| /* |
| * Copyright (c) 2004-2011 Atheros Communications Inc. |
| * Copyright (c) 2011-2012 Qualcomm Atheros, Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/mmc/card.h> |
| #include <linux/mmc/mmc.h> |
| #include <linux/mmc/host.h> |
| #include <linux/mmc/sdio_func.h> |
| #include <linux/mmc/sdio_ids.h> |
| #include <linux/mmc/sdio.h> |
| #include <linux/mmc/sd.h> |
| #include "hif.h" |
| #include "hif-ops.h" |
| #include "target.h" |
| #include "debug.h" |
| #include "cfg80211.h" |
| #include "trace.h" |
| |
| struct ath6kl_sdio { |
| struct sdio_func *func; |
| |
| /* protects access to bus_req_freeq */ |
| spinlock_t lock; |
| |
| /* free list */ |
| struct list_head bus_req_freeq; |
| |
| /* available bus requests */ |
| struct bus_request bus_req[BUS_REQUEST_MAX_NUM]; |
| |
| struct ath6kl *ar; |
| |
| u8 *dma_buffer; |
| |
| /* protects access to dma_buffer */ |
| struct mutex dma_buffer_mutex; |
| |
| /* scatter request list head */ |
| struct list_head scat_req; |
| |
| atomic_t irq_handling; |
| wait_queue_head_t irq_wq; |
| |
| /* protects access to scat_req */ |
| spinlock_t scat_lock; |
| |
| bool scatter_enabled; |
| |
| bool is_disabled; |
| const struct sdio_device_id *id; |
| struct work_struct wr_async_work; |
| struct list_head wr_asyncq; |
| |
| /* protects access to wr_asyncq */ |
| spinlock_t wr_async_lock; |
| }; |
| |
| #define CMD53_ARG_READ 0 |
| #define CMD53_ARG_WRITE 1 |
| #define CMD53_ARG_BLOCK_BASIS 1 |
| #define CMD53_ARG_FIXED_ADDRESS 0 |
| #define CMD53_ARG_INCR_ADDRESS 1 |
| |
| static int ath6kl_sdio_config(struct ath6kl *ar); |
| |
| static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar) |
| { |
| return ar->hif_priv; |
| } |
| |
| /* |
| * Macro to check if DMA buffer is WORD-aligned and DMA-able. |
| * Most host controllers assume the buffer is DMA'able and will |
| * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid |
| * check fails on stack memory. |
| */ |
| static inline bool buf_needs_bounce(u8 *buf) |
| { |
| return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf); |
| } |
| |
| static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar) |
| { |
| struct ath6kl_mbox_info *mbox_info = &ar->mbox_info; |
| |
| /* EP1 has an extended range */ |
| mbox_info->htc_addr = HIF_MBOX_BASE_ADDR; |
| mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR; |
| mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH; |
| mbox_info->block_size = HIF_MBOX_BLOCK_SIZE; |
| mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR; |
| mbox_info->gmbox_sz = HIF_GMBOX_WIDTH; |
| } |
| |
| static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func, |
| u8 mode, u8 opcode, u32 addr, |
| u16 blksz) |
| { |
| *arg = (((rw & 1) << 31) | |
| ((func & 0x7) << 28) | |
| ((mode & 1) << 27) | |
| ((opcode & 1) << 26) | |
| ((addr & 0x1FFFF) << 9) | |
| (blksz & 0x1FF)); |
| } |
| |
| static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, |
| unsigned int address, |
| unsigned char val) |
| { |
| const u8 func = 0; |
| |
| *arg = ((write & 1) << 31) | |
| ((func & 0x7) << 28) | |
| ((raw & 1) << 27) | |
| (1 << 26) | |
| ((address & 0x1FFFF) << 9) | |
| (1 << 8) | |
| (val & 0xFF); |
| } |
| |
| static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card, |
| unsigned int address, |
| unsigned char byte) |
| { |
| struct mmc_command io_cmd; |
| |
| memset(&io_cmd, 0, sizeof(io_cmd)); |
| ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); |
| io_cmd.opcode = SD_IO_RW_DIRECT; |
| io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; |
| |
| return mmc_wait_for_cmd(card->host, &io_cmd, 0); |
| } |
| |
| static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr, |
| u8 *buf, u32 len) |
| { |
| int ret = 0; |
| |
| sdio_claim_host(func); |
| |
| if (request & HIF_WRITE) { |
| /* FIXME: looks like ugly workaround for something */ |
| if (addr >= HIF_MBOX_BASE_ADDR && |
| addr <= HIF_MBOX_END_ADDR) |
| addr += (HIF_MBOX_WIDTH - len); |
| |
| /* FIXME: this also looks like ugly workaround */ |
| if (addr == HIF_MBOX0_EXT_BASE_ADDR) |
| addr += HIF_MBOX0_EXT_WIDTH - len; |
| |
| if (request & HIF_FIXED_ADDRESS) |
| ret = sdio_writesb(func, addr, buf, len); |
| else |
| ret = sdio_memcpy_toio(func, addr, buf, len); |
| } else { |
| if (request & HIF_FIXED_ADDRESS) |
| ret = sdio_readsb(func, buf, addr, len); |
| else |
| ret = sdio_memcpy_fromio(func, buf, addr, len); |
| } |
| |
| sdio_release_host(func); |
| |
| ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n", |
| request & HIF_WRITE ? "wr" : "rd", addr, |
| request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len); |
| ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len); |
| |
| trace_ath6kl_sdio(addr, request, buf, len); |
| |
| return ret; |
| } |
| |
| static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio) |
| { |
| struct bus_request *bus_req; |
| |
| spin_lock_bh(&ar_sdio->lock); |
| |
