| /* |
| * This file is part of the Chelsio T4 Ethernet driver for Linux. |
| * |
| * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/skbuff.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/if_vlan.h> |
| #include <linux/ip.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/jiffies.h> |
| #include <linux/prefetch.h> |
| #include <linux/export.h> |
| #include <net/ipv6.h> |
| #include <net/tcp.h> |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| #include <net/busy_poll.h> |
| #endif /* CONFIG_NET_RX_BUSY_POLL */ |
| #ifdef CONFIG_CHELSIO_T4_FCOE |
| #include <scsi/fc/fc_fcoe.h> |
| #endif /* CONFIG_CHELSIO_T4_FCOE */ |
| #include "cxgb4.h" |
| #include "t4_regs.h" |
| #include "t4_values.h" |
| #include "t4_msg.h" |
| #include "t4fw_api.h" |
| |
| /* |
| * Rx buffer size. We use largish buffers if possible but settle for single |
| * pages under memory shortage. |
| */ |
| #if PAGE_SHIFT >= 16 |
| # define FL_PG_ORDER 0 |
| #else |
| # define FL_PG_ORDER (16 - PAGE_SHIFT) |
| #endif |
| |
| /* RX_PULL_LEN should be <= RX_COPY_THRES */ |
| #define RX_COPY_THRES 256 |
| #define RX_PULL_LEN 128 |
| |
| /* |
| * Main body length for sk_buffs used for Rx Ethernet packets with fragments. |
| * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. |
| */ |
| #define RX_PKT_SKB_LEN 512 |
| |
| /* |
| * Max number of Tx descriptors we clean up at a time. Should be modest as |
| * freeing skbs isn't cheap and it happens while holding locks. We just need |
| * to free packets faster than they arrive, we eventually catch up and keep |
| * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. |
| */ |
| #define MAX_TX_RECLAIM 16 |
| |
| /* |
| * Max number of Rx buffers we replenish at a time. Again keep this modest, |
| * allocating buffers isn't cheap either. |
| */ |
| #define MAX_RX_REFILL 16U |
| |
| /* |
| * Period of the Rx queue check timer. This timer is infrequent as it has |
| * something to do only when the system experiences severe memory shortage. |
| */ |
| #define RX_QCHECK_PERIOD (HZ / 2) |
| |
| /* |
| * Period of the Tx queue check timer. |
| */ |
| #define TX_QCHECK_PERIOD (HZ / 2) |
| |
| /* |
| * Max number of Tx descriptors to be reclaimed by the Tx timer. |
| */ |
| #define MAX_TIMER_TX_RECLAIM 100 |
| |
| /* |
| * Timer index used when backing off due to memory shortage. |
| */ |
| #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) |
| |
| /* |
| * Suspend an Ethernet Tx queue with fewer available descriptors than this. |
| * This is the same as calc_tx_descs() for a TSO packet with |
| * nr_frags == MAX_SKB_FRAGS. |
| */ |
| #define ETHTXQ_STOP_THRES \ |
| (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8)) |
| |
| /* |
| * Suspension threshold for non-Ethernet Tx queues. We require enough room |
| * for a full sized WR. |
| */ |
| #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) |
| |
| /* |
| * Max Tx descriptor space we allow for an Ethernet packet to be inlined |
| * into a WR. |
| */ |
| #define MAX_IMM_TX_PKT_LEN 256 |
| |
| /* |
| * Max size of a WR sent through a control Tx queue. |
| */ |
| #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN |
| |
| struct tx_sw_desc { /* SW state per Tx descriptor */ |
| struct sk_buff *skb; |
| struct ulptx_sgl *sgl; |
| }; |
| |
| struct rx_sw_desc { /* SW state per Rx descriptor */ |
| struct page *page; |
| dma_addr_t dma_addr; |
| }; |
| |
| /* |
| * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb |
| * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. |
| * We could easily support more but there doesn't seem to be much need for |
| * that ... |
| */ |
| #define FL_MTU_SMALL 1500 |
| #define FL_MTU_LARGE 9000 |
| |
| static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, |
| unsigned int mtu) |
| { |
| struct sge *s = &adapter->sge; |
| |
| return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); |
| } |
| |
| #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) |
| #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) |
| |
| /* |
| * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses |
| * these to specify the buffer size as an index into the SGE Free List Buffer |
| * Size register array. We also use bit 4, when the buffer has been unmapped |
| * for DMA, but this is of course never sent to the hardware and is only used |
| * to prevent double unmappings. All of the above requires that the Free List |
| * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are |
| * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal |
| * Free List Buffer alignment is 32 bytes, this works out for us ... |
| */ |
| enum { |
| RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ |
| RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ |
| RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ |
| |
| /* |
| * XXX We shouldn't depend on being able to use these indices. |
| * XXX Especially when some other Master PF has initialized the |
| * XXX adapter or we use the Firmware Configuration File. We |
| * XXX should really search through the Host Buffer Size register |
| * XXX array for the appropriately sized buffer indices. |
| */ |
| RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ |
| RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ |
| |
| RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ |
| RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ |
| }; |
| |
| static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; |
| #define MIN_NAPI_WORK 1 |
| |
| static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) |
| { |
| return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; |
| } |
| |
| static inline bool is_buf_mapped(const struct rx_sw_desc *d) |
| { |
| return !(d->dma_addr & RX_UNMAPPED_BUF); |
| } |
| |
| /** |
| * txq_avail - return the number of available slots in a Tx queue |
| * @q: the Tx queue |
| * |
| * Returns the number of descriptors in a Tx queue available to write new |
| * packets. |
| */ |
| static inline unsigned int txq_avail(const struct sge_txq *q) |
| { |
| return q->size - 1 - q->in_use; |
| } |
| |
| /** |
| * fl_cap - return the capacity of a free-buffer list |
| * @fl: the FL |
| * |
| * Returns the capacity of a free-buffer list. The capacity is less than |
| * the size because one descriptor needs to be left unpopulated, otherwise |
| * HW will think the FL is empty. |
| */ |
| static inline unsigned int fl_cap(const struct sge_fl *fl) |
| { |
| return fl->size - 8; /* 1 descriptor = 8 buffers */ |
| } |
| |
| /** |
| * fl_starving - return whether a Free List is starving. |
| * @adapter: pointer to the adapter |
| * @fl: the Free List |
| * |
| * Tests specified Free List to see whether the number of buffers |
| * available to the hardware has falled below our "starvation" |
| * threshold. |
| */ |
| static inline bool fl_starving(const struct adapter *adapter, |
| const struct sge_fl *fl) |
| { |
| const struct sge *s = &adapter->sge; |
| |
| return fl->avail - fl->pend_cred <= s->fl_starve_thres; |
| } |
| |
| static int map_skb(struct device *dev, const struct sk_buff *skb, |
| dma_addr_t *addr) |
| { |
| const skb_frag_t *fp, *end; |
| const struct skb_shared_info *si; |
| |
| *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); |
| if (dma_mapping_error(dev, *addr)) |
| goto out_err; |
| |
| si = skb_shinfo(skb); |
| end = &si->frags[si->nr_frags]; |
| |
| for (fp = si->frags; fp < end; fp++) { |
| *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(dev, *addr)) |
| goto unwind; |
| } |
| return 0; |
| |
| unwind: |
| while (fp-- > si->frags) |
| dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); |
| |
| dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); |
| out_err: |
| return -ENOMEM; |
| } |
| |
| #ifdef CONFIG_NEED_DMA_MAP_STATE |
| static void unmap_skb(struct device *dev, const struct sk_buff *skb, |
| const dma_addr_t *addr) |
| { |
| const skb_frag_t *fp, *end; |
| const struct skb_shared_info *si; |
| |
| dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); |
| |
| si = skb_shinfo(skb); |
| end = &si->frags[si->nr_frags]; |
| for (fp = si->frags; fp < end; fp++) |
| dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); |
| } |
| |
| /** |
| * deferred_unmap_destructor - unmap a packet when it is freed |
| * @skb: the packet |
| * |
| * This is the packet destructor used for Tx packets that need to remain |
| * mapped until they are freed rather than until their Tx descriptors are |
| * freed. |
| */ |
| static void deferred_unmap_destructor(struct sk_buff *skb) |
| { |
| unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); |
| } |
| #endif |
| |
| static void unmap_sgl(struct device *dev, const struct sk_buff *skb, |
| const struct ulptx_sgl *sgl, const struct sge_txq *q) |
| { |
| const struct ulptx_sge_pair *p; |
| unsigned int nfrags = skb_shinfo(skb)->nr_frags; |
| |
| if (likely(skb_headlen(skb))) |
| dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), |
| DMA_TO_DEVICE); |
| else { |
| dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), |
| DMA_TO_DEVICE); |
| nfrags--; |
| } |
| |
| /* |
| * the complexity below is because of the possibility of a wrap-around |
| * in the middle of an SGL |
| */ |
| for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { |
| if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { |
| unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]), |
| ntohl(p->len[0]), DMA_TO_DEVICE); |
| dma_unmap_page(dev, be64_to_cpu(p->addr[1]), |
| ntohl(p->len[1]), DMA_TO_DEVICE); |
| p++; |
| } else if ((u8 *)p == (u8 *)q->stat) { |
| p = (const struct ulptx_sge_pair *)q->desc; |
| goto unmap; |
| } else if ((u8 *)p + 8 == (u8 *)q->stat) { |
| const __be64 *addr = (const __be64 *)q->desc; |
| |
| dma_unmap_page(dev, be64_to_cpu(addr[0]), |
| ntohl(p->len[0]), DMA_TO_DEVICE); |
| dma_unmap_page(dev, be64_to_cpu(addr[1]), |
| ntohl(p->len[1]), DMA_TO_DEVICE); |
| p = (const struct ulptx_sge_pair *)&addr[2]; |
| } else { |
| const __be64 *addr = (const __be64 *)q->desc; |
| |
| dma_unmap_page(dev, be64_to_cpu(p->addr[0]), |
| ntohl(p->len[0]), DMA_TO_DEVICE); |
| dma_unmap_page(dev, be64_to_cpu(addr[0]), |
| ntohl(p->len[1]), DMA_TO_DEVICE); |
| p = (const struct ulptx_sge_pair *)&addr[1]; |
| } |
| } |
| if (nfrags) { |
| __be64 addr; |
| |
| if ((u8 *)p == (u8 *)q->stat) |
| p = (const struct ulptx_sge_pair *)q->desc; |
| addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : |
| *(const __be64 *)q->desc; |
| dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), |
| DMA_TO_DEVICE); |
| } |
| } |
| |
| /** |
| * free_tx_desc - reclaims Tx descriptors and their buffers |
| * @adapter: the adapter |
| * @q: the Tx queue to reclaim descriptors from |
| * @n: the number of descriptors to reclaim |
| * @unmap: whether the buffers should be unmapped for DMA |
| * |
| * Reclaims Tx descriptors from an SGE Tx queue and frees the associated |
| * Tx buffers. Called with the Tx queue lock held. |
| */ |
| void free_tx_desc(struct adapter *adap, struct sge_txq *q, |
| unsigned int n, bool unmap) |
| { |
| struct tx_sw_desc *d; |
| unsigned int cidx = q->cidx; |
| struct device *dev = adap->pdev_dev; |
| |
| d = &q->sdesc[cidx]; |
| while (n--) { |
| if (d->skb) { /* an SGL is present */ |
| if (unmap) |
| unmap_sgl(dev, d->skb, d->sgl, q); |
| dev_consume_skb_any(d->skb); |
| d->skb = NULL; |
| } |
| ++d; |
| if (++cidx == q->size) { |
| cidx = 0; |
| d = q->sdesc; |
| } |
| } |
| q->cidx = cidx; |
| } |
| |
| /* |
| * Return the number of reclaimable descriptors in a Tx queue. |
| */ |
| static inline int reclaimable(const struct sge_txq *q) |
| { |
| int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx)); |
| hw_cidx -= q->cidx; |
| return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; |
| } |
| |
| /** |
| * reclaim_completed_tx - reclaims completed Tx descriptors |
| * @adap: the adapter |
| * @q: the Tx queue to reclaim completed descriptors from |
| * @unmap: whether the buffers should be unmapped for DMA |
| * |
| * Reclaims Tx descriptors that the SGE has indicated it has processed, |
| * and frees the associated buffers if possible. Called with the Tx |
| * queue locked. |
| */ |
| static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, |
| bool unmap) |
| { |
| int avail = reclaimable(q); |
| |
| if (avail) { |
| /* |
| * Limit the amount of clean up work we do at a time to keep |
| * the Tx lock hold time O(1). |
| */ |
| if (avail > MAX_TX_RECLAIM) |
| avail = MAX_TX_RECLAIM; |
| |
| free_tx_desc(adap, q, avail, unmap); |
| q->in_use -= avail; |
| } |
| } |
| |
| static inline int get_buf_size(struct adapter *adapter, |
| const struct rx_sw_desc *d) |
| { |
| struct sge *s = &adapter->sge; |
| unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; |
| int buf_size; |
| |
| switch (rx_buf_size_idx) { |
| case RX_SMALL_PG_BUF: |
| buf_size = PAGE_SIZE; |
| break; |
| |
| case RX_LARGE_PG_BUF: |
| buf_size = PAGE_SIZE << s->fl_pg_order; |
| break; |
| |
| case RX_SMALL_MTU_BUF: |
| buf_size = FL_MTU_SMALL_BUFSIZE(adapter); |
| break; |
| |
| case RX_LARGE_MTU_BUF: |
| buf_size = FL_MTU_LARGE_BUFSIZE(adapter); |
| break; |
| |
| default: |
| BUG_ON(1); |
| } |
| |
| return buf_size; |
| } |
| |
| /** |
| * free_rx_bufs - free the Rx buffers on an SGE free list |
| * @adap: the adapter |
| * @q: the SGE free list to free buffers from |
| * @n: how many buffers to free |
| * |
| * Release the next @n buffers on an SGE free-buffer Rx queue. The |
| * buffers must be made inaccessible to HW before calling this function. |
| */ |
| static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) |
| { |
| while (n--) { |
| struct rx_sw_desc *d = &q->sdesc[q->cidx]; |
| |
| if (is_buf_mapped(d)) |
| dma_unmap_page(adap->pdev_dev, get_buf_addr(d), |
| get_buf_size(adap, d), |
| PCI_DMA_FROMDEVICE); |
| put_page(d->page); |
| d->page = NULL; |
| if (++q->cidx == q->size) |
| q->cidx = 0; |
| q->avail--; |
| } |
| } |
| |
| /** |
| * unmap_rx_buf - unmap the current Rx buffer on an SGE free list |
| * @adap: the adapter |
| * @q: the SGE free list |
| * |
| * Unmap the current buffer on an SGE free-buffer Rx queue. The |
| * buffer must be made inaccessible to HW before calling this function. |
| * |
| * This is similar to @free_rx_bufs above but does not free the buffer. |
| * Do note that the FL still loses any further access to the buffer. |
| */ |
| static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) |
| { |
| struct rx_sw_desc *d = &q->sdesc[q->cidx]; |
| |
| if (is_buf_mapped(d)) |
| dma_unmap_page(adap->pdev_dev, get_buf_addr(d), |
| get_buf_size(adap, d), PCI_DMA_FROMDEVICE); |
| d->page = NULL; |
| if (++q->cidx == q->size) |
| q->cidx = 0; |
| q->avail--; |
| } |
| |
| static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) |
| { |
| if (q->pend_cred >= 8) { |
| u32 val = adap->params.arch.sge_fl_db; |
| |
| if (is_t4(adap->params.chip)) |
| val |= PIDX_V(q->pend_cred / 8); |
| else |
| val |= PIDX_T5_V(q->pend_cred / 8); |
| |
| /* Make sure all memory writes to the Free List queue are |
| * committed before we tell the hardware about them. |
| */ |
| wmb(); |
| |
| /* If we don't have access to the new User Doorbell (T5+), use |
| * the old doorbell mechanism; otherwise use the new BAR2 |
| * mechanism. |
| */ |
| if (unlikely(q->bar2_addr == NULL)) { |
| t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), |
| val | QID_V(q->cntxt_id)); |
| } else { |
| writel(val | QID_V(q->bar2_qid), |
| q->bar2_addr + SGE_UDB_KDOORBELL); |
| |
| /* This Write memory Barrier will force the write to |
| * the User Doorbell area to be flushed. |
| */ |
| wmb(); |
| } |
| q->pend_cred &= 7; |
| } |
| } |
| |
| static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, |
| dma_addr_t mapping) |
| { |
| sd->page = pg; |
| sd->dma_addr = mapping; /* includes size low bits */ |
| } |
| |
| /** |
| * refill_fl - refill an SGE Rx buffer ring |
| * @adap: the adapter |
| * @q: the ring to refill |
| * @n: the number of new buffers to allocate |
| * @gfp: the gfp flags for the allocations |
| * |
| * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, |
| * allocated with the supplied gfp flags. The caller must assure that |
| * @n does not exceed the queue's capacity. If afterwards the queue is |
| * found critically low mark it as starving in the bitmap of starving FLs. |
| * |
| * Returns the number of buffers allocated. |
| */ |
| static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, |
| gfp_t gfp) |
| { |
| struct sge *s = &adap->sge; |
| struct page *pg; |
| dma_addr_t mapping; |
| unsigned int cred = q->avail; |
| __be64 *d = &q->desc[q->pidx]; |
| struct rx_sw_desc *sd = &q->sdesc[q->pidx]; |
| int node; |
| |
| #ifdef CONFIG_DEBUG_FS |
| if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) |
| goto out; |
| #endif |
| |
| gfp |= __GFP_NOWARN; |
| node = dev_to_node(adap->pdev_dev); |
| |
| if (s->fl_pg_order == 0) |
| goto alloc_small_pages; |
| |
| /* |
| * Prefer large buffers |
| */ |
| while (n) { |
| pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); |
| if (unlikely(!pg)) { |
| q->large_alloc_failed++; |
| break; /* fall back to single pages */ |
| } |
| |
| mapping = dma_map_page(adap->pdev_dev, pg, 0, |
| PAGE_SIZE << s->fl_pg_order, |
| PCI_DMA_FROMDEVICE); |
| if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { |
| __free_pages(pg, s->fl_pg_order); |
| q->mapping_err++; |
| goto out; /* do not try small pages for this error */ |
| } |
| mapping |= RX_LARGE_PG_BUF; |
| *d++ = cpu_to_be64(mapping); |
| |
| set_rx_sw_desc(sd, pg, mapping); |
| sd++; |
| |
| q->avail++; |
| if (++q->pidx == q->size) { |
| q->pidx = 0; |
| sd = q->sdesc; |
| d = q->desc; |
| } |
| n--; |
| } |
| |
| alloc_small_pages: |
| while (n--) { |
| pg = alloc_pages_node(node, gfp, 0); |
| if (unlikely(!pg)) { |
| q->alloc_failed++; |
| break; |
| } |
| |
| mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, |
| PCI_DMA_FROMDEVICE); |
| if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { |
| put_page(pg); |
| q->mapping_err++; |
| goto out; |
| } |
| *d++ = cpu_to_be64(mapping); |
| |
| set_rx_sw_desc(sd, pg, mapping); |
| sd++; |
| |
| q->avail++; |
| if (++q->pidx == q->size) { |
| q->pidx = 0; |
| sd = q->sdesc; |
| d = q->desc; |
| } |
| } |
| |
| out: cred = q->avail - cred; |
| q->pend_cred += cred; |
| ring_fl_db(adap, q); |
| |
| if (unlikely(fl_starving(adap, q))) { |
| smp_wmb(); |
| q->low++; |
| set_bit(q->cntxt_id - adap->sge.egr_start, |
| adap->sge.starving_fl); |
| } |
| |
| return cred; |
| } |
| |
| static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) |
| { |
| refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), |
| GFP_ATOMIC); |
| } |
| |
| /** |
| * alloc_ring - allocate resources for an SGE descriptor ring |
| * @dev: the PCI device's core device |
| * @nelem: the number of descriptors |
| * @elem_size: the size of each descriptor |
| * @sw_size: the size of the SW state associated with each ring element |
| * @phys: the physical address of the allocated ring |
| * @metadata: address of the array holding the SW state for the ring |
| * @stat_size: extra space in HW ring for status information |
| * @node: preferred node for memory allocations |
| * |
| * Allocates resources for an SGE descriptor ring, such as Tx queues, |
| * free buffer lists, or response queues. Each SGE ring requires |
| * space for its HW descriptors plus, optionally, space for the SW state |
| * associated with each HW entry (the metadata). The function returns |
| * three values: the virtual address for the HW ring (the return value |
| * of the function), the bus address of the HW ring, and the address |
| * of the SW ring. |
| */ |
| static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, |
| size_t sw_size, dma_addr_t *phys, void *metadata, |
| size_t stat_size, int node) |
| { |
| size_t len = nelem * elem_size + stat_size; |
| void *s = NULL; |
| void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); |
| |
| if (!p) |
| return NULL; |
| if (sw_size) { |
| s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); |
| |
| if (!s) { |
| dma_free_coherent(dev, len, p, *phys); |
| return NULL; |
| } |
| } |
| if (metadata) |
| *(void **)metadata = s; |
| memset(p, 0, len); |
| return p; |
| } |
| |
| /** |
| * sgl_len - calculates the size of an SGL of the given capacity |
| * @n: the number of SGL entries |
| * |
| * Calculates the number of flits needed for a scatter/gather list that |
| * can hold the given number of entries. |
| */ |
| static inline unsigned int sgl_len(unsigned int n) |
| { |
| /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA |
| * addresses. The DSGL Work Request starts off with a 32-bit DSGL |
| * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, |
| * repeated sequences of { Length[i], Length[i+1], Address[i], |
| * Address[i+1] } (this ensures that all addresses are on 64-bit |
| * boundaries). If N is even, then Length[N+1] should be set to 0 and |
| * Address[N+1] is omitted. |
| * |
| * The following calculation incorporates all of the above. It's |
| * somewhat hard to follow but, briefly: the "+2" accounts for the |
| * first two flits which include the DSGL header, Length0 and |
| * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 |
| * flits for every pair of the remaining N) +1 if (n-1) is odd; and |
| * finally the "+((n-1)&1)" adds the one remaining flit needed if |
| * (n-1) is odd ... |
| */ |
| n--; |
| return (3 * n) / 2 + (n & 1) + 2; |
| } |
| |
| /** |
| * flits_to_desc - returns the num of Tx descriptors for the given flits |
| * @n: the number of flits |
| * |
| * Returns the number of Tx descriptors needed for the supplied number |
| * of flits. |
| */ |
| static inline unsigned int flits_to_desc(unsigned int n) |
| { |
| BUG_ON(n > SGE_MAX_WR_LEN / 8); |
| return DIV_ROUND_UP(n, 8); |
| } |
| |
| /** |
| * is_eth_imm - can an Ethernet packet be sent as immediate data? |
| * @skb: the packet |
| * |
| * Returns whether an Ethernet packet is small enough to fit as |
| * immediate data. Return value corresponds to headroom required. |
| */ |
| static inline int is_eth_imm(const struct sk_buff *skb) |
| { |
| int hdrlen = skb_shinfo(skb)->gso_size ? |
| sizeof(struct cpl_tx_pkt_lso_core) : 0; |
| |
| hdrlen += sizeof(struct cpl_tx_pkt); |
| if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) |
| return hdrlen; |
| return 0; |
| } |
| |
| /** |
| * calc_tx_flits - calculate the number of flits for a packet Tx WR |
| * @skb: the packet |
| * |
| * Returns the number of flits needed for a Tx WR for the given Ethernet |
| * packet, including the needed WR and CPL headers. |
| */ |
| static inline unsigned int calc_tx_flits(const struct sk_buff *skb) |
| { |
| unsigned int flits; |
| int hdrlen = is_eth_imm(skb); |
| |
| /* If the skb is small enough, we can pump it out as a work request |
| * with only immediate data. In that case we just have to have the |
| * TX Packet header plus the skb data in the Work Request. |
| */ |
| |
| if (hdrlen) |
| return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); |
| |
| /* Otherwise, we're going to have to construct a Scatter gather list |
| * of the skb body and fragments. We also include the flits necessary |
| * for the TX Packet Work Request and CPL. We always have a firmware |
| * Write Header (incorporated as part of the cpl_tx_pkt_lso and |
| * cpl_tx_pkt structures), followed by either a TX Packet Write CPL |
| * message or, if we're doing a Large Send Offload, an LSO CPL message |
| * with an embedded TX Packet Write CPL message. |
| */ |
| flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); |
| if (skb_shinfo(skb)->gso_size) |
| flits += (sizeof(struct fw_eth_tx_pkt_wr) + |
| sizeof(struct cpl_tx_pkt_lso_core) + |
| sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); |
| else |
| flits += (sizeof(struct fw_eth_tx_pkt_wr) + |
| sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); |
| return flits; |
| } |
| |
| /** |
| * calc_tx_descs - calculate the number of Tx descriptors for a packet |
| * @skb: the packet |
| * |
| * Returns the number of Tx descriptors needed for the given Ethernet |
| * packet, including the needed WR and CPL headers. |
| */ |
| static inline unsigned int calc_tx_descs(const struct sk_buff *skb) |
| { |
| return flits_to_desc(calc_tx_flits(skb)); |
| } |
| |
| /** |
| * write_sgl - populate a scatter/gather list for a packet |
| * @skb: the packet |
| * @q: the Tx queue we are writing into |
| * @sgl: starting location for writing the SGL |
| * @end: points right after the end of the SGL |
| * @start: start offset into skb main-body data to include in the SGL |
| * @addr: the list of bus addresses for the SGL elements |
| * |
| * Generates a gather list for the buffers that make up a packet. |
| * The caller must provide adequate space for the SGL that will be written. |
| * The SGL includes all of the packet's page fragments and the data in its |
| * main body except for the first @start bytes. @sgl must be 16-byte |
| * aligned and within a Tx descriptor with available space. @end points |
| * right after the end of the SGL but does not account for any potential |
| * wrap around, i.e., @end > @sgl. |
| */ |
| static void write_sgl(const struct sk_buff *skb, struct sge_txq *q, |
| struct ulptx_sgl *sgl, u64 *end, unsigned int start, |
| const dma_addr_t *addr) |
