| spin_unlock_irqrestore(&chan->lock, flags); |
| } |
| |
| if (chan->paused) |
| status = DMA_PAUSED; |
| |
| return status; |
| } |
| |
| static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx) |
| { |
| struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx); |
| struct nbpf_channel *chan = desc->chan; |
| unsigned long flags; |
| dma_cookie_t cookie; |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| cookie = dma_cookie_assign(tx); |
| list_add_tail(&desc->node, &chan->queued); |
| spin_unlock_irqrestore(&chan->lock, flags); |
| |
| dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie); |
| |
| return cookie; |
| } |
| |
| static int nbpf_desc_page_alloc(struct nbpf_channel *chan) |
| { |
| struct dma_chan *dchan = &chan->dma_chan; |
| struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA); |
| struct nbpf_link_desc *ldesc; |
| struct nbpf_link_reg *hwdesc; |
| struct nbpf_desc *desc; |
| LIST_HEAD(head); |
| LIST_HEAD(lhead); |
| int i; |
| struct device *dev = dchan->device->dev; |
| |
| if (!dpage) |
| return -ENOMEM; |
| |
| dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n", |
| __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage)); |
| |
| for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc; |
| i < ARRAY_SIZE(dpage->ldesc); |
| i++, ldesc++, hwdesc++) { |
| ldesc->hwdesc = hwdesc; |
| list_add_tail(&ldesc->node, &lhead); |
| ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev, |
| hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE); |
| |
| dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__, |
| hwdesc, &ldesc->hwdesc_dma_addr); |
| } |
| |
| for (i = 0, desc = dpage->desc; |
| i < ARRAY_SIZE(dpage->desc); |
| i++, desc++) { |
| dma_async_tx_descriptor_init(&desc->async_tx, dchan); |
| desc->async_tx.tx_submit = nbpf_tx_submit; |
| desc->chan = chan; |
| INIT_LIST_HEAD(&desc->sg); |
| list_add_tail(&desc->node, &head); |
| } |
| |
| /* |
| * This function cannot be called from interrupt context, so, no need to |
| * save flags |
| */ |
| spin_lock_irq(&chan->lock); |
| list_splice_tail(&lhead, &chan->free_links); |
| list_splice_tail(&head, &chan->free); |
| list_add(&dpage->node, &chan->desc_page); |
| spin_unlock_irq(&chan->lock); |
| |
| return ARRAY_SIZE(dpage->desc); |
| } |
| |
| static void nbpf_desc_put(struct nbpf_desc *desc) |
| { |
| struct nbpf_channel *chan = desc->chan; |
| struct nbpf_link_desc *ldesc, *tmp; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| list_for_each_entry_safe(ldesc, tmp, &desc->sg, node) |
| list_move(&ldesc->node, &chan->free_links); |
| |
| list_add(&desc->node, &chan->free); |
| spin_unlock_irqrestore(&chan->lock, flags); |
| } |
| |
| static void nbpf_scan_acked(struct nbpf_channel *chan) |
| { |
| struct nbpf_desc *desc, *tmp; |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| list_for_each_entry_safe(desc, tmp, &chan->done, node) |
| if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) { |
| list_move(&desc->node, &head); |
| desc->user_wait = false; |
| } |
| spin_unlock_irqrestore(&chan->lock, flags); |
| |
| list_for_each_entry_safe(desc, tmp, &head, node) { |
| list_del(&desc->node); |
| nbpf_desc_put(desc); |
| } |
| } |
| |
| /* |
| * We have to allocate descriptors with the channel lock dropped. This means, |
| * before we re-acquire the lock buffers can be taken already, so we have to |
| * re-check after re-acquiring the lock and possibly retry, if buffers are gone |
| * again. |
| */ |
| static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len) |
| { |
| struct nbpf_desc *desc = NULL; |
| struct nbpf_link_desc *ldesc, *prev = NULL; |
| |
| nbpf_scan_acked(chan); |
| |
| spin_lock_irq(&chan->lock); |
| |
| do { |
| int i = 0, ret; |
| |
| if (list_empty(&chan->free)) { |
| /* No more free descriptors */ |
| spin_unlock_irq(&chan->lock); |
| ret = nbpf_desc_page_alloc(chan); |
| if (ret < 0) |
| return NULL; |
| spin_lock_irq(&chan->lock); |