| if (list_empty(&ar_sdio->bus_req_freeq)) { |
| spin_unlock_bh(&ar_sdio->lock); |
| return NULL; |
| } |
| |
| bus_req = list_first_entry(&ar_sdio->bus_req_freeq, |
| struct bus_request, list); |
| list_del(&bus_req->list); |
| |
| spin_unlock_bh(&ar_sdio->lock); |
| ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n", |
| __func__, bus_req); |
| |
| return bus_req; |
| } |
| |
| static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio, |
| struct bus_request *bus_req) |
| { |
| ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n", |
| __func__, bus_req); |
| |
| spin_lock_bh(&ar_sdio->lock); |
| list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); |
| spin_unlock_bh(&ar_sdio->lock); |
| } |
| |
| static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req, |
| struct mmc_data *data) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| data->blksz = HIF_MBOX_BLOCK_SIZE; |
| data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE; |
| |
| ath6kl_dbg(ATH6KL_DBG_SCATTER, |
| "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n", |
| (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr, |
| data->blksz, data->blocks, scat_req->len, |
| scat_req->scat_entries); |
| |
| data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE : |
| MMC_DATA_READ; |
| |
| /* fill SG entries */ |
| sg = scat_req->sgentries; |
| sg_init_table(sg, scat_req->scat_entries); |
| |
| /* assemble SG list */ |
| for (i = 0; i < scat_req->scat_entries; i++, sg++) { |
| ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n", |
| i, scat_req->scat_list[i].buf, |
| scat_req->scat_list[i].len); |
| |
| sg_set_buf(sg, scat_req->scat_list[i].buf, |
| scat_req->scat_list[i].len); |
| } |
| |
| /* set scatter-gather table for request */ |
| data->sg = scat_req->sgentries; |
| data->sg_len = scat_req->scat_entries; |
| } |
| |
| static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio, |
| struct bus_request *req) |
| { |
| struct mmc_request mmc_req; |
| struct mmc_command cmd; |
| struct mmc_data data; |
| struct hif_scatter_req *scat_req; |
| u8 opcode, rw; |
| int status, len; |
| |
| scat_req = req->scat_req; |
| |
| if (scat_req->virt_scat) { |
| len = scat_req->len; |
| if (scat_req->req & HIF_BLOCK_BASIS) |
| len = round_down(len, HIF_MBOX_BLOCK_SIZE); |
| |
| status = ath6kl_sdio_io(ar_sdio->func, scat_req->req, |
| scat_req->addr, scat_req->virt_dma_buf, |
| len); |
| goto scat_complete; |
| } |
| |
| memset(&mmc_req, 0, sizeof(struct mmc_request)); |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| memset(&data, 0, sizeof(struct mmc_data)); |
| |
| ath6kl_sdio_setup_scat_data(scat_req, &data); |
| |
| opcode = (scat_req->req & HIF_FIXED_ADDRESS) ? |
| CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS; |
| |
| rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ; |
| |
| /* Fixup the address so that the last byte will fall on MBOX EOM */ |
| if (scat_req->req & HIF_WRITE) { |
| if (scat_req->addr == HIF_MBOX_BASE_ADDR) |
| scat_req->addr += HIF_MBOX_WIDTH - scat_req->len; |
| else |
| /* Uses extended address range */ |
| scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len; |
| } |
| |
| /* set command argument */ |
| ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num, |
| CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr, |
| data.blocks); |
| |
| cmd.opcode = SD_IO_RW_EXTENDED; |
| cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC; |
| |
| mmc_req.cmd = &cmd; |
| mmc_req.data = &data; |
| |
| sdio_claim_host(ar_sdio->func); |
| |
| mmc_set_data_timeout(&data, ar_sdio->func->card); |
| |
| trace_ath6kl_sdio_scat(scat_req->addr, |
| scat_req->req, |
| scat_req->len, |
| scat_req->scat_entries, |
| scat_req->scat_list); |
| |
| /* synchronous call to process request */ |
| mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req); |
| |
| sdio_release_host(ar_sdio->func); |
| |
| status = cmd.error ? cmd.error : data.error; |
| |
| scat_complete: |
| scat_req->status = status; |
| |
| if (scat_req->status) |
| ath6kl_err("Scatter write request failed:%d\n", |
| scat_req->status); |
| |
| if (scat_req->req & HIF_ASYNCHRONOUS) |
| scat_req->complete(ar_sdio->ar->htc_target, scat_req); |
| |
| return status; |
| } |
| |
| static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio, |
| int n_scat_entry, int n_scat_req, |
| bool virt_scat) |
| { |
| struct hif_scatter_req *s_req; |
| struct bus_request *bus_req; |
| int i, scat_req_sz, scat_list_sz, size; |
| u8 *virt_buf; |
| |
| scat_list_sz = n_scat_entry * sizeof(struct hif_scatter_item); |
| scat_req_sz = sizeof(*s_req) + scat_list_sz; |
| |
| if (!virt_scat) |
| size = sizeof(struct scatterlist) * n_scat_entry; |
| else |
| size = 2 * L1_CACHE_BYTES + |
| ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER; |
| |
| for (i = 0; i < n_scat_req; i++) { |
| /* allocate the scatter request */ |
| s_req = kzalloc(scat_req_sz, GFP_KERNEL); |
| if (!s_req) |