| { |
| unsigned int i, len; |
| struct ulptx_sge_pair *to; |
| const struct skb_shared_info *si = skb_shinfo(skb); |
| unsigned int nfrags = si->nr_frags; |
| struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; |
| |
| len = skb_headlen(skb) - start; |
| if (likely(len)) { |
| sgl->len0 = htonl(len); |
| sgl->addr0 = cpu_to_be64(addr[0] + start); |
| nfrags++; |
| } else { |
| sgl->len0 = htonl(skb_frag_size(&si->frags[0])); |
| sgl->addr0 = cpu_to_be64(addr[1]); |
| } |
| |
| sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | |
| ULPTX_NSGE_V(nfrags)); |
| if (likely(--nfrags == 0)) |
| return; |
| /* |
| * Most of the complexity below deals with the possibility we hit the |
| * end of the queue in the middle of writing the SGL. For this case |
| * only we create the SGL in a temporary buffer and then copy it. |
| */ |
| to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; |
| |
| for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { |
| to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); |
| to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); |
| to->addr[0] = cpu_to_be64(addr[i]); |
| to->addr[1] = cpu_to_be64(addr[++i]); |
| } |
| if (nfrags) { |
| to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); |
| to->len[1] = cpu_to_be32(0); |
| to->addr[0] = cpu_to_be64(addr[i + 1]); |
| } |
| if (unlikely((u8 *)end > (u8 *)q->stat)) { |
| unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; |
| |
| if (likely(part0)) |
| memcpy(sgl->sge, buf, part0); |
| part1 = (u8 *)end - (u8 *)q->stat; |
| memcpy(q->desc, (u8 *)buf + part0, part1); |
| end = (void *)q->desc + part1; |
| } |
| if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ |
| *end = 0; |
| } |
| |
| /* This function copies 64 byte coalesced work request to |
| * memory mapped BAR2 space. For coalesced WR SGE fetches |
| * data from the FIFO instead of from Host. |
| */ |
| static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) |
| { |
| int count = 8; |
| |
| while (count) { |
| writeq(*src, dst); |
| src++; |
| dst++; |
| count--; |
| } |
| } |
| |
| /** |
| * ring_tx_db - check and potentially ring a Tx queue's doorbell |
| * @adap: the adapter |
| * @q: the Tx queue |
| * @n: number of new descriptors to give to HW |
| * |
| * Ring the doorbel for a Tx queue. |
| */ |
| static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) |
| { |
| /* Make sure that all writes to the TX Descriptors are committed |
| * before we tell the hardware about them. |
| */ |
| wmb(); |
| |
| /* If we don't have access to the new User Doorbell (T5+), use the old |
| * doorbell mechanism; otherwise use the new BAR2 mechanism. |
| */ |
| if (unlikely(q->bar2_addr == NULL)) { |
| u32 val = PIDX_V(n); |
| unsigned long flags; |
| |
| /* For T4 we need to participate in the Doorbell Recovery |
| * mechanism. |
| */ |
| spin_lock_irqsave(&q->db_lock, flags); |
| if (!q->db_disabled) |
| t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), |
| QID_V(q->cntxt_id) | val); |
| else |
| q->db_pidx_inc += n; |
| q->db_pidx = q->pidx; |
| spin_unlock_irqrestore(&q->db_lock, flags); |
| } else { |
| u32 val = PIDX_T5_V(n); |
| |
| /* T4 and later chips share the same PIDX field offset within |
| * the doorbell, but T5 and later shrank the field in order to |
| * gain a bit for Doorbell Priority. The field was absurdly |
| * large in the first place (14 bits) so we just use the T5 |
| * and later limits and warn if a Queue ID is too large. |
| */ |
| WARN_ON(val & DBPRIO_F); |
| |
| /* If we're only writing a single TX Descriptor and we can use |
| * Inferred QID registers, we can use the Write Combining |
| * Gather Buffer; otherwise we use the simple doorbell. |
| */ |
| if (n == 1 && q->bar2_qid == 0) { |
| int index = (q->pidx |
| ? (q->pidx - 1) |
| : (q->size - 1)); |
| u64 *wr = (u64 *)&q->desc[index]; |
| |
| cxgb_pio_copy((u64 __iomem *) |
| (q->bar2_addr + SGE_UDB_WCDOORBELL), |
| wr); |
| } else { |
| writel(val | QID_V(q->bar2_qid), |
| q->bar2_addr + SGE_UDB_KDOORBELL); |
| } |
| |
| /* This Write Memory Barrier will force the write to the User |
| * Doorbell area to be flushed. This is needed to prevent |
| * writes on different CPUs for the same queue from hitting |
| * the adapter out of order. This is required when some Work |
| * Requests take the Write Combine Gather Buffer path (user |
| * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some |
| * take the traditional path where we simply increment the |
| * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the |
| * hardware DMA read the actual Work Request. |
| */ |
| wmb(); |
| } |
| } |
| |
| /** |
| * inline_tx_skb - inline a packet's data into Tx descriptors |
| * @skb: the packet |
| * @q: the Tx queue where the packet will be inlined |
| * @pos: starting position in the Tx queue where to inline the packet |
| * |
| * Inline a packet's contents directly into Tx descriptors, starting at |
| * the given position within the Tx DMA ring. |
| * Most of the complexity of this operation is dealing with wrap arounds |
| * in the middle of the packet we want to inline. |
| */ |
| static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, |
| void *pos) |
| { |
| u64 *p; |
| int left = (void *)q->stat - pos; |
| |
| if (likely(skb->len <= left)) { |
| if (likely(!skb->data_len)) |
| skb_copy_from_linear_data(skb, pos, skb->len); |
| else |
| skb_copy_bits(skb, 0, pos, skb->len); |
| pos += skb->len; |
| } else { |
| skb_copy_bits(skb, 0, pos, left); |
| skb_copy_bits(skb, left, q->desc, skb->len - left); |
| pos = (void *)q->desc + (skb->len - left); |
| } |
| |
| /* 0-pad to multiple of 16 */ |
| p = PTR_ALIGN(pos, 8); |
| if ((uintptr_t)p & 8) |
| *p = 0; |
| } |
| |
| static void *inline_tx_skb_header(const struct sk_buff *skb, |
| const struct sge_txq *q, void *pos, |
| int length) |
| { |
| u64 *p; |
| int left = (void *)q->stat - pos; |
| |
| if (likely(length <= left)) { |
| memcpy(pos, skb->data, length); |
| pos += length; |
| } else { |
| memcpy(pos, skb->data, left); |
| memcpy(q->desc, skb->data + left, length - left); |
| pos = (void *)q->desc + (length - left); |
| } |
| /* 0-pad to multiple of 16 */ |
| p = PTR_ALIGN(pos, 8); |
| if ((uintptr_t)p & 8) { |
| *p = 0; |
| return p + 1; |
| } |
| return p; |
| } |
| |
| /* |
| * Figure out what HW csum a packet wants and return the appropriate control |
| * bits. |
| */ |
| static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) |
| { |
| int csum_type; |
| const struct iphdr *iph = ip_hdr(skb); |
| |
| if (iph->version == 4) { |
| if (iph->protocol == IPPROTO_TCP) |
| csum_type = TX_CSUM_TCPIP; |
| else if (iph->protocol == IPPROTO_UDP) |
| csum_type = TX_CSUM_UDPIP; |
| else { |
| nocsum: /* |
| * unknown protocol, disable HW csum |
| * and hope a bad packet is detected |
| */ |
| return TXPKT_L4CSUM_DIS_F; |
| } |
| } else { |
| /* |
| * this doesn't work with extension headers |
| */ |
| const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; |
| |
| if (ip6h->nexthdr == IPPROTO_TCP) |
| csum_type = TX_CSUM_TCPIP6; |
| else if (ip6h->nexthdr == IPPROTO_UDP) |
| csum_type = TX_CSUM_UDPIP6; |
| else |
| goto nocsum; |
| } |
| |
| if (likely(csum_type >= TX_CSUM_TCPIP)) { |
| u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb)); |
| int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; |
| |
| if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) |
| hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); |
| else |
| hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); |
| return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; |
| } else { |
| int start = skb_transport_offset(skb); |
| |
| return TXPKT_CSUM_TYPE_V(csum_type) | |
| TXPKT_CSUM_START_V(start) | |
| TXPKT_CSUM_LOC_V(start + skb->csum_offset); |
| } |
| } |
| |
| static void eth_txq_stop(struct sge_eth_txq *q) |
| { |
| netif_tx_stop_queue(q->txq); |
| q->q.stops++; |
| } |
| |
| static inline void txq_advance(struct sge_txq *q, unsigned int n) |
| { |
| q->in_use += n; |
| q->pidx += n; |
| if (q->pidx >= q->size) |
| q->pidx -= q->size; |
| } |
| |
| #ifdef CONFIG_CHELSIO_T4_FCOE |
| static inline int |
| cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, |
| const struct port_info *pi, u64 *cntrl) |
| { |
| const struct cxgb_fcoe *fcoe = &pi->fcoe; |
| |
| if (!(fcoe->flags & CXGB_FCOE_ENABLED)) |
| return 0; |
| |
| if (skb->protocol != htons(ETH_P_FCOE)) |
| return 0; |
| |
| skb_reset_mac_header(skb); |
| skb->mac_len = sizeof(struct ethhdr); |
| |
| skb_set_network_header(skb, skb->mac_len); |
| skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); |
| |
| if (!cxgb_fcoe_sof_eof_supported(adap, skb)) |
| return -ENOTSUPP; |
| |
| /* FC CRC offload */ |
| *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | |
| TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | |
| TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | |
| TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | |
| TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); |
| return 0; |
| } |
| #endif /* CONFIG_CHELSIO_T4_FCOE */ |
| |
| /** |
| * t4_eth_xmit - add a packet to an Ethernet Tx queue |
| * @skb: the packet |
| * @dev: the egress net device |
| * |
| * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. |
| */ |
| netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| u32 wr_mid, ctrl0; |
| u64 cntrl, *end; |
| int qidx, credits; |
| unsigned int flits, ndesc; |
| struct adapter *adap; |
| struct sge_eth_txq *q; |
| const struct port_info *pi; |
| struct fw_eth_tx_pkt_wr *wr; |
| struct cpl_tx_pkt_core *cpl; |
| const struct skb_shared_info *ssi; |
| dma_addr_t addr[MAX_SKB_FRAGS + 1]; |
| bool immediate = false; |
| int len, max_pkt_len; |
| #ifdef CONFIG_CHELSIO_T4_FCOE |
| int err; |
| #endif /* CONFIG_CHELSIO_T4_FCOE */ |
| |
| /* |
| * The chip min packet length is 10 octets but play safe and reject |
| * anything shorter than an Ethernet header. |
| */ |
| if (unlikely(skb->len < ETH_HLEN)) { |
| out_free: dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* Discard the packet if the length is greater than mtu */ |
| max_pkt_len = ETH_HLEN + dev->mtu; |
| if (skb_vlan_tagged(skb)) |
| max_pkt_len += VLAN_HLEN; |
| if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) |
| goto out_free; |
| |
| pi = netdev_priv(dev); |
| adap = pi->adapter; |
| qidx = skb_get_queue_mapping(skb); |
| q = &adap->sge.ethtxq[qidx + pi->first_qset]; |
| |
| reclaim_completed_tx(adap, &q->q, true); |
| cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; |
| |
| #ifdef CONFIG_CHELSIO_T4_FCOE |
| err = cxgb_fcoe_offload(skb, adap, pi, &cntrl); |
| if (unlikely(err == -ENOTSUPP)) |
| goto out_free; |
| #endif /* CONFIG_CHELSIO_T4_FCOE */ |
| |
| flits = calc_tx_flits(skb); |
| ndesc = flits_to_desc(flits); |
| credits = txq_avail(&q->q) - ndesc; |
| |
| if (unlikely(credits < 0)) { |
| eth_txq_stop(q); |
| dev_err(adap->pdev_dev, |
| "%s: Tx ring %u full while queue awake!\n", |
| dev->name, qidx); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (is_eth_imm(skb)) |
| immediate = true; |
| |
| if (!immediate && |
| unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) { |
| q->mapping_err++; |
| goto out_free; |
| } |
| |
| wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); |
| if (unlikely(credits < ETHTXQ_STOP_THRES)) { |
| eth_txq_stop(q); |
| wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; |
| } |
| |
| wr = (void *)&q->q.desc[q->q.pidx]; |
| wr->equiq_to_len16 = htonl(wr_mid); |
| wr->r3 = cpu_to_be64(0); |
| end = (u64 *)wr + flits; |
| |
| len = immediate ? skb->len : 0; |
| ssi = skb_shinfo(skb); |
| if (ssi->gso_size) { |
| struct cpl_tx_pkt_lso *lso = (void *)wr; |
| bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; |
| int l3hdr_len = skb_network_header_len(skb); |
| int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; |
| |
| len += sizeof(*lso); |
| wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | |
| FW_WR_IMMDLEN_V(len)); |
| lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | |
| LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | |
| LSO_IPV6_V(v6) | |
| LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | |
| LSO_IPHDR_LEN_V(l3hdr_len / 4) | |
| LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); |
| lso->c.ipid_ofst = htons(0); |
| lso->c.mss = htons(ssi->gso_size); |
| lso->c.seqno_offset = htonl(0); |
| if (is_t4(adap->params.chip)) |
| lso->c.len = htonl(skb->len); |
| else |
| lso->c.len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); |
| cpl = (void *)(lso + 1); |
| |
| if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) |
| cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); |