| continue; |
| } |
| desc = list_first_entry(&chan->free, struct nbpf_desc, node); |
| list_del(&desc->node); |
| |
| do { |
| if (list_empty(&chan->free_links)) { |
| /* No more free link descriptors */ |
| spin_unlock_irq(&chan->lock); |
| ret = nbpf_desc_page_alloc(chan); |
| if (ret < 0) { |
| nbpf_desc_put(desc); |
| return NULL; |
| } |
| spin_lock_irq(&chan->lock); |
| continue; |
| } |
| |
| ldesc = list_first_entry(&chan->free_links, |
| struct nbpf_link_desc, node); |
| ldesc->desc = desc; |
| if (prev) |
| prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr; |
| |
| prev = ldesc; |
| list_move_tail(&ldesc->node, &desc->sg); |
| |
| i++; |
| } while (i < len); |
| } while (!desc); |
| |
| prev->hwdesc->next = 0; |
| |
| spin_unlock_irq(&chan->lock); |
| |
| return desc; |
| } |
| |
| static void nbpf_chan_idle(struct nbpf_channel *chan) |
| { |
| struct nbpf_desc *desc, *tmp; |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&chan->lock, flags); |
| |
| list_splice_init(&chan->done, &head); |
| list_splice_init(&chan->active, &head); |
| list_splice_init(&chan->queued, &head); |
| |
| chan->running = NULL; |
| |
| spin_unlock_irqrestore(&chan->lock, flags); |
| |
| list_for_each_entry_safe(desc, tmp, &head, node) { |
| dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n", |
| __func__, desc, desc->async_tx.cookie); |
| list_del(&desc->node); |
| nbpf_desc_put(desc); |
| } |
| } |
| |
| static int nbpf_control(struct dma_chan *dchan, enum dma_ctrl_cmd cmd, |
| unsigned long arg) |
| { |
| struct nbpf_channel *chan = nbpf_to_chan(dchan); |
| struct dma_slave_config *config; |
| |
| dev_dbg(dchan->device->dev, "Entry %s(%d)\n", __func__, cmd); |
| |
| switch (cmd) { |
| case DMA_TERMINATE_ALL: |
| dev_dbg(dchan->device->dev, "Terminating\n"); |
| nbpf_chan_halt(chan); |
| nbpf_chan_idle(chan); |
| break; |
| |
| case DMA_SLAVE_CONFIG: |
| if (!arg) |
| return -EINVAL; |
| config = (struct dma_slave_config *)arg; |
| |
| /* |
| * We could check config->slave_id to match chan->terminal here, |
| * but with DT they would be coming from the same source, so |
| * such a check would be superflous |
| */ |
| |
| chan->slave_dst_addr = config->dst_addr; |
| chan->slave_dst_width = nbpf_xfer_size(chan->nbpf, |
| config->dst_addr_width, 1); |
| chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf, |
| config->dst_addr_width, |
| config->dst_maxburst); |
| chan->slave_src_addr = config->src_addr; |
| chan->slave_src_width = nbpf_xfer_size(chan->nbpf, |
| config->src_addr_width, 1); |
| chan->slave_src_burst = nbpf_xfer_size(chan->nbpf, |
| config->src_addr_width, |
| config->src_maxburst); |
| break; |
| |
| case DMA_PAUSE: |
| chan->paused = true; |
| nbpf_pause(chan); |
| break; |
| |
| default: |
| return -ENXIO; |
| } |
| |
| return 0; |
| } |
| |
| static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan, |
| struct scatterlist *src_sg, struct scatterlist *dst_sg, |
| size_t len, enum dma_transfer_direction direction, |
| unsigned long flags) |
| { |
| struct nbpf_link_desc *ldesc; |
| struct scatterlist *mem_sg; |
| struct nbpf_desc *desc; |
| bool inc_src, inc_dst; |
| size_t data_len = 0; |
| int i = 0; |
| |
| switch (direction) { |
| case DMA_DEV_TO_MEM: |
| mem_sg = dst_sg; |
| inc_src = false; |
| inc_dst = true; |
| break; |
| |
| case DMA_MEM_TO_DEV: |
| mem_sg = src_sg; |
| inc_src = true; |
| inc_dst = false; |
| break; |
| |
| default: |
| case DMA_MEM_TO_MEM: |
| mem_sg = src_sg; |
| inc_src = true; |
| inc_dst = true; |
| } |
| |
| desc = nbpf_desc_get(chan, len); |
| if (!desc) |
| return NULL; |
| |
| desc->async_tx.flags = flags; |
| desc->async_tx.cookie = -EBUSY; |
| desc->user_wait = false; |
| |
| /* |
| * This is a private descriptor list, and we own the descriptor. No need |
| * to lock. |
| */ |
| list_for_each_entry(ldesc, &desc->sg, node) { |
| int ret = nbpf_prep_one(ldesc, direction, |