| return -ENOMEM; |
| |
| if (virt_scat) { |
| virt_buf = kzalloc(size, GFP_KERNEL); |
| if (!virt_buf) { |
| kfree(s_req); |
| return -ENOMEM; |
| } |
| |
| s_req->virt_dma_buf = |
| (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf); |
| } else { |
| /* allocate sglist */ |
| s_req->sgentries = kzalloc(size, GFP_KERNEL); |
| |
| if (!s_req->sgentries) { |
| kfree(s_req); |
| return -ENOMEM; |
| } |
| } |
| |
| /* allocate a bus request for this scatter request */ |
| bus_req = ath6kl_sdio_alloc_busreq(ar_sdio); |
| if (!bus_req) { |
| kfree(s_req->sgentries); |
| kfree(s_req->virt_dma_buf); |
| kfree(s_req); |
| return -ENOMEM; |
| } |
| |
| /* assign the scatter request to this bus request */ |
| bus_req->scat_req = s_req; |
| s_req->busrequest = bus_req; |
| |
| s_req->virt_scat = virt_scat; |
| |
| /* add it to the scatter pool */ |
| hif_scatter_req_add(ar_sdio->ar, s_req); |
| } |
| |
| return 0; |
| } |
| |
| static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf, |
| u32 len, u32 request) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| u8 *tbuf = NULL; |
| int ret; |
| bool bounced = false; |
| |
| if (request & HIF_BLOCK_BASIS) |
| len = round_down(len, HIF_MBOX_BLOCK_SIZE); |
| |
| if (buf_needs_bounce(buf)) { |
| if (!ar_sdio->dma_buffer) |
| return -ENOMEM; |
| mutex_lock(&ar_sdio->dma_buffer_mutex); |
| tbuf = ar_sdio->dma_buffer; |
| |
| if (request & HIF_WRITE) |
| memcpy(tbuf, buf, len); |
| |
| bounced = true; |
| } else { |
| tbuf = buf; |
| } |
| |
| ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len); |
| if ((request & HIF_READ) && bounced) |
| memcpy(buf, tbuf, len); |
| |
| if (bounced) |
| mutex_unlock(&ar_sdio->dma_buffer_mutex); |
| |
| return ret; |
| } |
| |
| static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio, |
| struct bus_request *req) |
| { |
| if (req->scat_req) { |
| ath6kl_sdio_scat_rw(ar_sdio, req); |
| } else { |
| void *context; |
| int status; |
| |
| status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address, |
| req->buffer, req->length, |
| req->request); |
| context = req->packet; |
| ath6kl_sdio_free_bus_req(ar_sdio, req); |
| ath6kl_hif_rw_comp_handler(context, status); |
| } |
| } |
| |
| static void ath6kl_sdio_write_async_work(struct work_struct *work) |
| { |
| struct ath6kl_sdio *ar_sdio; |
| struct bus_request *req, *tmp_req; |
| |
| ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work); |
| |
| spin_lock_bh(&ar_sdio->wr_async_lock); |
| list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { |
| list_del(&req->list); |
| spin_unlock_bh(&ar_sdio->wr_async_lock); |
| __ath6kl_sdio_write_async(ar_sdio, req); |
| spin_lock_bh(&ar_sdio->wr_async_lock); |
| } |
| spin_unlock_bh(&ar_sdio->wr_async_lock); |
| } |
| |
| static void ath6kl_sdio_irq_handler(struct sdio_func *func) |
| { |
| int status; |
| struct ath6kl_sdio *ar_sdio; |
| |
| ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n"); |
| |
| ar_sdio = sdio_get_drvdata(func); |
| atomic_set(&ar_sdio->irq_handling, 1); |
| /* |
| * Release the host during interrups so we can pick it back up when |
| * we process commands. |
| */ |
| sdio_release_host(ar_sdio->func); |
| |
| status = ath6kl_hif_intr_bh_handler(ar_sdio->ar); |
| sdio_claim_host(ar_sdio->func); |
| |
| atomic_set(&ar_sdio->irq_handling, 0); |
| wake_up(&ar_sdio->irq_wq); |
| |
| WARN_ON(status && status != -ECANCELED); |
| } |
| |
| static int ath6kl_sdio_power_on(struct ath6kl *ar) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| struct sdio_func *func = ar_sdio->func; |
| int ret = 0; |
| |
| if (!ar_sdio->is_disabled) |
| return 0; |
| |
| ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n"); |
| |
| sdio_claim_host(func); |
| |
| ret = sdio_enable_func(func); |
| if (ret) { |
| ath6kl_err("Unable to enable sdio func: %d)\n", ret); |
| sdio_release_host(func); |
| return ret; |
| } |
| |
| sdio_release_host(func); |
| |
| /* |
| * Wait for hardware to initialise. It should take a lot less than |
| * 10 ms but let's be conservative here. |
| */ |
| msleep(10); |
| |
| ret = ath6kl_sdio_config(ar); |
| if (ret) { |
| ath6kl_err("Failed to config sdio: %d\n", ret); |
| goto out; |
| } |
| |
| ar_sdio->is_disabled = false; |
| |
| out: |
| return ret; |
| } |
| |
| static int ath6kl_sdio_power_off(struct ath6kl *ar) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| int ret; |
| |
| if (ar_sdio->is_disabled) |
| return 0; |
| |
| ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n"); |
| |
| /* Disable the card */ |
| sdio_claim_host(ar_sdio->func); |
| ret = sdio_disable_func(ar_sdio->func); |
| sdio_release_host(ar_sdio->func); |
| |
| if (ret) |
| return ret; |
| |
| ar_sdio->is_disabled = true; |
| |
| return ret; |
| } |
| |
| static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer, |
| u32 length, u32 request, |
| struct htc_packet *packet) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| struct bus_request *bus_req; |