| else |
| cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); |
| |
| cntrl |= TXPKT_CSUM_TYPE_V(v6 ? |
| TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | |
| TXPKT_IPHDR_LEN_V(l3hdr_len); |
| q->tso++; |
| q->tx_cso += ssi->gso_segs; |
| } else { |
| len += sizeof(*cpl); |
| wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | |
| FW_WR_IMMDLEN_V(len)); |
| cpl = (void *)(wr + 1); |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| cntrl = hwcsum(adap->params.chip, skb) | |
| TXPKT_IPCSUM_DIS_F; |
| q->tx_cso++; |
| } |
| } |
| |
| if (skb_vlan_tag_present(skb)) { |
| q->vlan_ins++; |
| cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); |
| #ifdef CONFIG_CHELSIO_T4_FCOE |
| if (skb->protocol == htons(ETH_P_FCOE)) |
| cntrl |= TXPKT_VLAN_V( |
| ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); |
| #endif /* CONFIG_CHELSIO_T4_FCOE */ |
| } |
| |
| ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | |
| TXPKT_PF_V(adap->pf); |
| #ifdef CONFIG_CHELSIO_T4_DCB |
| if (is_t4(adap->params.chip)) |
| ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); |
| else |
| ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); |
| #endif |
| cpl->ctrl0 = htonl(ctrl0); |
| cpl->pack = htons(0); |
| cpl->len = htons(skb->len); |
| cpl->ctrl1 = cpu_to_be64(cntrl); |
| |
| if (immediate) { |
| inline_tx_skb(skb, &q->q, cpl + 1); |
| dev_consume_skb_any(skb); |
| } else { |
| int last_desc; |
| |
| write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0, |
| addr); |
| skb_orphan(skb); |
| |
| last_desc = q->q.pidx + ndesc - 1; |
| if (last_desc >= q->q.size) |
| last_desc -= q->q.size; |
| q->q.sdesc[last_desc].skb = skb; |
| q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); |
| } |
| |
| txq_advance(&q->q, ndesc); |
| |
| ring_tx_db(adap, &q->q, ndesc); |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs |
| * @q: the SGE control Tx queue |
| * |
| * This is a variant of reclaim_completed_tx() that is used for Tx queues |
| * that send only immediate data (presently just the control queues) and |
| * thus do not have any sk_buffs to release. |
| */ |
| static inline void reclaim_completed_tx_imm(struct sge_txq *q) |
| { |
| int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx)); |
| int reclaim = hw_cidx - q->cidx; |
| |
| if (reclaim < 0) |
| reclaim += q->size; |
| |
| q->in_use -= reclaim; |
| q->cidx = hw_cidx; |
| } |
| |
| /** |
| * is_imm - check whether a packet can be sent as immediate data |
| * @skb: the packet |
| * |
| * Returns true if a packet can be sent as a WR with immediate data. |
| */ |
| static inline int is_imm(const struct sk_buff *skb) |
| { |
| return skb->len <= MAX_CTRL_WR_LEN; |
| } |
| |
| /** |
| * ctrlq_check_stop - check if a control queue is full and should stop |
| * @q: the queue |
| * @wr: most recent WR written to the queue |
| * |
| * Check if a control queue has become full and should be stopped. |
| * We clean up control queue descriptors very lazily, only when we are out. |
| * If the queue is still full after reclaiming any completed descriptors |
| * we suspend it and have the last WR wake it up. |
| */ |
| static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) |
| { |
| reclaim_completed_tx_imm(&q->q); |
| if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { |
| wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); |
| q->q.stops++; |
| q->full = 1; |
| } |
| } |
| |
| /** |
| * ctrl_xmit - send a packet through an SGE control Tx queue |
| * @q: the control queue |
| * @skb: the packet |
| * |
| * Send a packet through an SGE control Tx queue. Packets sent through |
| * a control queue must fit entirely as immediate data. |
| */ |
| static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) |
| { |
| unsigned int ndesc; |
| struct fw_wr_hdr *wr; |
| |
| if (unlikely(!is_imm(skb))) { |
| WARN_ON(1); |
| dev_kfree_skb(skb); |
| return NET_XMIT_DROP; |
| } |
| |
| ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); |
| spin_lock(&q->sendq.lock); |
| |
| if (unlikely(q->full)) { |
| skb->priority = ndesc; /* save for restart */ |
| __skb_queue_tail(&q->sendq, skb); |
| spin_unlock(&q->sendq.lock); |
| return NET_XMIT_CN; |
| } |
| |
| wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; |
| inline_tx_skb(skb, &q->q, wr); |
| |
| txq_advance(&q->q, ndesc); |
| if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) |
| ctrlq_check_stop(q, wr); |
| |
| ring_tx_db(q->adap, &q->q, ndesc); |
| spin_unlock(&q->sendq.lock); |
| |
| kfree_skb(skb); |
| return NET_XMIT_SUCCESS; |
| } |
| |
| /** |
| * restart_ctrlq - restart a suspended control queue |
| * @data: the control queue to restart |
| * |
| * Resumes transmission on a suspended Tx control queue. |
| */ |
| static void restart_ctrlq(unsigned long data) |
| { |
| struct sk_buff *skb; |
| unsigned int written = 0; |
| struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; |
| |
| spin_lock(&q->sendq.lock); |
| reclaim_completed_tx_imm(&q->q); |
| BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ |
| |
| while ((skb = __skb_dequeue(&q->sendq)) != NULL) { |
| struct fw_wr_hdr *wr; |
| unsigned int ndesc = skb->priority; /* previously saved */ |
| |
| written += ndesc; |
| /* Write descriptors and free skbs outside the lock to limit |
| * wait times. q->full is still set so new skbs will be queued. |
| */ |
| wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; |
| txq_advance(&q->q, ndesc); |
| spin_unlock(&q->sendq.lock); |
| |
| inline_tx_skb(skb, &q->q, wr); |
| kfree_skb(skb); |
| |
| if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { |
| unsigned long old = q->q.stops; |
| |
| ctrlq_check_stop(q, wr); |
| if (q->q.stops != old) { /* suspended anew */ |
| spin_lock(&q->sendq.lock); |
| goto ringdb; |
| } |
| } |
| if (written > 16) { |
| ring_tx_db(q->adap, &q->q, written); |
| written = 0; |
| } |
| spin_lock(&q->sendq.lock); |
| } |
| q->full = 0; |
| ringdb: if (written) |
| ring_tx_db(q->adap, &q->q, written); |
| spin_unlock(&q->sendq.lock); |
| } |
| |
| /** |
| * t4_mgmt_tx - send a management message |
| * @adap: the adapter |
| * @skb: the packet containing the management message |
| * |
| * Send a management message through control queue 0. |
| */ |
| int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) |
| { |
| int ret; |
| |
| local_bh_disable(); |
| ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); |
| local_bh_enable(); |
| return ret; |
| } |
| |
| /** |
| * is_ofld_imm - check whether a packet can be sent as immediate data |
| * @skb: the packet |
| * |
| * Returns true if a packet can be sent as an offload WR with immediate |
| * data. We currently use the same limit as for Ethernet packets. |
| */ |
| static inline int is_ofld_imm(const struct sk_buff *skb) |
| { |
| return skb->len <= MAX_IMM_TX_PKT_LEN; |
| } |
| |
| /** |
| * calc_tx_flits_ofld - calculate # of flits for an offload packet |
| * @skb: the packet |
| * |
| * Returns the number of flits needed for the given offload packet. |
| * These packets are already fully constructed and no additional headers |
| * will be added. |
| */ |
| static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) |
| { |
| unsigned int flits, cnt; |
| |
| if (is_ofld_imm(skb)) |
| return DIV_ROUND_UP(skb->len, 8); |
| |
| flits = skb_transport_offset(skb) / 8U; /* headers */ |
| cnt = skb_shinfo(skb)->nr_frags; |
| if (skb_tail_pointer(skb) != skb_transport_header(skb)) |
| cnt++; |
| return flits + sgl_len(cnt); |
| } |
| |
| /** |
| * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion |
| * @adap: the adapter |
| * @q: the queue to stop |
| * |
| * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting |
| * inability to map packets. A periodic timer attempts to restart |
| * queues so marked. |
| */ |
| static void txq_stop_maperr(struct sge_uld_txq *q) |
| { |
| q->mapping_err++; |
| q->q.stops++; |
| set_bit(q->q.cntxt_id - q->adap->sge.egr_start, |
| q->adap->sge.txq_maperr); |
| } |
| |
| /** |
| * ofldtxq_stop - stop an offload Tx queue that has become full |
| * @q: the queue to stop |
| * @skb: the packet causing the queue to become full |
| * |
| * Stops an offload Tx queue that has become full and modifies the packet |
| * being written to request a wakeup. |
| */ |
| static void ofldtxq_stop(struct sge_uld_txq *q, struct sk_buff *skb) |
| { |
| struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; |
| |
| wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); |
| q->q.stops++; |
| q->full = 1; |
| } |
| |
| /** |
| * service_ofldq - service/restart a suspended offload queue |
| * @q: the offload queue |
| * |
| * Services an offload Tx queue by moving packets from its Pending Send |
| * Queue to the Hardware TX ring. The function starts and ends with the |
| * Send Queue locked, but drops the lock while putting the skb at the |
| * head of the Send Queue onto the Hardware TX Ring. Dropping the lock |
| * allows more skbs to be added to the Send Queue by other threads. |
| * The packet being processed at the head of the Pending Send Queue is |
| * left on the queue in case we experience DMA Mapping errors, etc. |
| * and need to give up and restart later. |
| * |
| * service_ofldq() can be thought of as a task which opportunistically |
| * uses other threads execution contexts. We use the Offload Queue |
| * boolean "service_ofldq_running" to make sure that only one instance |
| * is ever running at a time ... |
| */ |
| static void service_ofldq(struct sge_uld_txq *q) |
| { |
| u64 *pos, *before, *end; |
| int credits; |
| struct sk_buff *skb; |
| struct sge_txq *txq; |
| unsigned int left; |
| unsigned int written = 0; |
| unsigned int flits, ndesc; |
| |
| /* If another thread is currently in service_ofldq() processing the |
| * Pending Send Queue then there's nothing to do. Otherwise, flag |
| * that we're doing the work and continue. Examining/modifying |
| * the Offload Queue boolean "service_ofldq_running" must be done |
| * while holding the Pending Send Queue Lock. |
| */ |
| if (q->service_ofldq_running) |
| return; |
| q->service_ofldq_running = true; |
| |
| while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { |
| /* We drop the lock while we're working with the skb at the |
| * head of the Pending Send Queue. This allows more skbs to |
| * be added to the Pending Send Queue while we're working on |
| * this one. We don't need to lock to guard the TX Ring |
| * updates because only one thread of execution is ever |
| * allowed into service_ofldq() at a time. |
| */ |
| spin_unlock(&q->sendq.lock); |
| |
| reclaim_completed_tx(q->adap, &q->q, false); |
| |
| flits = skb->priority; /* previously saved */ |
| ndesc = flits_to_desc(flits); |
| credits = txq_avail(&q->q) - ndesc; |
| BUG_ON(credits < 0); |
| if (unlikely(credits < TXQ_STOP_THRES)) |
| ofldtxq_stop(q, skb); |
| |
| pos = (u64 *)&q->q.desc[q->q.pidx]; |
| if (is_ofld_imm(skb)) |
| inline_tx_skb(skb, &q->q, pos); |
| else if (map_skb(q->adap->pdev_dev, skb, |
| (dma_addr_t *)skb->head)) { |
| txq_stop_maperr(q); |
| spin_lock(&q->sendq.lock); |
| break; |
| } else { |
| int last_desc, hdr_len = skb_transport_offset(skb); |
| |
| /* The WR headers may not fit within one descriptor. |
| * So we need to deal with wrap-around here. |
| */ |
| before = (u64 *)pos; |
| end = (u64 *)pos + flits; |
| txq = &q->q; |
| pos = (void *)inline_tx_skb_header(skb, &q->q, |
| (void *)pos, |
| hdr_len); |
| if (before > (u64 *)pos) { |
| left = (u8 *)end - (u8 *)txq->stat; |
| end = (void *)txq->desc + left; |
| } |
| |
| /* If current position is already at the end of the |
| * ofld queue, reset the current to point to |
| * start of the queue and update the end ptr as well. |
| */ |
| if (pos == (u64 *)txq->stat) { |
| left = (u8 *)end - (u8 *)txq->stat; |
| end = (void *)txq->desc + left; |
| pos = (void *)txq->desc; |
| } |
| |
| write_sgl(skb, &q->q, (void *)pos, |
| end, hdr_len, |
| (dma_addr_t *)skb->head); |
| #ifdef CONFIG_NEED_DMA_MAP_STATE |
| skb->dev = q->adap->port[0]; |
| skb->destructor = deferred_unmap_destructor; |
| #endif |
| last_desc = q->q.pidx + ndesc - 1; |
| if (last_desc >= q->q.size) |
| last_desc -= q->q.size; |
| q->q.sdesc[last_desc].skb = skb; |
| } |
| |
| txq_advance(&q->q, ndesc); |
| written += ndesc; |
| if (unlikely(written > 32)) { |
| ring_tx_db(q->adap, &q->q, written); |
| written = 0; |
| } |
| |
| /* Reacquire the Pending Send Queue Lock so we can unlink the |
| * skb we've just successfully transferred to the TX Ring and |
| * loop for the next skb which may be at the head of the |
| * Pending Send Queue. |
| */ |
| spin_lock(&q->sendq.lock); |
| __skb_unlink(skb, &q->sendq); |