| sg_dma_address(src_sg), |
| sg_dma_address(dst_sg), |
| sg_dma_len(mem_sg), |
| i == len - 1); |
| if (ret < 0) { |
| nbpf_desc_put(desc); |
| return NULL; |
| } |
| data_len += sg_dma_len(mem_sg); |
| if (inc_src) |
| src_sg = sg_next(src_sg); |
| if (inc_dst) |
| dst_sg = sg_next(dst_sg); |
| mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg; |
| i++; |
| } |
| |
| desc->length = data_len; |
| |
| /* The user has to return the descriptor to us ASAP via .tx_submit() */ |
| return &desc->async_tx; |
| } |
| |
| static struct dma_async_tx_descriptor *nbpf_prep_memcpy( |
| struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src, |
| size_t len, unsigned long flags) |
| { |
| struct nbpf_channel *chan = nbpf_to_chan(dchan); |
| struct scatterlist dst_sg; |
| struct scatterlist src_sg; |
| |
| sg_init_table(&dst_sg, 1); |
| sg_init_table(&src_sg, 1); |
| |
| sg_dma_address(&dst_sg) = dst; |
| sg_dma_address(&src_sg) = src; |
| |
| sg_dma_len(&dst_sg) = len; |
| sg_dma_len(&src_sg) = len; |
| |
| dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n", |
| __func__, len, &src, &dst); |
| |
| return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1, |
| DMA_MEM_TO_MEM, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg( |
| struct dma_chan *dchan, |
| struct scatterlist *dst_sg, unsigned int dst_nents, |
| struct scatterlist *src_sg, unsigned int src_nents, |
| unsigned long flags) |
| { |
| struct nbpf_channel *chan = nbpf_to_chan(dchan); |
| |
| if (dst_nents != src_nents) |
| return NULL; |
| |
| return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents, |
| DMA_MEM_TO_MEM, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *nbpf_prep_slave_sg( |
| struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, |
| enum dma_transfer_direction direction, unsigned long flags, void *context) |
| { |
| struct nbpf_channel *chan = nbpf_to_chan(dchan); |
| struct scatterlist slave_sg; |
| |
| dev_dbg(dchan->device->dev, "Entry %s()\n", __func__); |
| |
| sg_init_table(&slave_sg, 1); |
| |
| switch (direction) { |
| case DMA_MEM_TO_DEV: |
| sg_dma_address(&slave_sg) = chan->slave_dst_addr; |
| return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len, |
| direction, flags); |
| |
| case DMA_DEV_TO_MEM: |
| sg_dma_address(&slave_sg) = chan->slave_src_addr; |
| return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len, |
| direction, flags); |
| |
| default: |
| return NULL; |
| } |
| } |
| |
| static int nbpf_alloc_chan_resources(struct dma_chan *dchan) |
| { |
| struct nbpf_channel *chan = nbpf_to_chan(dchan); |
| int ret; |
| |
| INIT_LIST_HEAD(&chan->free); |
| INIT_LIST_HEAD(&chan->free_links); |
| INIT_LIST_HEAD(&chan->queued); |
| INIT_LIST_HEAD(&chan->active); |
| INIT_LIST_HEAD(&chan->done); |
| |
| ret = nbpf_desc_page_alloc(chan); |
| if (ret < 0) |
| return ret; |
| |
| dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__, |
| chan->terminal); |
| |
| nbpf_chan_configure(chan); |
| |
| return ret; |
| } |
| |
| static void nbpf_free_chan_resources(struct dma_chan *dchan) |
| { |
| struct nbpf_channel *chan = nbpf_to_chan(dchan); |
| struct nbpf_desc_page *dpage, *tmp; |
| |
| dev_dbg(dchan->device->dev, "Entry %s()\n", __func__); |
| |
| nbpf_chan_halt(chan); |
| nbpf_chan_idle(chan); |
| /* Clean up for if a channel is re-used for MEMCPY after slave DMA */ |
| nbpf_chan_prepare_default(chan); |
| |
| list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) { |
| struct nbpf_link_desc *ldesc; |
| int i; |
| list_del(&dpage->node); |
| for (i = 0, ldesc = dpage->ldesc; |
| i < ARRAY_SIZE(dpage->ldesc); |
| i++, ldesc++) |
| dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr, |
| sizeof(*ldesc->hwdesc), DMA_TO_DEVICE); |
| free_page((unsigned long)dpage); |
| } |
| } |
| |
| static int nbpf_slave_caps(struct dma_chan *dchan, |
| struct dma_slave_caps *caps) |
| { |
| caps->src_addr_widths = NBPF_DMA_BUSWIDTHS; |