| |
| bus_req = ath6kl_sdio_alloc_busreq(ar_sdio); |
| |
| if (WARN_ON_ONCE(!bus_req)) |
| return -ENOMEM; |
| |
| bus_req->address = address; |
| bus_req->buffer = buffer; |
| bus_req->length = length; |
| bus_req->request = request; |
| bus_req->packet = packet; |
| |
| spin_lock_bh(&ar_sdio->wr_async_lock); |
| list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); |
| spin_unlock_bh(&ar_sdio->wr_async_lock); |
| queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work); |
| |
| return 0; |
| } |
| |
| static void ath6kl_sdio_irq_enable(struct ath6kl *ar) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| int ret; |
| |
| sdio_claim_host(ar_sdio->func); |
| |
| /* Register the isr */ |
| ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler); |
| if (ret) |
| ath6kl_err("Failed to claim sdio irq: %d\n", ret); |
| |
| sdio_release_host(ar_sdio->func); |
| } |
| |
| static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| |
| return !atomic_read(&ar_sdio->irq_handling); |
| } |
| |
| static void ath6kl_sdio_irq_disable(struct ath6kl *ar) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| int ret; |
| |
| sdio_claim_host(ar_sdio->func); |
| |
| if (atomic_read(&ar_sdio->irq_handling)) { |
| sdio_release_host(ar_sdio->func); |
| |
| ret = wait_event_interruptible(ar_sdio->irq_wq, |
| ath6kl_sdio_is_on_irq(ar)); |
| if (ret) |
| return; |
| |
| sdio_claim_host(ar_sdio->func); |
| } |
| |
| ret = sdio_release_irq(ar_sdio->func); |
| if (ret) |
| ath6kl_err("Failed to release sdio irq: %d\n", ret); |
| |
| sdio_release_host(ar_sdio->func); |
| } |
| |
| static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| struct hif_scatter_req *node = NULL; |
| |
| spin_lock_bh(&ar_sdio->scat_lock); |
| |
| if (!list_empty(&ar_sdio->scat_req)) { |
| node = list_first_entry(&ar_sdio->scat_req, |
| struct hif_scatter_req, list); |
| list_del(&node->list); |
| |
| node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req); |
| } |
| |
| spin_unlock_bh(&ar_sdio->scat_lock); |
| |
| return node; |
| } |
| |
| static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar, |
| struct hif_scatter_req *s_req) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| |
| spin_lock_bh(&ar_sdio->scat_lock); |
| |
| list_add_tail(&s_req->list, &ar_sdio->scat_req); |
| |
| spin_unlock_bh(&ar_sdio->scat_lock); |
| } |
| |
| /* scatter gather read write request */ |
| static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar, |
| struct hif_scatter_req *scat_req) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| u32 request = scat_req->req; |
| int status = 0; |
| |
| if (!scat_req->len) |
| return -EINVAL; |
| |
| ath6kl_dbg(ATH6KL_DBG_SCATTER, |
| "hif-scatter: total len: %d scatter entries: %d\n", |
| scat_req->len, scat_req->scat_entries); |
| |
| if (request & HIF_SYNCHRONOUS) { |
| status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest); |
| } else { |
| spin_lock_bh(&ar_sdio->wr_async_lock); |
| list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq); |
| spin_unlock_bh(&ar_sdio->wr_async_lock); |
| queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work); |
| } |
| |
| return status; |
| } |
| |
| /* clean up scatter support */ |
| static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| struct hif_scatter_req *s_req, *tmp_req; |
| |
| /* empty the free list */ |
| spin_lock_bh(&ar_sdio->scat_lock); |
| list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) { |
| list_del(&s_req->list); |
| spin_unlock_bh(&ar_sdio->scat_lock); |
| |
| /* |
| * FIXME: should we also call completion handler with |
| * ath6kl_hif_rw_comp_handler() with status -ECANCELED so |
| * that the packet is properly freed? |
| */ |
| if (s_req->busrequest) { |
| s_req->busrequest->scat_req = 0; |
| ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest); |
| } |
| kfree(s_req->virt_dma_buf); |
| kfree(s_req->sgentries); |
| kfree(s_req); |
| |
| spin_lock_bh(&ar_sdio->scat_lock); |
| } |
| spin_unlock_bh(&ar_sdio->scat_lock); |
| |
| ar_sdio->scatter_enabled = false; |
| } |
| |
| /* setup of HIF scatter resources */ |
| static int ath6kl_sdio_enable_scatter(struct ath6kl *ar) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| struct htc_target *target = ar->htc_target; |
| int ret = 0; |
| bool virt_scat = false; |
| |
| if (ar_sdio->scatter_enabled) |
| return 0; |
| |
| ar_sdio->scatter_enabled = true; |
| |
| /* check if host supports scatter and it meets our requirements */ |
| if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) { |
| ath6kl_err("host only supports scatter of :%d entries, need: %d\n", |
| ar_sdio->func->card->host->max_segs, |
| MAX_SCATTER_ENTRIES_PER_REQ); |
| virt_scat = true; |
| } |
| |
| if (!virt_scat) { |
| ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio, |
| MAX_SCATTER_ENTRIES_PER_REQ, |
| MAX_SCATTER_REQUESTS, virt_scat); |
| |
| if (!ret) { |
