blob: a080d9ee3cd76b5e9c4561cfb4e7c581534e80e0 [file] [log] [blame]
/*
* Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
* reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the NetLogic
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/irq.h>
#include <asm/mmu_context.h>
#include <asm/netlogic/interrupt.h>
#include <asm/netlogic/mips-extns.h>
#include <asm/netlogic/haldefs.h>
#include <asm/netlogic/common.h>
#if defined(CONFIG_CPU_XLP)
#include <asm/netlogic/xlp-hal/iomap.h>
#include <asm/netlogic/xlp-hal/xlp.h>
#include <asm/netlogic/xlp-hal/pic.h>
#elif defined(CONFIG_CPU_XLR)
#include <asm/netlogic/xlr/iomap.h>
#include <asm/netlogic/xlr/pic.h>
#include <asm/netlogic/xlr/xlr.h>
#else
#error "Unknown CPU"
#endif
void nlm_send_ipi_single(int logical_cpu, unsigned int action)
{
int cpu, node;
uint64_t picbase;
cpu = cpu_logical_map(logical_cpu);
node = cpu / NLM_CPUS_PER_NODE;
picbase = nlm_get_node(node)->picbase;
if (action & SMP_CALL_FUNCTION)
nlm_pic_send_ipi(picbase, cpu, IRQ_IPI_SMP_FUNCTION, 0);
if (action & SMP_RESCHEDULE_YOURSELF)
nlm_pic_send_ipi(picbase, cpu, IRQ_IPI_SMP_RESCHEDULE, 0);
}
void nlm_send_ipi_mask(const struct cpumask *mask, unsigned int action)
{
int cpu;
for_each_cpu(cpu, mask) {
nlm_send_ipi_single(cpu, action);
}
}
/* IRQ_IPI_SMP_FUNCTION Handler */
void nlm_smp_function_ipi_handler(unsigned int irq, struct irq_desc *desc)
{
write_c0_eirr(1ull << irq);
smp_call_function_interrupt();
}
/* IRQ_IPI_SMP_RESCHEDULE handler */
void nlm_smp_resched_ipi_handler(unsigned int irq, struct irq_desc *desc)
{
write_c0_eirr(1ull << irq);
scheduler_ipi();
}
/*
* Called before going into mips code, early cpu init
*/
void nlm_early_init_secondary(int cpu)
{
change_c0_config(CONF_CM_CMASK, 0x3);
#ifdef CONFIG_CPU_XLP
/* mmu init, once per core */
if (cpu % NLM_THREADS_PER_CORE == 0)
xlp_mmu_init();
#endif
write_c0_ebase(nlm_current_node()->ebase);
}
/*
* Code to run on secondary just after probing the CPU
*/
static void __cpuinit nlm_init_secondary(void)
{
int hwtid;
hwtid = hard_smp_processor_id();
current_cpu_data.core = hwtid / NLM_THREADS_PER_CORE;
nlm_percpu_init(hwtid);
nlm_smp_irq_init(hwtid);
}
void nlm_prepare_cpus(unsigned int max_cpus)
{
/* declare we are SMT capable */
smp_num_siblings = nlm_threads_per_core;
}
void nlm_smp_finish(void)
{
local_irq_enable();
}
void nlm_cpus_done(void)
{
}
/*
* Boot all other cpus in the system, initialize them, and bring them into
* the boot function
*/
int nlm_cpu_ready[NR_CPUS];
unsigned long nlm_next_gp;
unsigned long nlm_next_sp;
cpumask_t phys_cpu_present_map;
void nlm_boot_secondary(int logical_cpu, struct task_struct *idle)
{
int cpu, node;
cpu = cpu_logical_map(logical_cpu);
node = cpu / NLM_CPUS_PER_NODE;
nlm_next_sp = (unsigned long)__KSTK_TOS(idle);
nlm_next_gp = (unsigned long)task_thread_info(idle);
/* barrier for sp/gp store above */
__sync();
nlm_pic_send_ipi(nlm_get_node(node)->picbase, cpu, 1, 1); /* NMI */