| caps->dstn_addr_widths = NBPF_DMA_BUSWIDTHS; |
| caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); |
| caps->cmd_pause = false; |
| caps->cmd_terminate = true; |
| |
| return 0; |
| } |
| |
| static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *ofdma) |
| { |
| struct nbpf_device *nbpf = ofdma->of_dma_data; |
| struct dma_chan *dchan; |
| struct nbpf_channel *chan; |
| |
| if (dma_spec->args_count != 2) |
| return NULL; |
| |
| dchan = dma_get_any_slave_channel(&nbpf->dma_dev); |
| if (!dchan) |
| return NULL; |
| |
| dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__, |
| dma_spec->np->name); |
| |
| chan = nbpf_to_chan(dchan); |
| |
| chan->terminal = dma_spec->args[0]; |
| chan->flags = dma_spec->args[1]; |
| |
| nbpf_chan_prepare(chan); |
| nbpf_chan_configure(chan); |
| |
| return dchan; |
| } |
| |
| static void nbpf_chan_tasklet(unsigned long data) |
| { |
| struct nbpf_channel *chan = (struct nbpf_channel *)data; |
| struct nbpf_desc *desc, *tmp; |
| dma_async_tx_callback callback; |
| void *param; |
| |
| while (!list_empty(&chan->done)) { |
| bool found = false, must_put, recycling = false; |
| |
| spin_lock_irq(&chan->lock); |
| |
| list_for_each_entry_safe(desc, tmp, &chan->done, node) { |
| if (!desc->user_wait) { |
| /* Newly completed descriptor, have to process */ |
| found = true; |
| break; |
| } else if (async_tx_test_ack(&desc->async_tx)) { |
| /* |
| * This descriptor was waiting for a user ACK, |
| * it can be recycled now. |
| */ |
| list_del(&desc->node); |
| spin_unlock_irq(&chan->lock); |
| nbpf_desc_put(desc); |
| recycling = true; |
| break; |
| } |
| } |
| |
| if (recycling) |
| continue; |
| |
| if (!found) { |
| /* This can happen if TERMINATE_ALL has been called */ |
| spin_unlock_irq(&chan->lock); |
| break; |
| } |
| |
| dma_cookie_complete(&desc->async_tx); |
| |
| /* |
| * With released lock we cannot dereference desc, maybe it's |
| * still on the "done" list |
| */ |
| if (async_tx_test_ack(&desc->async_tx)) { |
| list_del(&desc->node); |
| must_put = true; |
| } else { |
| desc->user_wait = true; |
| must_put = false; |
| } |
| |
| callback = desc->async_tx.callback; |
| param = desc->async_tx.callback_param; |
| |
| /* ack and callback completed descriptor */ |
| spin_unlock_irq(&chan->lock); |
| |
| if (callback) |
| callback(param); |
| |
| if (must_put) |
| nbpf_desc_put(desc); |
| } |
| } |
| |
| static irqreturn_t nbpf_chan_irq(int irq, void *dev) |
| { |
| struct nbpf_channel *chan = dev; |
| bool done = nbpf_status_get(chan); |
| struct nbpf_desc *desc; |
| irqreturn_t ret; |
| bool bh = false; |
| |
| if (!done) |
| return IRQ_NONE; |
| |
| nbpf_status_ack(chan); |
| |
| dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__); |
| |
| spin_lock(&chan->lock); |
| desc = chan->running; |
| if (WARN_ON(!desc)) { |
| ret = IRQ_NONE; |
| goto unlock; |
| } else { |
| ret = IRQ_HANDLED; |
| bh = true; |
| } |
| |
| list_move_tail(&desc->node, &chan->done); |
| chan->running = NULL; |
| |
| if (!list_empty(&chan->active)) { |
| desc = list_first_entry(&chan->active, |
| struct nbpf_desc, node); |
| if (!nbpf_start(desc)) |
| chan->running = desc; |
| } |
| |
| unlock: |
| spin_unlock(&chan->lock); |
| |
| if (bh) |
| tasklet_schedule(&chan->tasklet); |
| |
| return ret; |
| } |
| |
| static irqreturn_t nbpf_err_irq(int irq, void *dev) |
| { |
| struct nbpf_device *nbpf = dev; |
| u32 error = nbpf_error_get(nbpf); |
| |
| dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq); |
| |
| if (!error) |
| return IRQ_NONE; |
| |
| do { |
| struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error); |
| /* On error: abort all queued transfers, no callback */ |
| nbpf_error_clear(chan); |
| nbpf_chan_idle(chan); |
| error = nbpf_error_get(nbpf); |
| } while (error); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int nbpf_chan_probe(struct nbpf_device *nbpf, int n) |
| { |
| struct dma_device *dma_dev = &nbpf->dma_dev; |