| ath6kl_dbg(ATH6KL_DBG_BOOT, |
| "hif-scatter enabled requests %d entries %d\n", |
| MAX_SCATTER_REQUESTS, |
| MAX_SCATTER_ENTRIES_PER_REQ); |
| |
| target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ; |
| target->max_xfer_szper_scatreq = |
| MAX_SCATTER_REQ_TRANSFER_SIZE; |
| } else { |
| ath6kl_sdio_cleanup_scatter(ar); |
| ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n"); |
| } |
| } |
| |
| if (virt_scat || ret) { |
| ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio, |
| ATH6KL_SCATTER_ENTRIES_PER_REQ, |
| ATH6KL_SCATTER_REQS, virt_scat); |
| |
| if (ret) { |
| ath6kl_err("failed to alloc virtual scatter resources !\n"); |
| ath6kl_sdio_cleanup_scatter(ar); |
| return ret; |
| } |
| |
| ath6kl_dbg(ATH6KL_DBG_BOOT, |
| "virtual scatter enabled requests %d entries %d\n", |
| ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ); |
| |
| target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ; |
| target->max_xfer_szper_scatreq = |
| ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER; |
| } |
| |
| return 0; |
| } |
| |
| static int ath6kl_sdio_config(struct ath6kl *ar) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| struct sdio_func *func = ar_sdio->func; |
| int ret; |
| |
| sdio_claim_host(func); |
| |
| if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >= |
| MANUFACTURER_ID_AR6003_BASE) { |
| /* enable 4-bit ASYNC interrupt on AR6003 or later */ |
| ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card, |
| CCCR_SDIO_IRQ_MODE_REG, |
| SDIO_IRQ_MODE_ASYNC_4BIT_IRQ); |
| if (ret) { |
| ath6kl_err("Failed to enable 4-bit async irq mode %d\n", |
| ret); |
| goto out; |
| } |
| |
| ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n"); |
| } |
| |
| /* give us some time to enable, in ms */ |
| func->enable_timeout = 100; |
| |
| ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE); |
| if (ret) { |
| ath6kl_err("Set sdio block size %d failed: %d)\n", |
| HIF_MBOX_BLOCK_SIZE, ret); |
| goto out; |
| } |
| |
| out: |
| sdio_release_host(func); |
| |
| return ret; |
| } |
| |
| static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| struct sdio_func *func = ar_sdio->func; |
| mmc_pm_flag_t flags; |
| int ret; |
| |
| flags = sdio_get_host_pm_caps(func); |
| |
| ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags); |
| |
| if (!(flags & MMC_PM_WAKE_SDIO_IRQ) || |
| !(flags & MMC_PM_KEEP_POWER)) |
| return -EINVAL; |
| |
| ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER); |
| if (ret) { |
| ath6kl_err("set sdio keep pwr flag failed: %d\n", ret); |
| return ret; |
| } |
| |
| /* sdio irq wakes up host */ |
| ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ); |
| if (ret) |
| ath6kl_err("set sdio wake irq flag failed: %d\n", ret); |
| |
| return ret; |
| } |
| |
| static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| struct sdio_func *func = ar_sdio->func; |
| mmc_pm_flag_t flags; |
| bool try_deepsleep = false; |
| int ret; |
| |
| if (ar->suspend_mode == WLAN_POWER_STATE_WOW || |
| (!ar->suspend_mode && wow)) { |
| ret = ath6kl_set_sdio_pm_caps(ar); |
| if (ret) |
| goto cut_pwr; |
| |
| ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow); |
| if (ret && ret != -ENOTCONN) |
| ath6kl_err("wow suspend failed: %d\n", ret); |
| |
| if (ret && |
| (!ar->wow_suspend_mode || |
| ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP)) |
| try_deepsleep = true; |
| else if (ret && |
| ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR) |
| goto cut_pwr; |
| if (!ret) |
| return 0; |
| } |
| |
| if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP || |
| !ar->suspend_mode || try_deepsleep) { |
| flags = sdio_get_host_pm_caps(func); |
| if (!(flags & MMC_PM_KEEP_POWER)) |
| goto cut_pwr; |
| |
| ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER); |
| if (ret) |
| goto cut_pwr; |
| |
| /* |
| * Workaround to support Deep Sleep with MSM, set the host pm |
| * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable |
| * the sdc2_clock and internally allows MSM to enter |
| * TCXO shutdown properly. |
| */ |
| if ((flags & MMC_PM_WAKE_SDIO_IRQ)) { |
| ret = sdio_set_host_pm_flags(func, |
| MMC_PM_WAKE_SDIO_IRQ); |
| if (ret) |
| goto cut_pwr; |
| } |
| |
| ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP, |
| NULL); |
| if (ret) |
| goto cut_pwr; |
| |
| return 0; |
| } |
| |
| cut_pwr: |
| if (func->card && func->card->host) |
| func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER; |
| |
| return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL); |
| } |
| |
| static int ath6kl_sdio_resume(struct ath6kl *ar) |
| { |
| switch (ar->state) { |
| case ATH6KL_STATE_OFF: |
| case ATH6KL_STATE_CUTPOWER: |
| ath6kl_dbg(ATH6KL_DBG_SUSPEND, |
| "sdio resume configuring sdio\n"); |
| |
| /* need to set sdio settings after power is cut from sdio */ |
| ath6kl_sdio_config(ar); |
| break; |
| |
| case ATH6KL_STATE_ON: |
| break; |
| |
| case ATH6KL_STATE_DEEPSLEEP: |