| if (is_ofld_imm(skb)) |
| kfree_skb(skb); |
| } |
| if (likely(written)) |
| ring_tx_db(q->adap, &q->q, written); |
| |
| /*Indicate that no thread is processing the Pending Send Queue |
| * currently. |
| */ |
| q->service_ofldq_running = false; |
| } |
| |
| /** |
| * ofld_xmit - send a packet through an offload queue |
| * @q: the Tx offload queue |
| * @skb: the packet |
| * |
| * Send an offload packet through an SGE offload queue. |
| */ |
| static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) |
| { |
| skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ |
| spin_lock(&q->sendq.lock); |
| |
| /* Queue the new skb onto the Offload Queue's Pending Send Queue. If |
| * that results in this new skb being the only one on the queue, start |
| * servicing it. If there are other skbs already on the list, then |
| * either the queue is currently being processed or it's been stopped |
| * for some reason and it'll be restarted at a later time. Restart |
| * paths are triggered by events like experiencing a DMA Mapping Error |
| * or filling the Hardware TX Ring. |
| */ |
| __skb_queue_tail(&q->sendq, skb); |
| if (q->sendq.qlen == 1) |
| service_ofldq(q); |
| |
| spin_unlock(&q->sendq.lock); |
| return NET_XMIT_SUCCESS; |
| } |
| |
| /** |
| * restart_ofldq - restart a suspended offload queue |
| * @data: the offload queue to restart |
| * |
| * Resumes transmission on a suspended Tx offload queue. |
| */ |
| static void restart_ofldq(unsigned long data) |
| { |
| struct sge_uld_txq *q = (struct sge_uld_txq *)data; |
| |
| spin_lock(&q->sendq.lock); |
| q->full = 0; /* the queue actually is completely empty now */ |
| service_ofldq(q); |
| spin_unlock(&q->sendq.lock); |
| } |
| |
| /** |
| * skb_txq - return the Tx queue an offload packet should use |
| * @skb: the packet |
| * |
| * Returns the Tx queue an offload packet should use as indicated by bits |
| * 1-15 in the packet's queue_mapping. |
| */ |
| static inline unsigned int skb_txq(const struct sk_buff *skb) |
| { |
| return skb->queue_mapping >> 1; |
| } |
| |
| /** |
| * is_ctrl_pkt - return whether an offload packet is a control packet |
| * @skb: the packet |
| * |
| * Returns whether an offload packet should use an OFLD or a CTRL |
| * Tx queue as indicated by bit 0 in the packet's queue_mapping. |
| */ |
| static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) |
| { |
| return skb->queue_mapping & 1; |
| } |
| |
| static inline int uld_send(struct adapter *adap, struct sk_buff *skb, |
| unsigned int tx_uld_type) |
| { |
| struct sge_uld_txq_info *txq_info; |
| struct sge_uld_txq *txq; |
| unsigned int idx = skb_txq(skb); |
| |
| txq_info = adap->sge.uld_txq_info[tx_uld_type]; |
| txq = &txq_info->uldtxq[idx]; |
| |
| if (unlikely(is_ctrl_pkt(skb))) { |
| /* Single ctrl queue is a requirement for LE workaround path */ |
| if (adap->tids.nsftids) |
| idx = 0; |
| return ctrl_xmit(&adap->sge.ctrlq[idx], skb); |
| } |
| return ofld_xmit(txq, skb); |
| } |
| |
| /** |
| * t4_ofld_send - send an offload packet |
| * @adap: the adapter |
| * @skb: the packet |
| * |
| * Sends an offload packet. We use the packet queue_mapping to select the |
| * appropriate Tx queue as follows: bit 0 indicates whether the packet |
| * should be sent as regular or control, bits 1-15 select the queue. |
| */ |
| int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) |
| { |
| int ret; |
| |
| local_bh_disable(); |
| ret = uld_send(adap, skb, CXGB4_TX_OFLD); |
| local_bh_enable(); |
| return ret; |
| } |
| |
| /** |
| * cxgb4_ofld_send - send an offload packet |
| * @dev: the net device |
| * @skb: the packet |
| * |
| * Sends an offload packet. This is an exported version of @t4_ofld_send, |
| * intended for ULDs. |
| */ |
| int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) |
| { |
| return t4_ofld_send(netdev2adap(dev), skb); |
| } |
| EXPORT_SYMBOL(cxgb4_ofld_send); |
| |
| /** |
| * t4_crypto_send - send crypto packet |
| * @adap: the adapter |
| * @skb: the packet |
| * |
| * Sends crypto packet. We use the packet queue_mapping to select the |
| * appropriate Tx queue as follows: bit 0 indicates whether the packet |
| * should be sent as regular or control, bits 1-15 select the queue. |
| */ |
| static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) |
| { |
| int ret; |
| |
| local_bh_disable(); |
| ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); |
| local_bh_enable(); |
| return ret; |
| } |
| |
| /** |
| * cxgb4_crypto_send - send crypto packet |
| * @dev: the net device |
| * @skb: the packet |
| * |
| * Sends crypto packet. This is an exported version of @t4_crypto_send, |
| * intended for ULDs. |
| */ |
| int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) |
| { |
| return t4_crypto_send(netdev2adap(dev), skb); |
| } |
| EXPORT_SYMBOL(cxgb4_crypto_send); |
| |
| static inline void copy_frags(struct sk_buff *skb, |
| const struct pkt_gl *gl, unsigned int offset) |
| { |
| int i; |
| |
| /* usually there's just one frag */ |
| __skb_fill_page_desc(skb, 0, gl->frags[0].page, |
| gl->frags[0].offset + offset, |
| gl->frags[0].size - offset); |
| skb_shinfo(skb)->nr_frags = gl->nfrags; |
| for (i = 1; i < gl->nfrags; i++) |
| __skb_fill_page_desc(skb, i, gl->frags[i].page, |
| gl->frags[i].offset, |
| gl->frags[i].size); |
| |
| /* get a reference to the last page, we don't own it */ |
| get_page(gl->frags[gl->nfrags - 1].page); |
| } |
| |
| /** |
| * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list |
| * @gl: the gather list |
| * @skb_len: size of sk_buff main body if it carries fragments |
| * @pull_len: amount of data to move to the sk_buff's main body |
| * |
| * Builds an sk_buff from the given packet gather list. Returns the |
| * sk_buff or %NULL if sk_buff allocation failed. |
| */ |
| struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, |
| unsigned int skb_len, unsigned int pull_len) |
| { |
| struct sk_buff *skb; |
| |
| /* |
| * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer |
| * size, which is expected since buffers are at least PAGE_SIZEd. |
| * In this case packets up to RX_COPY_THRES have only one fragment. |
| */ |
| if (gl->tot_len <= RX_COPY_THRES) { |
| skb = dev_alloc_skb(gl->tot_len); |
| if (unlikely(!skb)) |
| goto out; |
| __skb_put(skb, gl->tot_len); |
| skb_copy_to_linear_data(skb, gl->va, gl->tot_len); |
| } else { |
| skb = dev_alloc_skb(skb_len); |
| if (unlikely(!skb)) |
| goto out; |
| __skb_put(skb, pull_len); |
| skb_copy_to_linear_data(skb, gl->va, pull_len); |
| |
| copy_frags(skb, gl, pull_len); |
| skb->len = gl->tot_len; |
| skb->data_len = skb->len - pull_len; |
| skb->truesize += skb->data_len; |
| } |
| out: return skb; |
| } |
| EXPORT_SYMBOL(cxgb4_pktgl_to_skb); |
| |
| /** |
| * t4_pktgl_free - free a packet gather list |
| * @gl: the gather list |
| * |
| * Releases the pages of a packet gather list. We do not own the last |
| * page on the list and do not free it. |
| */ |
| static void t4_pktgl_free(const struct pkt_gl *gl) |
| { |
| int n; |
| const struct page_frag *p; |
| |
| for (p = gl->frags, n = gl->nfrags - 1; n--; p++) |
| put_page(p->page); |
| } |
| |
| /* |
| * Process an MPS trace packet. Give it an unused protocol number so it won't |
| * be delivered to anyone and send it to the stack for capture. |
| */ |
| static noinline int handle_trace_pkt(struct adapter *adap, |
| const struct pkt_gl *gl) |
| { |
| struct sk_buff *skb; |
| |
| skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); |
| if (unlikely(!skb)) { |
| t4_pktgl_free(gl); |
| return 0; |
| } |
| |
| if (is_t4(adap->params.chip)) |
| __skb_pull(skb, sizeof(struct cpl_trace_pkt)); |
| else |
| __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); |
| |
| skb_reset_mac_header(skb); |
| skb->protocol = htons(0xffff); |
| skb->dev = adap->port[0]; |
| netif_receive_skb(skb); |
| return 0; |
| } |
| |
| /** |
| * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp |
| * @adap: the adapter |
| * @hwtstamps: time stamp structure to update |
| * @sgetstamp: 60bit iqe timestamp |
| * |
| * Every ingress queue entry has the 60-bit timestamp, convert that timestamp |
| * which is in Core Clock ticks into ktime_t and assign it |
| **/ |
| static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, |
| struct skb_shared_hwtstamps *hwtstamps, |
| u64 sgetstamp) |
| { |
| u64 ns; |
| u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); |
| |
| ns = div_u64(tmp, adap->params.vpd.cclk); |
| |
| memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| hwtstamps->hwtstamp = ns_to_ktime(ns); |
| } |
| |
| static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, |
| const struct cpl_rx_pkt *pkt) |
| { |
| struct adapter *adapter = rxq->rspq.adap; |
| struct sge *s = &adapter->sge; |
| struct port_info *pi; |
| int ret; |
| struct sk_buff *skb; |
| |
| skb = napi_get_frags(&rxq->rspq.napi); |
| if (unlikely(!skb)) { |
| t4_pktgl_free(gl); |
| rxq->stats.rx_drops++; |
| return; |
| } |
| |
| copy_frags(skb, gl, s->pktshift); |
| skb->len = gl->tot_len - s->pktshift; |
| skb->data_len = skb->len; |
| skb->truesize += skb->data_len; |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb_record_rx_queue(skb, rxq->rspq.idx); |
| pi = netdev_priv(skb->dev); |
| if (pi->rxtstamp) |
| cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), |
| gl->sgetstamp); |
| if (rxq->rspq.netdev->features & NETIF_F_RXHASH) |
| skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, |
| PKT_HASH_TYPE_L3); |
| |
| if (unlikely(pkt->vlan_ex)) { |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); |
| rxq->stats.vlan_ex++; |
| } |
| ret = napi_gro_frags(&rxq->rspq.napi); |
| if (ret == GRO_HELD) |
| rxq->stats.lro_pkts++; |
| else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) |
| rxq->stats.lro_merged++; |
| rxq->stats.pkts++; |
| rxq->stats.rx_cso++; |
| } |
| |
| /** |
| * t4_ethrx_handler - process an ingress ethernet packet |
| * @q: the response queue that received the packet |
| * @rsp: the response queue descriptor holding the RX_PKT message |
| * @si: the gather list of packet fragments |
| * |
| * Process an ingress ethernet packet and deliver it to the stack. |
| */ |
| int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, |
| const struct pkt_gl *si) |
| { |
| bool csum_ok; |
| struct sk_buff *skb; |
| const struct cpl_rx_pkt *pkt; |
| struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); |
| struct sge *s = &q->adap->sge; |
| int cpl_trace_pkt = is_t4(q->adap->params.chip) ? |
| CPL_TRACE_PKT : CPL_TRACE_PKT_T5; |
| struct port_info *pi; |
| |
| if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) |
| return handle_trace_pkt(q->adap, si); |
| |
| pkt = (const struct cpl_rx_pkt *)rsp; |
| csum_ok = pkt->csum_calc && !pkt->err_vec && |
| (q->netdev->features & NETIF_F_RXCSUM); |
| if ((pkt->l2info & htonl(RXF_TCP_F)) && |
| !(cxgb_poll_busy_polling(q)) && |
| (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { |
| do_gro(rxq, si, pkt); |
| return 0; |
| } |
| |
| skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); |
| if (unlikely(!skb)) { |
| t4_pktgl_free(si); |
| rxq->stats.rx_drops++; |
| return 0; |
| } |
| |
| __skb_pull(skb, s->pktshift); /* remove ethernet header padding */ |
| skb->protocol = eth_type_trans(skb, q->netdev); |
| skb_record_rx_queue(skb, q->idx); |
| if (skb->dev->features & NETIF_F_RXHASH) |
| skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, |
| PKT_HASH_TYPE_L3); |
| |
| rxq->stats.pkts++; |
| |
| pi = netdev_priv(skb->dev); |
| if (pi->rxtstamp) |
| cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), |
| si->sgetstamp); |
| if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { |
| if (!pkt->ip_frag) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| rxq->stats.rx_cso++; |
| } else if (pkt->l2info & htonl(RXF_IP_F)) { |
| __sum16 c = (__force __sum16)pkt->csum; |
| skb->csum = csum_unfold(c); |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| rxq->stats.rx_cso++; |
| } |
| } else { |
| skb_checksum_none_assert(skb); |
| #ifdef CONFIG_CHELSIO_T4_FCOE |
| #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ |
| RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) |
| |
| if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { |
| if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && |
| (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { |
| if (!(pkt->err_vec & cpu_to_be16(RXERR_CSUM_F))) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| } |
| |
| #undef CPL_RX_PKT_FLAGS |
| #endif /* CONFIG_CHELSIO_T4_FCOE */ |
| } |
| |
| if (unlikely(pkt->vlan_ex)) { |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); |
| rxq->stats.vlan_ex++; |
| } |