| struct nbpf_channel *chan = nbpf->chan + n; |
| int ret; |
| |
| chan->nbpf = nbpf; |
| chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n; |
| INIT_LIST_HEAD(&chan->desc_page); |
| spin_lock_init(&chan->lock); |
| chan->dma_chan.device = dma_dev; |
| dma_cookie_init(&chan->dma_chan); |
| nbpf_chan_prepare_default(chan); |
| |
| dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base); |
| |
| snprintf(chan->name, sizeof(chan->name), "nbpf %d", n); |
| |
| tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan); |
| ret = devm_request_irq(dma_dev->dev, chan->irq, |
| nbpf_chan_irq, IRQF_SHARED, |
| chan->name, chan); |
| if (ret < 0) |
| return ret; |
| |
| /* Add the channel to DMA device channel list */ |
| list_add_tail(&chan->dma_chan.device_node, |
| &dma_dev->channels); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id nbpf_match[] = { |
| {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]}, |
| {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]}, |
| {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]}, |
| {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]}, |
| {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]}, |
| {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]}, |
| {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]}, |
| {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]}, |
| {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, nbpf_match); |
| |
| static int nbpf_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| const struct of_device_id *of_id = of_match_device(nbpf_match, dev); |
| struct device_node *np = dev->of_node; |
| struct nbpf_device *nbpf; |
| struct dma_device *dma_dev; |
| struct resource *iomem, *irq_res; |
| const struct nbpf_config *cfg; |
| int num_channels; |
| int ret, irq, eirq, i; |
| int irqbuf[9] /* maximum 8 channels + error IRQ */; |
| unsigned int irqs = 0; |
| |
| BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE); |
| |
| /* DT only */ |
| if (!np || !of_id || !of_id->data) |
| return -ENODEV; |
| |
| cfg = of_id->data; |
| num_channels = cfg->num_channels; |
| |
| nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels * |
| sizeof(nbpf->chan[0]), GFP_KERNEL); |
| if (!nbpf) { |
| dev_err(dev, "Memory allocation failed\n"); |
| return -ENOMEM; |
| } |
| dma_dev = &nbpf->dma_dev; |
| dma_dev->dev = dev; |
| |
| iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| nbpf->base = devm_ioremap_resource(dev, iomem); |
| if (IS_ERR(nbpf->base)) |
| return PTR_ERR(nbpf->base); |
| |
| nbpf->clk = devm_clk_get(dev, NULL); |
| if (IS_ERR(nbpf->clk)) |
| return PTR_ERR(nbpf->clk); |
| |
| nbpf->config = cfg; |
| |
| for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) { |
| irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i); |
| if (!irq_res) |
| break; |
| |
| for (irq = irq_res->start; irq <= irq_res->end; |
| irq++, irqs++) |
| irqbuf[irqs] = irq; |
| } |
| |
| /* |
| * 3 IRQ resource schemes are supported: |
| * 1. 1 shared IRQ for error and all channels |
| * 2. 2 IRQs: one for error and one shared for all channels |
| * 3. 1 IRQ for error and an own IRQ for each channel |
| */ |
| if (irqs != 1 && irqs != 2 && irqs != num_channels + 1) |
| return -ENXIO; |
| |
| if (irqs == 1) { |
| eirq = irqbuf[0]; |
| |
| for (i = 0; i <= num_channels; i++) |
| nbpf->chan[i].irq = irqbuf[0]; |
| } else { |
| eirq = platform_get_irq_byname(pdev, "error"); |
| if (eirq < 0) |
| return eirq; |
| |
| if (irqs == num_channels + 1) { |
| struct nbpf_channel *chan; |
| |
| for (i = 0, chan = nbpf->chan; i <= num_channels; |
| i++, chan++) { |
| /* Skip the error IRQ */ |
| if (irqbuf[i] == eirq) |
| i++; |
| chan->irq = irqbuf[i]; |
| } |
| |
| if (chan != nbpf->chan + num_channels) |
| return -EINVAL; |
| } else { |
| /* 2 IRQs and more than one channel */ |
| if (irqbuf[0] == eirq) |
| irq = irqbuf[1]; |
| else |
| irq = irqbuf[0]; |
| |