| break; |
| |
| case ATH6KL_STATE_WOW: |
| break; |
| |
| case ATH6KL_STATE_SUSPENDING: |
| break; |
| |
| case ATH6KL_STATE_RESUMING: |
| break; |
| |
| case ATH6KL_STATE_RECOVERY: |
| break; |
| } |
| |
| ath6kl_cfg80211_resume(ar); |
| |
| return 0; |
| } |
| |
| /* set the window address register (using 4-byte register access ). */ |
| static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr) |
| { |
| int status; |
| u8 addr_val[4]; |
| s32 i; |
| |
| /* |
| * Write bytes 1,2,3 of the register to set the upper address bytes, |
| * the LSB is written last to initiate the access cycle |
| */ |
| |
| for (i = 1; i <= 3; i++) { |
| /* |
| * Fill the buffer with the address byte value we want to |
| * hit 4 times. |
| */ |
| memset(addr_val, ((u8 *)&addr)[i], 4); |
| |
| /* |
| * Hit each byte of the register address with a 4-byte |
| * write operation to the same address, this is a harmless |
| * operation. |
| */ |
| status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val, |
| 4, HIF_WR_SYNC_BYTE_FIX); |
| if (status) |
| break; |
| } |
| |
| if (status) { |
| ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n", |
| __func__, addr, reg_addr); |
| return status; |
| } |
| |
| /* |
| * Write the address register again, this time write the whole |
| * 4-byte value. The effect here is that the LSB write causes the |
| * cycle to start, the extra 3 byte write to bytes 1,2,3 has no |
| * effect since we are writing the same values again |
| */ |
| status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr), |
| 4, HIF_WR_SYNC_BYTE_INC); |
| |
| if (status) { |
| ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n", |
| __func__, addr, reg_addr); |
| return status; |
| } |
| |
| return 0; |
| } |
| |
| static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data) |
| { |
| int status; |
| |
| /* set window register to start read cycle */ |
| status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS, |
| address); |
| |
| if (status) |
| return status; |
| |
| /* read the data */ |
| status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS, |
| (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC); |
| if (status) { |
| ath6kl_err("%s: failed to read from window data addr\n", |
| __func__); |
| return status; |
| } |
| |
| return status; |
| } |
| |
| static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address, |
| __le32 data) |
| { |
| int status; |
| u32 val = (__force u32) data; |
| |
| /* set write data */ |
| status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS, |
| (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC); |
| if (status) { |
| ath6kl_err("%s: failed to write 0x%x to window data addr\n", |
| __func__, data); |
| return status; |
| } |
| |
| /* set window register, which starts the write cycle */ |
| return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS, |
| address); |
| } |
| |
| static int ath6kl_sdio_bmi_credits(struct ath6kl *ar) |
| { |
| u32 addr; |
| unsigned long timeout; |
| int ret; |
| |
| ar->bmi.cmd_credits = 0; |
| |
| /* Read the counter register to get the command credits */ |
| addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4; |
| |
| timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT); |
| while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) { |
| /* |
| * Hit the credit counter with a 4-byte access, the first byte |
| * read will hit the counter and cause a decrement, while the |
| * remaining 3 bytes has no effect. The rationale behind this |
| * is to make all HIF accesses 4-byte aligned. |
| */ |
| ret = ath6kl_sdio_read_write_sync(ar, addr, |
| (u8 *)&ar->bmi.cmd_credits, 4, |
| HIF_RD_SYNC_BYTE_INC); |
| if (ret) { |
| ath6kl_err("Unable to decrement the command credit count register: %d\n", |
| ret); |
| return ret; |
| } |
| |
| /* The counter is only 8 bits. |
| * Ignore anything in the upper 3 bytes |
| */ |
| ar->bmi.cmd_credits &= 0xFF; |
| } |
| |
| if (!ar->bmi.cmd_credits) { |
| ath6kl_err("bmi communication timeout\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar) |
| { |
| unsigned long timeout; |
| u32 rx_word = 0; |
| int ret = 0; |
| |
| timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT); |
| while ((time_before(jiffies, timeout)) && !rx_word) { |
| ret = ath6kl_sdio_read_write_sync(ar, |
| RX_LOOKAHEAD_VALID_ADDRESS, |
| (u8 *)&rx_word, sizeof(rx_word), |
| HIF_RD_SYNC_BYTE_INC); |
| if (ret) { |
| ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n"); |
| return ret; |
| } |
| |
| /* all we really want is one bit */ |
| rx_word &= (1 << ENDPOINT1); |
| } |
| |
| if (!rx_word) { |
| ath6kl_err("bmi_recv_buf FIFO empty\n"); |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len) |
| { |
| int ret; |
| u32 addr; |
| |
| ret = ath6kl_sdio_bmi_credits(ar); |
| if (ret) |
| return ret; |
| |
| addr = ar->mbox_info.htc_addr; |
| |
| ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len, |