| skb_mark_napi_id(skb, &q->napi); |
| netif_receive_skb(skb); |
| return 0; |
| } |
| |
| /** |
| * restore_rx_bufs - put back a packet's Rx buffers |
| * @si: the packet gather list |
| * @q: the SGE free list |
| * @frags: number of FL buffers to restore |
| * |
| * Puts back on an FL the Rx buffers associated with @si. The buffers |
| * have already been unmapped and are left unmapped, we mark them so to |
| * prevent further unmapping attempts. |
| * |
| * This function undoes a series of @unmap_rx_buf calls when we find out |
| * that the current packet can't be processed right away afterall and we |
| * need to come back to it later. This is a very rare event and there's |
| * no effort to make this particularly efficient. |
| */ |
| static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, |
| int frags) |
| { |
| struct rx_sw_desc *d; |
| |
| while (frags--) { |
| if (q->cidx == 0) |
| q->cidx = q->size - 1; |
| else |
| q->cidx--; |
| d = &q->sdesc[q->cidx]; |
| d->page = si->frags[frags].page; |
| d->dma_addr |= RX_UNMAPPED_BUF; |
| q->avail++; |
| } |
| } |
| |
| /** |
| * is_new_response - check if a response is newly written |
| * @r: the response descriptor |
| * @q: the response queue |
| * |
| * Returns true if a response descriptor contains a yet unprocessed |
| * response. |
| */ |
| static inline bool is_new_response(const struct rsp_ctrl *r, |
| const struct sge_rspq *q) |
| { |
| return (r->type_gen >> RSPD_GEN_S) == q->gen; |
| } |
| |
| /** |
| * rspq_next - advance to the next entry in a response queue |
| * @q: the queue |
| * |
| * Updates the state of a response queue to advance it to the next entry. |
| */ |
| static inline void rspq_next(struct sge_rspq *q) |
| { |
| q->cur_desc = (void *)q->cur_desc + q->iqe_len; |
| if (unlikely(++q->cidx == q->size)) { |
| q->cidx = 0; |
| q->gen ^= 1; |
| q->cur_desc = q->desc; |
| } |
| } |
| |
| /** |
| * process_responses - process responses from an SGE response queue |
| * @q: the ingress queue to process |
| * @budget: how many responses can be processed in this round |
| * |
| * Process responses from an SGE response queue up to the supplied budget. |
| * Responses include received packets as well as control messages from FW |
| * or HW. |
| * |
| * Additionally choose the interrupt holdoff time for the next interrupt |
| * on this queue. If the system is under memory shortage use a fairly |
| * long delay to help recovery. |
| */ |
| static int process_responses(struct sge_rspq *q, int budget) |
| { |
| int ret, rsp_type; |
| int budget_left = budget; |
| const struct rsp_ctrl *rc; |
| struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); |
| struct adapter *adapter = q->adap; |
| struct sge *s = &adapter->sge; |
| |
| while (likely(budget_left)) { |
| rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); |
| if (!is_new_response(rc, q)) { |
| if (q->flush_handler) |
| q->flush_handler(q); |
| break; |
| } |
| |
| dma_rmb(); |
| rsp_type = RSPD_TYPE_G(rc->type_gen); |
| if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { |
| struct page_frag *fp; |
| struct pkt_gl si; |
| const struct rx_sw_desc *rsd; |
| u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; |
| |
| if (len & RSPD_NEWBUF_F) { |
| if (likely(q->offset > 0)) { |
| free_rx_bufs(q->adap, &rxq->fl, 1); |
| q->offset = 0; |
| } |
| len = RSPD_LEN_G(len); |
| } |
| si.tot_len = len; |
| |
| /* gather packet fragments */ |
| for (frags = 0, fp = si.frags; ; frags++, fp++) { |
| rsd = &rxq->fl.sdesc[rxq->fl.cidx]; |
| bufsz = get_buf_size(adapter, rsd); |
| fp->page = rsd->page; |
| fp->offset = q->offset; |
| fp->size = min(bufsz, len); |
| len -= fp->size; |
| if (!len) |
| break; |
| unmap_rx_buf(q->adap, &rxq->fl); |
| } |
| |
| si.sgetstamp = SGE_TIMESTAMP_G( |
| be64_to_cpu(rc->last_flit)); |
| /* |
| * Last buffer remains mapped so explicitly make it |
| * coherent for CPU access. |
| */ |
| dma_sync_single_for_cpu(q->adap->pdev_dev, |
| get_buf_addr(rsd), |
| fp->size, DMA_FROM_DEVICE); |
| |
| si.va = page_address(si.frags[0].page) + |
| si.frags[0].offset; |
| prefetch(si.va); |
| |
| si.nfrags = frags + 1; |
| ret = q->handler(q, q->cur_desc, &si); |
| if (likely(ret == 0)) |
| q->offset += ALIGN(fp->size, s->fl_align); |
| else |
| restore_rx_bufs(&si, &rxq->fl, frags); |
| } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { |
| ret = q->handler(q, q->cur_desc, NULL); |
| } else { |
| ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); |
| } |
| |
| if (unlikely(ret)) { |
| /* couldn't process descriptor, back off for recovery */ |
| q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); |
| break; |
| } |
| |
| rspq_next(q); |
| budget_left--; |
| } |
| |
| if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) |
| __refill_fl(q->adap, &rxq->fl); |
| return budget - budget_left; |
| } |
| |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| int cxgb_busy_poll(struct napi_struct *napi) |
| { |
| struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); |
| unsigned int params, work_done; |
| u32 val; |
| |
| if (!cxgb_poll_lock_poll(q)) |
| return LL_FLUSH_BUSY; |
| |
| work_done = process_responses(q, 4); |
| params = QINTR_TIMER_IDX_V(TIMERREG_COUNTER0_X) | QINTR_CNT_EN_V(1); |
| q->next_intr_params = params; |
| val = CIDXINC_V(work_done) | SEINTARM_V(params); |
| |
| /* If we don't have access to the new User GTS (T5+), use the old |
| * doorbell mechanism; otherwise use the new BAR2 mechanism. |
| */ |
| if (unlikely(!q->bar2_addr)) |
| t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), |
| val | INGRESSQID_V((u32)q->cntxt_id)); |
| else { |
| writel(val | INGRESSQID_V(q->bar2_qid), |
| q->bar2_addr + SGE_UDB_GTS); |
| wmb(); |
| } |
| |
| cxgb_poll_unlock_poll(q); |
| return work_done; |
| } |
| #endif /* CONFIG_NET_RX_BUSY_POLL */ |
| |
| /** |
| * napi_rx_handler - the NAPI handler for Rx processing |
| * @napi: the napi instance |
| * @budget: how many packets we can process in this round |
| * |
| * Handler for new data events when using NAPI. This does not need any |
| * locking or protection from interrupts as data interrupts are off at |
| * this point and other adapter interrupts do not interfere (the latter |
| * in not a concern at all with MSI-X as non-data interrupts then have |
| * a separate handler). |
| */ |
| static int napi_rx_handler(struct napi_struct *napi, int budget) |
| { |
| unsigned int params; |
| struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); |
| int work_done; |
| u32 val; |
| |
| if (!cxgb_poll_lock_napi(q)) |
| return budget; |
| |
| work_done = process_responses(q, budget); |
| if (likely(work_done < budget)) { |
| int timer_index; |
| |
| napi_complete_done(napi, work_done); |
| timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); |
| |
| if (q->adaptive_rx) { |
| if (work_done > max(timer_pkt_quota[timer_index], |
| MIN_NAPI_WORK)) |
| timer_index = (timer_index + 1); |
| else |
| timer_index = timer_index - 1; |
| |
| timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); |
| q->next_intr_params = |
| QINTR_TIMER_IDX_V(timer_index) | |
| QINTR_CNT_EN_V(0); |
| params = q->next_intr_params; |
| } else { |
| params = q->next_intr_params; |
| q->next_intr_params = q->intr_params; |
| } |
| } else |
| params = QINTR_TIMER_IDX_V(7); |
| |
| val = CIDXINC_V(work_done) | SEINTARM_V(params); |
| |
| /* If we don't have access to the new User GTS (T5+), use the old |
| * doorbell mechanism; otherwise use the new BAR2 mechanism. |
| */ |
| if (unlikely(q->bar2_addr == NULL)) { |
| t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), |
| val | INGRESSQID_V((u32)q->cntxt_id)); |
| } else { |
| writel(val | INGRESSQID_V(q->bar2_qid), |
| q->bar2_addr + SGE_UDB_GTS); |
| wmb(); |
| } |
| cxgb_poll_unlock_napi(q); |
| return work_done; |
| } |
| |
| /* |
| * The MSI-X interrupt handler for an SGE response queue. |
| */ |
| irqreturn_t t4_sge_intr_msix(int irq, void *cookie) |
| { |
| struct sge_rspq *q = cookie; |
| |
| napi_schedule(&q->napi); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Process the indirect interrupt entries in the interrupt queue and kick off |
| * NAPI for each queue that has generated an entry. |
| */ |
| static unsigned int process_intrq(struct adapter *adap) |
| { |
| unsigned int credits; |
| const struct rsp_ctrl *rc; |
| struct sge_rspq *q = &adap->sge.intrq; |
| u32 val; |
| |
| spin_lock(&adap->sge.intrq_lock); |
| for (credits = 0; ; credits++) { |
| rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); |
| if (!is_new_response(rc, q)) |
| break; |
| |
| dma_rmb(); |
| if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { |
| unsigned int qid = ntohl(rc->pldbuflen_qid); |
| |
| qid -= adap->sge.ingr_start; |
| napi_schedule(&adap->sge.ingr_map[qid]->napi); |
| } |
| |
| rspq_next(q); |
| } |
| |
| val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); |
| |
| /* If we don't have access to the new User GTS (T5+), use the old |
| * doorbell mechanism; otherwise use the new BAR2 mechanism. |
| */ |
| if (unlikely(q->bar2_addr == NULL)) { |
| t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), |
| val | INGRESSQID_V(q->cntxt_id)); |
| } else { |
| writel(val | INGRESSQID_V(q->bar2_qid), |
| q->bar2_addr + SGE_UDB_GTS); |
| wmb(); |
| } |
| spin_unlock(&adap->sge.intrq_lock); |
| return credits; |
| } |
| |
| /* |
| * The MSI interrupt handler, which handles data events from SGE response queues |
| * as well as error and other async events as they all use the same MSI vector. |
| */ |
| static irqreturn_t t4_intr_msi(int irq, void *cookie) |
| { |
| struct adapter *adap = cookie; |
| |
| if (adap->flags & MASTER_PF) |
| t4_slow_intr_handler(adap); |
| process_intrq(adap); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Interrupt handler for legacy INTx interrupts. |
| * Handles data events from SGE response queues as well as error and other |
| * async events as they all use the same interrupt line. |
| */ |
| static irqreturn_t t4_intr_intx(int irq, void *cookie) |
| { |
| struct adapter *adap = cookie; |
| |
| t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); |
| if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) | |
| process_intrq(adap)) |
| return IRQ_HANDLED; |
| return IRQ_NONE; /* probably shared interrupt */ |
| } |
| |
| /** |
| * t4_intr_handler - select the top-level interrupt handler |
| * @adap: the adapter |
| * |
| * Selects the top-level interrupt handler based on the type of interrupts |
| * (MSI-X, MSI, or INTx). |
| */ |
| irq_handler_t t4_intr_handler(struct adapter *adap) |
| { |
| if (adap->flags & USING_MSIX) |
| return t4_sge_intr_msix; |
| if (adap->flags & USING_MSI) |
| return t4_intr_msi; |
| return t4_intr_intx; |
| } |
| |
| static void sge_rx_timer_cb(unsigned long data) |
| { |
| unsigned long m; |
| unsigned int i; |
| struct adapter *adap = (struct adapter *)data; |
| struct sge *s = &adap->sge; |
| |
| for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) |
| for (m = s->starving_fl[i]; m; m &= m - 1) { |
| struct sge_eth_rxq *rxq; |
| unsigned int id = __ffs(m) + i * BITS_PER_LONG; |
| struct sge_fl *fl = s->egr_map[id]; |
| |
| clear_bit(id, s->starving_fl); |
| smp_mb__after_atomic(); |
| |
| if (fl_starving(adap, fl)) { |
| rxq = container_of(fl, struct sge_eth_rxq, fl); |
| if (napi_reschedule(&rxq->rspq.napi)) |
| fl->starving++; |
| else |
| set_bit(id, s->starving_fl); |
| } |
| } |
| /* The remainder of the SGE RX Timer Callback routine is dedicated to |
| * global Master PF activities like checking for chip ingress stalls, |
| * etc. |
| */ |
| if (!(adap->flags & MASTER_PF)) |
| goto done; |
| |
| t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); |
| |
| done: |
| mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); |
| } |
| |
| static void sge_tx_timer_cb(unsigned long data) |
| { |
| unsigned long m; |
| unsigned int i, budget; |
| struct adapter *adap = (struct adapter *)data; |
| struct sge *s = &adap->sge; |
| |
| for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) |
| for (m = s->txq_maperr[i]; m; m &= m - 1) { |
| unsigned long id = __ffs(m) + i * BITS_PER_LONG; |
| struct sge_uld_txq *txq = s->egr_map[id]; |
| |
| clear_bit(id, s->txq_maperr); |
| tasklet_schedule(&txq->qresume_tsk); |
| } |
| |
| budget = MAX_TIMER_TX_RECLAIM; |
| i = s->ethtxq_rover; |
| do { |
| struct sge_eth_txq *q = &s->ethtxq[i]; |
| |
| if (q->q.in_use && |
| time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && |
| __netif_tx_trylock(q->txq)) { |
| int avail = reclaimable(&q->q); |
| |
| if (avail) { |
| if (avail > budget) |
| avail = budget; |
| |
| free_tx_desc(adap, &q->q, avail, true); |
| q->q.in_use -= avail; |