}
void __init nlm_smp_setup(void)
{
unsigned int boot_cpu;
int num_cpus, i, ncore;
boot_cpu = hard_smp_processor_id();
cpumask_clear(&phys_cpu_present_map);
cpumask_set_cpu(boot_cpu, &phys_cpu_present_map);
__cpu_number_map[boot_cpu] = 0;
__cpu_logical_map[0] = boot_cpu;
set_cpu_possible(0, true);
num_cpus = 1;
for (i = 0; i < NR_CPUS; i++) {
/*
* nlm_cpu_ready array is not set for the boot_cpu,
* it is only set for ASPs (see smpboot.S)
*/
if (nlm_cpu_ready[i]) {
cpumask_set_cpu(i, &phys_cpu_present_map);
__cpu_number_map[i] = num_cpus;
__cpu_logical_map[num_cpus] = i;
set_cpu_possible(num_cpus, true);
++num_cpus;
}
}
/* check with the cores we have worken up */
for (ncore = 0, i = 0; i < NLM_NR_NODES; i++)
ncore += hweight32(nlm_get_node(i)->coremask);
pr_info("Phys CPU present map: %lx, possible map %lx\n",
(unsigned long)cpumask_bits(&phys_cpu_present_map)[0],
(unsigned long)cpumask_bits(cpu_possible_mask)[0]);
pr_info("Detected (%dc%dt) %d Slave CPU(s)\n", ncore,
nlm_threads_per_core, num_cpus);
nlm_set_nmi_handler(nlm_boot_secondary_cpus);
}
static int nlm_parse_cpumask(cpumask_t *wakeup_mask)
{
uint32_t core0_thr_mask, core_thr_mask;
int threadmode, i, j;
core0_thr_mask = 0;
for (i = 0; i < NLM_THREADS_PER_CORE; i++)
if (cpumask_test_cpu(i, wakeup_mask))
core0_thr_mask |= (1 << i);
switch (core0_thr_mask) {
case 1:
nlm_threads_per_core = 1;
threadmode = 0;
break;
case 3:
nlm_threads_per_core = 2;
threadmode = 2;
break;
case 0xf:
nlm_threads_per_core = 4;
threadmode = 3;
break;
default:
goto unsupp;
}
/* Verify other cores CPU masks */
for (i = 0; i < NR_CPUS; i += NLM_THREADS_PER_CORE) {
core_thr_mask = 0;
for (j = 0; j < NLM_THREADS_PER_CORE; j++)
if (cpumask_test_cpu(i + j, wakeup_mask))
core_thr_mask |= (1 << j);
if (core_thr_mask != 0 && core_thr_mask != core0_thr_mask)
goto unsupp;
}
return threadmode;
unsupp:
panic("Unsupported CPU mask %lx\n",
(unsigned long)cpumask_bits(wakeup_mask)[0]);
return 0;
}
int __cpuinit nlm_wakeup_secondary_cpus(void)
{
unsigned long reset_vec;
char *reset_data;
int threadmode;
/* Update reset entry point with CPU init code */
reset_vec = CKSEG1ADDR(RESET_VEC_PHYS);
memcpy((void *)reset_vec, (void *)nlm_reset_entry,
(nlm_reset_entry_end - nlm_reset_entry));
/* verify the mask and setup core config variables */
threadmode = nlm_parse_cpumask(&nlm_cpumask);
/* Setup CPU init parameters */
reset_data = (char *)CKSEG1ADDR(RESET_DATA_PHYS);
*(int *)(reset_data + BOOT_THREAD_MODE) = threadmode;
#ifdef CONFIG_CPU_XLP
xlp_wakeup_secondary_cpus();
#else
xlr_wakeup_secondary_cpus();
#endif
return 0;
}
struct plat_smp_ops nlm_smp_ops = {
.send_ipi_single = nlm_send_ipi_single,
.send_ipi_mask = nlm_send_ipi_mask,
.init_secondary = nlm_init_secondary,
.smp_finish = nlm_smp_finish,
.cpus_done = nlm_cpus_done,
.boot_secondary = nlm_boot_secondary,
.smp_setup = nlm_smp_setup,
.prepare_cpus = nlm_prepare_cpus,
};