| HIF_WR_SYNC_BYTE_INC); |
| if (ret) { |
| ath6kl_err("unable to send the bmi data to the device\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len) |
| { |
| int ret; |
| u32 addr; |
| |
| /* |
| * During normal bootup, small reads may be required. |
| * Rather than issue an HIF Read and then wait as the Target |
| * adds successive bytes to the FIFO, we wait here until |
| * we know that response data is available. |
| * |
| * This allows us to cleanly timeout on an unexpected |
| * Target failure rather than risk problems at the HIF level. |
| * In particular, this avoids SDIO timeouts and possibly garbage |
| * data on some host controllers. And on an interconnect |
| * such as Compact Flash (as well as some SDIO masters) which |
| * does not provide any indication on data timeout, it avoids |
| * a potential hang or garbage response. |
| * |
| * Synchronization is more difficult for reads larger than the |
| * size of the MBOX FIFO (128B), because the Target is unable |
| * to push the 129th byte of data until AFTER the Host posts an |
| * HIF Read and removes some FIFO data. So for large reads the |
| * Host proceeds to post an HIF Read BEFORE all the data is |
| * actually available to read. Fortunately, large BMI reads do |
| * not occur in practice -- they're supported for debug/development. |
| * |
| * So Host/Target BMI synchronization is divided into these cases: |
| * CASE 1: length < 4 |
| * Should not happen |
| * |
| * CASE 2: 4 <= length <= 128 |
| * Wait for first 4 bytes to be in FIFO |
| * If CONSERVATIVE_BMI_READ is enabled, also wait for |
| * a BMI command credit, which indicates that the ENTIRE |
| * response is available in the the FIFO |
| * |
| * CASE 3: length > 128 |
| * Wait for the first 4 bytes to be in FIFO |
| * |
| * For most uses, a small timeout should be sufficient and we will |
| * usually see a response quickly; but there may be some unusual |
| * (debug) cases of BMI_EXECUTE where we want an larger timeout. |
| * For now, we use an unbounded busy loop while waiting for |
| * BMI_EXECUTE. |
| * |
| * If BMI_EXECUTE ever needs to support longer-latency execution, |
| * especially in production, this code needs to be enhanced to sleep |
| * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently |
| * a function of Host processor speed. |
| */ |
| if (len >= 4) { /* NB: Currently, always true */ |
| ret = ath6kl_bmi_get_rx_lkahd(ar); |
| if (ret) |
| return ret; |
| } |
| |
| addr = ar->mbox_info.htc_addr; |
| ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len, |
| HIF_RD_SYNC_BYTE_INC); |
| if (ret) { |
| ath6kl_err("Unable to read the bmi data from the device: %d\n", |
| ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void ath6kl_sdio_stop(struct ath6kl *ar) |
| { |
| struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); |
| struct bus_request *req, *tmp_req; |
| void *context; |
| |
| /* FIXME: make sure that wq is not queued again */ |
| |
| cancel_work_sync(&ar_sdio->wr_async_work); |
| |
| spin_lock_bh(&ar_sdio->wr_async_lock); |
| |
| list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { |
| list_del(&req->list); |
| |
| if (req->scat_req) { |
| /* this is a scatter gather request */ |
| req->scat_req->status = -ECANCELED; |
| req->scat_req->complete(ar_sdio->ar->htc_target, |
| req->scat_req); |
| } else { |
| context = req->packet; |
| ath6kl_sdio_free_bus_req(ar_sdio, req); |
| ath6kl_hif_rw_comp_handler(context, -ECANCELED); |
| } |
| } |
| |
| spin_unlock_bh(&ar_sdio->wr_async_lock); |
| |
| WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4); |
| } |
| |
| static const struct ath6kl_hif_ops ath6kl_sdio_ops = { |
| .read_write_sync = ath6kl_sdio_read_write_sync, |
| .write_async = ath6kl_sdio_write_async, |
| .irq_enable = ath6kl_sdio_irq_enable, |
| .irq_disable = ath6kl_sdio_irq_disable, |
| .scatter_req_get = ath6kl_sdio_scatter_req_get, |
| .scatter_req_add = ath6kl_sdio_scatter_req_add, |
| .enable_scatter = ath6kl_sdio_enable_scatter, |
| .scat_req_rw = ath6kl_sdio_async_rw_scatter, |
| .cleanup_scatter = ath6kl_sdio_cleanup_scatter, |
| .suspend = ath6kl_sdio_suspend, |
| .resume = ath6kl_sdio_resume, |
| .diag_read32 = ath6kl_sdio_diag_read32, |
| .diag_write32 = ath6kl_sdio_diag_write32, |
| .bmi_read = ath6kl_sdio_bmi_read, |
| .bmi_write = ath6kl_sdio_bmi_write, |
| .power_on = ath6kl_sdio_power_on, |
| .power_off = ath6kl_sdio_power_off, |
| .stop = ath6kl_sdio_stop, |
| }; |
| |
| #ifdef CONFIG_PM_SLEEP |
| |
| /* |
| * Empty handlers so that mmc subsystem doesn't remove us entirely during |
| * suspend. We instead follow cfg80211 suspend/resume handlers. |
| */ |
| static int ath6kl_sdio_pm_suspend(struct device *device) |
| { |
| ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n"); |
| |
| return 0; |
| } |
| |
| static int ath6kl_sdio_pm_resume(struct device *device) |
| { |
| ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n"); |