| budget -= avail; |
| } |
| __netif_tx_unlock(q->txq); |
| } |
| |
| if (++i >= s->ethqsets) |
| i = 0; |
| } while (budget && i != s->ethtxq_rover); |
| s->ethtxq_rover = i; |
| mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); |
| } |
| |
| /** |
| * bar2_address - return the BAR2 address for an SGE Queue's Registers |
| * @adapter: the adapter |
| * @qid: the SGE Queue ID |
| * @qtype: the SGE Queue Type (Egress or Ingress) |
| * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues |
| * |
| * Returns the BAR2 address for the SGE Queue Registers associated with |
| * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also |
| * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE |
| * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" |
| * Registers are supported (e.g. the Write Combining Doorbell Buffer). |
| */ |
| static void __iomem *bar2_address(struct adapter *adapter, |
| unsigned int qid, |
| enum t4_bar2_qtype qtype, |
| unsigned int *pbar2_qid) |
| { |
| u64 bar2_qoffset; |
| int ret; |
| |
| ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, |
| &bar2_qoffset, pbar2_qid); |
| if (ret) |
| return NULL; |
| |
| return adapter->bar2 + bar2_qoffset; |
| } |
| |
| /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 |
| * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map |
| */ |
| int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, |
| struct net_device *dev, int intr_idx, |
| struct sge_fl *fl, rspq_handler_t hnd, |
| rspq_flush_handler_t flush_hnd, int cong) |
| { |
| int ret, flsz = 0; |
| struct fw_iq_cmd c; |
| struct sge *s = &adap->sge; |
| struct port_info *pi = netdev_priv(dev); |
| |
| /* Size needs to be multiple of 16, including status entry. */ |
| iq->size = roundup(iq->size, 16); |
| |
| iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, |
| &iq->phys_addr, NULL, 0, |
| dev_to_node(adap->pdev_dev)); |
| if (!iq->desc) |
| return -ENOMEM; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | FW_CMD_EXEC_F | |
| FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); |
| c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | |
| FW_LEN16(c)); |
| c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | |
| FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | |
| FW_IQ_CMD_IQANDST_V(intr_idx < 0) | |
| FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | |
| FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : |
| -intr_idx - 1)); |
| c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | |
| FW_IQ_CMD_IQGTSMODE_F | |
| FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | |
| FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); |
| c.iqsize = htons(iq->size); |
| c.iqaddr = cpu_to_be64(iq->phys_addr); |
| if (cong >= 0) |
| c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F); |
| |
| if (fl) { |
| enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); |
| |
| /* Allocate the ring for the hardware free list (with space |
| * for its status page) along with the associated software |
| * descriptor ring. The free list size needs to be a multiple |
| * of the Egress Queue Unit and at least 2 Egress Units larger |
| * than the SGE's Egress Congrestion Threshold |
| * (fl_starve_thres - 1). |
| */ |
| if (fl->size < s->fl_starve_thres - 1 + 2 * 8) |
| fl->size = s->fl_starve_thres - 1 + 2 * 8; |
| fl->size = roundup(fl->size, 8); |
| fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), |
| sizeof(struct rx_sw_desc), &fl->addr, |
| &fl->sdesc, s->stat_len, |
| dev_to_node(adap->pdev_dev)); |
| if (!fl->desc) |
| goto fl_nomem; |
| |
| flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); |
| c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | |
| FW_IQ_CMD_FL0FETCHRO_F | |
| FW_IQ_CMD_FL0DATARO_F | |
| FW_IQ_CMD_FL0PADEN_F); |
| if (cong >= 0) |
| c.iqns_to_fl0congen |= |
| htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | |
| FW_IQ_CMD_FL0CONGCIF_F | |
| FW_IQ_CMD_FL0CONGEN_F); |
| /* In T6, for egress queue type FL there is internal overhead |
| * of 16B for header going into FLM module. Hence the maximum |
| * allowed burst size is 448 bytes. For T4/T5, the hardware |
| * doesn't coalesce fetch requests if more than 64 bytes of |
| * Free List pointers are provided, so we use a 128-byte Fetch |
| * Burst Minimum there (T6 implements coalescing so we can use |
| * the smaller 64-byte value there). |
| */ |
| c.fl0dcaen_to_fl0cidxfthresh = |
| htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ? |
| FETCHBURSTMIN_128B_X : |
| FETCHBURSTMIN_64B_X) | |
| FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ? |
| FETCHBURSTMAX_512B_X : |
| FETCHBURSTMAX_256B_X)); |
| c.fl0size = htons(flsz); |
| c.fl0addr = cpu_to_be64(fl->addr); |
| } |
| |
| ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); |
| if (ret) |
| goto err; |
| |
| netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); |
| iq->cur_desc = iq->desc; |
| iq->cidx = 0; |
| iq->gen = 1; |
| iq->next_intr_params = iq->intr_params; |
| iq->cntxt_id = ntohs(c.iqid); |
| iq->abs_id = ntohs(c.physiqid); |
| iq->bar2_addr = bar2_address(adap, |
| iq->cntxt_id, |
| T4_BAR2_QTYPE_INGRESS, |
| &iq->bar2_qid); |
| iq->size--; /* subtract status entry */ |
| iq->netdev = dev; |
| iq->handler = hnd; |
| iq->flush_handler = flush_hnd; |
| |
| memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); |
| skb_queue_head_init(&iq->lro_mgr.lroq); |
| |
| /* set offset to -1 to distinguish ingress queues without FL */ |
| iq->offset = fl ? 0 : -1; |
| |
| adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; |
| |
| if (fl) { |
| fl->cntxt_id = ntohs(c.fl0id); |
| fl->avail = fl->pend_cred = 0; |
| fl->pidx = fl->cidx = 0; |
| fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; |
| adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; |
| |
| /* Note, we must initialize the BAR2 Free List User Doorbell |
| * information before refilling the Free List! |
| */ |
| fl->bar2_addr = bar2_address(adap, |
| fl->cntxt_id, |
| T4_BAR2_QTYPE_EGRESS, |
| &fl->bar2_qid); |
| refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); |
| } |
| |
| /* For T5 and later we attempt to set up the Congestion Manager values |
| * of the new RX Ethernet Queue. This should really be handled by |
| * firmware because it's more complex than any host driver wants to |
| * get involved with and it's different per chip and this is almost |
| * certainly wrong. Firmware would be wrong as well, but it would be |
| * a lot easier to fix in one place ... For now we do something very |
| * simple (and hopefully less wrong). |
| */ |
| if (!is_t4(adap->params.chip) && cong >= 0) { |
| u32 param, val, ch_map = 0; |
| int i; |
| u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; |
| |
| param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | |
| FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); |
| if (cong == 0) { |
| val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); |
| } else { |
| val = |
| CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); |
| for (i = 0; i < 4; i++) { |
| if (cong & (1 << i)) |
| ch_map |= 1 << (i << cng_ch_bits_log); |
| } |
| val |= CONMCTXT_CNGCHMAP_V(ch_map); |
| } |
| ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, |
| ¶m, &val); |
| if (ret) |
| dev_warn(adap->pdev_dev, "Failed to set Congestion" |
| " Manager Context for Ingress Queue %d: %d\n", |
| iq->cntxt_id, -ret); |
| } |
| |
| return 0; |
| |
| fl_nomem: |
| ret = -ENOMEM; |
| err: |
| if (iq->desc) { |
| dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, |
| iq->desc, iq->phys_addr); |
| iq->desc = NULL; |
| } |
| if (fl && fl->desc) { |
| kfree(fl->sdesc); |
| fl->sdesc = NULL; |
| dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), |
| fl->desc, fl->addr); |
| fl->desc = NULL; |
| } |
| return ret; |
| } |
| |
| static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) |
| { |
| q->cntxt_id = id; |
| q->bar2_addr = bar2_address(adap, |
| q->cntxt_id, |
| T4_BAR2_QTYPE_EGRESS, |
| &q->bar2_qid); |
| q->in_use = 0; |
| q->cidx = q->pidx = 0; |
| q->stops = q->restarts = 0; |
| q->stat = (void *)&q->desc[q->size]; |
| spin_lock_init(&q->db_lock); |
| adap->sge.egr_map[id - adap->sge.egr_start] = q; |
| } |
| |
| int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, |
| struct net_device *dev, struct netdev_queue *netdevq, |
| unsigned int iqid) |
| { |
| int ret, nentries; |
| struct fw_eq_eth_cmd c; |
| struct sge *s = &adap->sge; |
| struct port_info *pi = netdev_priv(dev); |
| |
| /* Add status entries */ |
| nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); |
| |
| txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, |
| sizeof(struct tx_desc), sizeof(struct tx_sw_desc), |
| &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, |
| netdev_queue_numa_node_read(netdevq)); |
| if (!txq->q.desc) |
| return -ENOMEM; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | FW_CMD_EXEC_F | |
| FW_EQ_ETH_CMD_PFN_V(adap->pf) | |
| FW_EQ_ETH_CMD_VFN_V(0)); |
| c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | |
| FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); |
| c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F | |
| FW_EQ_ETH_CMD_VIID_V(pi->viid)); |
| c.fetchszm_to_iqid = |
| htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | |
| FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | |
| FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); |
| c.dcaen_to_eqsize = |
| htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | |
| FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | |
| FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | |
| FW_EQ_ETH_CMD_EQSIZE_V(nentries)); |
| c.eqaddr = cpu_to_be64(txq->q.phys_addr); |
| |
| ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); |
| if (ret) { |
| kfree(txq->q.sdesc); |
| txq->q.sdesc = NULL; |
| dma_free_coherent(adap->pdev_dev, |
| nentries * sizeof(struct tx_desc), |
| txq->q.desc, txq->q.phys_addr); |
| txq->q.desc = NULL; |
| return ret; |
| } |
| |
| txq->q.q_type = CXGB4_TXQ_ETH; |
| init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); |
| txq->txq = netdevq; |
| txq->tso = txq->tx_cso = txq->vlan_ins = 0; |
| txq->mapping_err = 0; |
| return 0; |
| } |
| |
| int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, |
| struct net_device *dev, unsigned int iqid, |
| unsigned int cmplqid) |
| { |
| int ret, nentries; |
| struct fw_eq_ctrl_cmd c; |
| struct sge *s = &adap->sge; |
| struct port_info *pi = netdev_priv(dev); |
| |
| /* Add status entries */ |
| nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); |
| |
| txq->q.desc = alloc_ring(adap->pdev_dev, nentries, |
| sizeof(struct tx_desc), 0, &txq->q.phys_addr, |
| NULL, 0, dev_to_node(adap->pdev_dev)); |
| if (!txq->q.desc) |
| return -ENOMEM; |
| |
| c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | FW_CMD_EXEC_F | |
| FW_EQ_CTRL_CMD_PFN_V(adap->pf) | |
| FW_EQ_CTRL_CMD_VFN_V(0)); |
| c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | |
| FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); |
| c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); |
| c.physeqid_pkd = htonl(0); |
| c.fetchszm_to_iqid = |
| htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | |
| FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | |
| FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); |
| c.dcaen_to_eqsize = |
| htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | |
| FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | |
| FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | |
| FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); |
| c.eqaddr = cpu_to_be64(txq->q.phys_addr); |
| |
| ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); |
| if (ret) { |
| dma_free_coherent(adap->pdev_dev, |
| nentries * sizeof(struct tx_desc), |
| txq->q.desc, txq->q.phys_addr); |
| txq->q.desc = NULL; |
| return ret; |
| } |
| |
| txq->q.q_type = CXGB4_TXQ_CTRL; |
| init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); |
| txq->adap = adap; |
| skb_queue_head_init(&txq->sendq); |
| tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); |
| txq->full = 0; |
| return 0; |
| } |
| |
| int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, |
| unsigned int cmplqid) |
| { |
| u32 param, val; |
| |
| param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | |
| FW_PARAMS_PARAM_YZ_V(eqid)); |
| val = cmplqid; |
| return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); |
| } |
| |
| int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, |
| struct net_device *dev, unsigned int iqid, |
| unsigned int uld_type) |
| { |
| int ret, nentries; |
| struct fw_eq_ofld_cmd c; |
| struct sge *s = &adap->sge; |