| for (i = 0; i <= num_channels; i++) |
| nbpf->chan[i].irq = irq; |
| } |
| } |
| |
| ret = devm_request_irq(dev, eirq, nbpf_err_irq, |
| IRQF_SHARED, "dma error", nbpf); |
| if (ret < 0) |
| return ret; |
| |
| INIT_LIST_HEAD(&dma_dev->channels); |
| |
| /* Create DMA Channel */ |
| for (i = 0; i < num_channels; i++) { |
| ret = nbpf_chan_probe(nbpf, i); |
| if (ret < 0) |
| return ret; |
| } |
| |
| dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); |
| dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); |
| dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask); |
| dma_cap_set(DMA_SG, dma_dev->cap_mask); |
| |
| /* Common and MEMCPY operations */ |
| dma_dev->device_alloc_chan_resources |
| = nbpf_alloc_chan_resources; |
| dma_dev->device_free_chan_resources = nbpf_free_chan_resources; |
| dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg; |
| dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy; |
| dma_dev->device_tx_status = nbpf_tx_status; |
| dma_dev->device_issue_pending = nbpf_issue_pending; |
| dma_dev->device_slave_caps = nbpf_slave_caps; |
| |
| /* |
| * If we drop support for unaligned MEMCPY buffer addresses and / or |
| * lengths by setting |
| * dma_dev->copy_align = 4; |
| * then we can set transfer length to 4 bytes in nbpf_prep_one() for |
| * DMA_MEM_TO_MEM |
| */ |
| |
| /* Compulsory for DMA_SLAVE fields */ |
| dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg; |
| dma_dev->device_control = nbpf_control; |
| |
| platform_set_drvdata(pdev, nbpf); |
| |
| ret = clk_prepare_enable(nbpf->clk); |
| if (ret < 0) |
| return ret; |
| |
| nbpf_configure(nbpf); |
| |
| ret = dma_async_device_register(dma_dev); |
| if (ret < 0) |
| goto e_clk_off; |
| |
| ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf); |
| if (ret < 0) |
| goto e_dma_dev_unreg; |
| |
| return 0; |
| |
| e_dma_dev_unreg: |
| dma_async_device_unregister(dma_dev); |
| e_clk_off: |
| clk_disable_unprepare(nbpf->clk); |
| |
| return ret; |
| } |
| |
| static int nbpf_remove(struct platform_device *pdev) |
| { |
| struct nbpf_device *nbpf = platform_get_drvdata(pdev); |
| |
| of_dma_controller_free(pdev->dev.of_node); |
| dma_async_device_unregister(&nbpf->dma_dev); |
| clk_disable_unprepare(nbpf->clk); |
| |
| return 0; |
| } |
| |
| static struct platform_device_id nbpf_ids[] = { |
| {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]}, |
| {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]}, |
| {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]}, |
| {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]}, |
| {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]}, |
| {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]}, |
| {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]}, |
| {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]}, |
| {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]}, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(platform, nbpf_ids); |
| |
| #ifdef CONFIG_PM_RUNTIME |
| static int nbpf_runtime_suspend(struct device *dev) |
| { |
| struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev)); |
| clk_disable_unprepare(nbpf->clk); |
| return 0; |
| } |
| |
| static int nbpf_runtime_resume(struct device *dev) |
| { |
| struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev)); |
| return clk_prepare_enable(nbpf->clk); |
| } |
| #endif |
| |
| static const struct dev_pm_ops nbpf_pm_ops = { |
| SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL) |
| }; |
| |
| static struct platform_driver nbpf_driver = { |
| .driver = { |
| .name = "dma-nbpf", |
| .of_match_table = nbpf_match, |
| .pm = &nbpf_pm_ops, |
| }, |
| .id_table = nbpf_ids, |
| .probe = nbpf_probe, |
| .remove = nbpf_remove, |
| }; |
| |
| module_platform_driver(nbpf_driver); |
| |
| MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>"); |
| MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs"); |
| MODULE_LICENSE("GPL v2"); |