| |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend, |
| ath6kl_sdio_pm_resume); |
| |
| #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops) |
| |
| #else |
| |
| #define ATH6KL_SDIO_PM_OPS NULL |
| |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| static int ath6kl_sdio_probe(struct sdio_func *func, |
| const struct sdio_device_id *id) |
| { |
| int ret; |
| struct ath6kl_sdio *ar_sdio; |
| struct ath6kl *ar; |
| int count; |
| |
| ath6kl_dbg(ATH6KL_DBG_BOOT, |
| "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", |
| func->num, func->vendor, func->device, |
| func->max_blksize, func->cur_blksize); |
| |
| ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL); |
| if (!ar_sdio) |
| return -ENOMEM; |
| |
| ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL); |
| if (!ar_sdio->dma_buffer) { |
| ret = -ENOMEM; |
| goto err_hif; |
| } |
| |
| ar_sdio->func = func; |
| sdio_set_drvdata(func, ar_sdio); |
| |
| ar_sdio->id = id; |
| ar_sdio->is_disabled = true; |
| |
| spin_lock_init(&ar_sdio->lock); |
| spin_lock_init(&ar_sdio->scat_lock); |
| spin_lock_init(&ar_sdio->wr_async_lock); |
| mutex_init(&ar_sdio->dma_buffer_mutex); |
| |
| INIT_LIST_HEAD(&ar_sdio->scat_req); |
| INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); |
| INIT_LIST_HEAD(&ar_sdio->wr_asyncq); |
| |
| INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work); |
| |
| init_waitqueue_head(&ar_sdio->irq_wq); |
| |
| for (count = 0; count < BUS_REQUEST_MAX_NUM; count++) |
| ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]); |
| |
| ar = ath6kl_core_create(&ar_sdio->func->dev); |
| if (!ar) { |
| ath6kl_err("Failed to alloc ath6kl core\n"); |
| ret = -ENOMEM; |
| goto err_dma; |
| } |
| |
| ar_sdio->ar = ar; |
| ar->hif_type = ATH6KL_HIF_TYPE_SDIO; |
| ar->hif_priv = ar_sdio; |
| ar->hif_ops = &ath6kl_sdio_ops; |
| ar->bmi.max_data_size = 256; |
| |
| ath6kl_sdio_set_mbox_info(ar); |
| |
| ret = ath6kl_sdio_config(ar); |
| if (ret) { |
| ath6kl_err("Failed to config sdio: %d\n", ret); |
| goto err_core_alloc; |
| } |
| |
| ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX); |
| if (ret) { |
| ath6kl_err("Failed to init ath6kl core\n"); |
| goto err_core_alloc; |
| } |
| |
| return ret; |
| |
| err_core_alloc: |
| ath6kl_core_destroy(ar_sdio->ar); |
| err_dma: |
| kfree(ar_sdio->dma_buffer); |
| err_hif: |
| kfree(ar_sdio); |
| |
| return ret; |
| } |
| |
| static void ath6kl_sdio_remove(struct sdio_func *func) |
| { |
| struct ath6kl_sdio *ar_sdio; |
| |
| ath6kl_dbg(ATH6KL_DBG_BOOT, |
| "sdio removed func %d vendor 0x%x device 0x%x\n", |
| func->num, func->vendor, func->device); |
| |
| ar_sdio = sdio_get_drvdata(func); |
| |
| ath6kl_stop_txrx(ar_sdio->ar); |
| cancel_work_sync(&ar_sdio->wr_async_work); |
| |
| ath6kl_core_cleanup(ar_sdio->ar); |
| ath6kl_core_destroy(ar_sdio->ar); |
| |
| kfree(ar_sdio->dma_buffer); |
| kfree(ar_sdio); |
| } |
| |
| static const struct sdio_device_id ath6kl_sdio_devices[] = { |
| {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))}, |
| {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))}, |
| {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))}, |
| {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))}, |
| {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x2))}, |
| {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x18))}, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices); |
| |
| static struct sdio_driver ath6kl_sdio_driver = { |
| .name = "ath6kl_sdio", |
| .id_table = ath6kl_sdio_devices, |
| .probe = ath6kl_sdio_probe, |
| .remove = ath6kl_sdio_remove, |
| .drv.pm = ATH6KL_SDIO_PM_OPS, |
| }; |
| |
| static int __init ath6kl_sdio_init(void) |
| { |
| int ret; |
| |
| ret = sdio_register_driver(&ath6kl_sdio_driver); |
| if (ret) |
| ath6kl_err("sdio driver registration failed: %d\n", ret); |
| |
| return ret; |
| } |
| |
| static void __exit ath6kl_sdio_exit(void) |
| { |
| sdio_unregister_driver(&ath6kl_sdio_driver); |
| } |
| |
| module_init(ath6kl_sdio_init); |
| module_exit(ath6kl_sdio_exit); |
| |
| MODULE_AUTHOR("Atheros Communications, Inc."); |
| MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |
| MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE); |
| MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE); |
| MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE); |
| MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE); |
| MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE); |
| MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE); |
| MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE); |
| MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE); |
| MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE); |
| MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE); |
| MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE); |
| MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE); |