| struct port_info *pi = netdev_priv(dev); |
| int cmd = FW_EQ_OFLD_CMD; |
| |
| /* Add status entries */ |
| nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); |
| |
| txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, |
| sizeof(struct tx_desc), sizeof(struct tx_sw_desc), |
| &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, |
| NUMA_NO_NODE); |
| if (!txq->q.desc) |
| return -ENOMEM; |
| |
| memset(&c, 0, sizeof(c)); |
| if (unlikely(uld_type == CXGB4_TX_CRYPTO)) |
| cmd = FW_EQ_CTRL_CMD; |
| c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F | FW_CMD_EXEC_F | |
| FW_EQ_OFLD_CMD_PFN_V(adap->pf) | |
| FW_EQ_OFLD_CMD_VFN_V(0)); |
| c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | |
| FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); |
| c.fetchszm_to_iqid = |
| htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | |
| FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | |
| FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); |
| c.dcaen_to_eqsize = |
| htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) | |
| FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | |
| FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | |
| FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); |
| c.eqaddr = cpu_to_be64(txq->q.phys_addr); |
| |
| ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); |
| if (ret) { |
| kfree(txq->q.sdesc); |
| txq->q.sdesc = NULL; |
| dma_free_coherent(adap->pdev_dev, |
| nentries * sizeof(struct tx_desc), |
| txq->q.desc, txq->q.phys_addr); |
| txq->q.desc = NULL; |
| return ret; |
| } |
| |
| txq->q.q_type = CXGB4_TXQ_ULD; |
| init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); |
| txq->adap = adap; |
| skb_queue_head_init(&txq->sendq); |
| tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); |
| txq->full = 0; |
| txq->mapping_err = 0; |
| return 0; |
| } |
| |
| void free_txq(struct adapter *adap, struct sge_txq *q) |
| { |
| struct sge *s = &adap->sge; |
| |
| dma_free_coherent(adap->pdev_dev, |
| q->size * sizeof(struct tx_desc) + s->stat_len, |
| q->desc, q->phys_addr); |
| q->cntxt_id = 0; |
| q->sdesc = NULL; |
| q->desc = NULL; |
| } |
| |
| void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, |
| struct sge_fl *fl) |
| { |
| struct sge *s = &adap->sge; |
| unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; |
| |
| adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; |
| t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, |
| rq->cntxt_id, fl_id, 0xffff); |
| dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, |
| rq->desc, rq->phys_addr); |
| netif_napi_del(&rq->napi); |
| rq->netdev = NULL; |
| rq->cntxt_id = rq->abs_id = 0; |
| rq->desc = NULL; |
| |
| if (fl) { |
| free_rx_bufs(adap, fl, fl->avail); |
| dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, |
| fl->desc, fl->addr); |
| kfree(fl->sdesc); |
| fl->sdesc = NULL; |
| fl->cntxt_id = 0; |
| fl->desc = NULL; |
| } |
| } |
| |
| /** |
| * t4_free_ofld_rxqs - free a block of consecutive Rx queues |
| * @adap: the adapter |
| * @n: number of queues |
| * @q: pointer to first queue |
| * |
| * Release the resources of a consecutive block of offload Rx queues. |
| */ |
| void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q) |
| { |
| for ( ; n; n--, q++) |
| if (q->rspq.desc) |
| free_rspq_fl(adap, &q->rspq, |
| q->fl.size ? &q->fl : NULL); |
| } |
| |
| /** |
| * t4_free_sge_resources - free SGE resources |
| * @adap: the adapter |
| * |
| * Frees resources used by the SGE queue sets. |
| */ |
| void t4_free_sge_resources(struct adapter *adap) |
| { |
| int i; |
| struct sge_eth_rxq *eq; |
| struct sge_eth_txq *etq; |
| |
| /* stop all Rx queues in order to start them draining */ |
| for (i = 0; i < adap->sge.ethqsets; i++) { |
| eq = &adap->sge.ethrxq[i]; |
| if (eq->rspq.desc) |
| t4_iq_stop(adap, adap->mbox, adap->pf, 0, |
| FW_IQ_TYPE_FL_INT_CAP, |
| eq->rspq.cntxt_id, |
| eq->fl.size ? eq->fl.cntxt_id : 0xffff, |
| 0xffff); |
| } |
| |
| /* clean up Ethernet Tx/Rx queues */ |
| for (i = 0; i < adap->sge.ethqsets; i++) { |
| eq = &adap->sge.ethrxq[i]; |
| if (eq->rspq.desc) |
| free_rspq_fl(adap, &eq->rspq, |
| eq->fl.size ? &eq->fl : NULL); |
| |
| etq = &adap->sge.ethtxq[i]; |
| if (etq->q.desc) { |
| t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, |
| etq->q.cntxt_id); |
| __netif_tx_lock_bh(etq->txq); |
| free_tx_desc(adap, &etq->q, etq->q.in_use, true); |
| __netif_tx_unlock_bh(etq->txq); |
| kfree(etq->q.sdesc); |
| free_txq(adap, &etq->q); |
| } |
| } |
| |
| /* clean up control Tx queues */ |
| for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { |
| struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; |
| |
| if (cq->q.desc) { |
| tasklet_kill(&cq->qresume_tsk); |
| t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, |
| cq->q.cntxt_id); |
| __skb_queue_purge(&cq->sendq); |
| free_txq(adap, &cq->q); |
| } |
| } |
| |
| if (adap->sge.fw_evtq.desc) |
| free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); |
| |
| if (adap->sge.intrq.desc) |
| free_rspq_fl(adap, &adap->sge.intrq, NULL); |
| |
| /* clear the reverse egress queue map */ |
| memset(adap->sge.egr_map, 0, |
| adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); |
| } |
| |
| void t4_sge_start(struct adapter *adap) |
| { |
| adap->sge.ethtxq_rover = 0; |
| mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); |
| mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); |
| } |
| |
| /** |
| * t4_sge_stop - disable SGE operation |
| * @adap: the adapter |
| * |
| * Stop tasklets and timers associated with the DMA engine. Note that |
| * this is effective only if measures have been taken to disable any HW |
| * events that may restart them. |
| */ |
| void t4_sge_stop(struct adapter *adap) |
| { |
| int i; |
| struct sge *s = &adap->sge; |
| |
| if (in_interrupt()) /* actions below require waiting */ |
| return; |
| |
| if (s->rx_timer.function) |
| del_timer_sync(&s->rx_timer); |
| if (s->tx_timer.function) |
| del_timer_sync(&s->tx_timer); |
| |
| if (is_offload(adap)) { |
| struct sge_uld_txq_info *txq_info; |
| |
| txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; |
| if (txq_info) { |
| struct sge_uld_txq *txq = txq_info->uldtxq; |
| |
| for_each_ofldtxq(&adap->sge, i) { |
| if (txq->q.desc) |
| tasklet_kill(&txq->qresume_tsk); |
| } |
| } |
| } |
| |
| if (is_pci_uld(adap)) { |
| struct sge_uld_txq_info *txq_info; |
| |
| txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; |
| if (txq_info) { |
| struct sge_uld_txq *txq = txq_info->uldtxq; |
| |
| for_each_ofldtxq(&adap->sge, i) { |
| if (txq->q.desc) |
| tasklet_kill(&txq->qresume_tsk); |
| } |
| } |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { |
| struct sge_ctrl_txq *cq = &s->ctrlq[i]; |
| |
| if (cq->q.desc) |
| tasklet_kill(&cq->qresume_tsk); |
| } |
| } |
| |
| /** |
| * t4_sge_init_soft - grab core SGE values needed by SGE code |
| * @adap: the adapter |
| * |
| * We need to grab the SGE operating parameters that we need to have |
| * in order to do our job and make sure we can live with them. |
| */ |
| |
| static int t4_sge_init_soft(struct adapter *adap) |
| { |
| struct sge *s = &adap->sge; |
| u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; |
| u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; |
| u32 ingress_rx_threshold; |
| |
| /* |
| * Verify that CPL messages are going to the Ingress Queue for |
| * process_responses() and that only packet data is going to the |
| * Free Lists. |
| */ |
| if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != |
| RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { |
| dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Validate the Host Buffer Register Array indices that we want to |
| * use ... |
| * |
| * XXX Note that we should really read through the Host Buffer Size |
| * XXX register array and find the indices of the Buffer Sizes which |
| * XXX meet our needs! |
| */ |
| #define READ_FL_BUF(x) \ |
| t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) |
| |
| fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); |
| fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); |
| fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); |
| fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); |
| |
| /* We only bother using the Large Page logic if the Large Page Buffer |
| * is larger than our Page Size Buffer. |
| */ |
| if (fl_large_pg <= fl_small_pg) |
| fl_large_pg = 0; |
| |
| #undef READ_FL_BUF |
| |
| /* The Page Size Buffer must be exactly equal to our Page Size and the |
| * Large Page Size Buffer should be 0 (per above) or a power of 2. |
| */ |
| if (fl_small_pg != PAGE_SIZE || |
| (fl_large_pg & (fl_large_pg-1)) != 0) { |
| dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", |
| fl_small_pg, fl_large_pg); |
| return -EINVAL; |
| } |
| if (fl_large_pg) |
| s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; |
| |
| if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || |
| fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { |
| dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", |
| fl_small_mtu, fl_large_mtu); |
| return -EINVAL; |
| } |
| |
| /* |
| * Retrieve our RX interrupt holdoff timer values and counter |
| * threshold values from the SGE parameters. |
| */ |
| timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); |
| timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); |
| timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); |
| s->timer_val[0] = core_ticks_to_us(adap, |
| TIMERVALUE0_G(timer_value_0_and_1)); |
| s->timer_val[1] = core_ticks_to_us(adap, |
| TIMERVALUE1_G(timer_value_0_and_1)); |
| s->timer_val[2] = core_ticks_to_us(adap, |
| TIMERVALUE2_G(timer_value_2_and_3)); |
| s->timer_val[3] = core_ticks_to_us(adap, |
| TIMERVALUE3_G(timer_value_2_and_3)); |
| s->timer_val[4] = core_ticks_to_us(adap, |
| TIMERVALUE4_G(timer_value_4_and_5)); |
| s->timer_val[5] = core_ticks_to_us(adap, |
| TIMERVALUE5_G(timer_value_4_and_5)); |
| |
| ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); |
| s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); |
| s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); |
| s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); |
| s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); |
| |
| return 0; |
| } |
| |
| /** |
| * t4_sge_init - initialize SGE |
| * @adap: the adapter |
| * |
| * Perform low-level SGE code initialization needed every time after a |
| * chip reset. |
| */ |
| int t4_sge_init(struct adapter *adap) |
| { |
| struct sge *s = &adap->sge; |
| u32 sge_control, sge_conm_ctrl; |
| int ret, egress_threshold; |
| |
| /* |
| * Ingress Padding Boundary and Egress Status Page Size are set up by |
| * t4_fixup_host_params(). |
| */ |
| sge_control = t4_read_reg(adap, SGE_CONTROL_A); |
| s->pktshift = PKTSHIFT_G(sge_control); |
| s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; |
| |
| s->fl_align = t4_fl_pkt_align(adap); |
| ret = t4_sge_init_soft(adap); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * A FL with <= fl_starve_thres buffers is starving and a periodic |
| * timer will attempt to refill it. This needs to be larger than the |
| * SGE's Egress Congestion Threshold. If it isn't, then we can get |
| * stuck waiting for new packets while the SGE is waiting for us to |
| * give it more Free List entries. (Note that the SGE's Egress |
| * Congestion Threshold is in units of 2 Free List pointers.) For T4, |
| * there was only a single field to control this. For T5 there's the |
| * original field which now only applies to Unpacked Mode Free List |
| * buffers and a new field which only applies to Packed Mode Free List |
| * buffers. |
| */ |
| sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); |
| switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { |
| case CHELSIO_T4: |
| egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); |
| break; |
| case CHELSIO_T5: |
| egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); |
| break; |
| case CHELSIO_T6: |
| egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); |
| break; |
| default: |
| dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", |
| CHELSIO_CHIP_VERSION(adap->params.chip)); |
| return -EINVAL; |
| } |
| s->fl_starve_thres = 2*egress_threshold + 1; |
| |
| t4_idma_monitor_init(adap, &s->idma_monitor); |
| |
| /* Set up timers used for recuring callbacks to process RX and TX |
| * administrative tasks. |
| */ |
| setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap); |
| setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap); |
| |
| spin_lock_init(&s->intrq_lock); |
| |
| return 0; |
| } |