| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * AMD SVM support |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * |
| * Authors: |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Avi Kivity <avi@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| #include <linux/kvm_host.h> |
| |
| #include "irq.h" |
| #include "mmu.h" |
| #include "kvm_cache_regs.h" |
| #include "x86.h" |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/vmalloc.h> |
| #include <linux/highmem.h> |
| #include <linux/sched.h> |
| #include <linux/ftrace_event.h> |
| |
| #include <asm/desc.h> |
| |
| #include <asm/virtext.h> |
| #include "trace.h" |
| |
| #define __ex(x) __kvm_handle_fault_on_reboot(x) |
| |
| MODULE_AUTHOR("Qumranet"); |
| MODULE_LICENSE("GPL"); |
| |
| #define IOPM_ALLOC_ORDER 2 |
| #define MSRPM_ALLOC_ORDER 1 |
| |
| #define SEG_TYPE_LDT 2 |
| #define SEG_TYPE_BUSY_TSS16 3 |
| |
| #define SVM_FEATURE_NPT (1 << 0) |
| #define SVM_FEATURE_LBRV (1 << 1) |
| #define SVM_FEATURE_SVML (1 << 2) |
| |
| #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) |
| |
| /* Turn on to get debugging output*/ |
| /* #define NESTED_DEBUG */ |
| |
| #ifdef NESTED_DEBUG |
| #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args) |
| #else |
| #define nsvm_printk(fmt, args...) do {} while(0) |
| #endif |
| |
| static const u32 host_save_user_msrs[] = { |
| #ifdef CONFIG_X86_64 |
| MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE, |
| MSR_FS_BASE, |
| #endif |
| MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, |
| }; |
| |
| #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs) |
| |
| struct kvm_vcpu; |
| |
| struct vcpu_svm { |
| struct kvm_vcpu vcpu; |
| struct vmcb *vmcb; |
| unsigned long vmcb_pa; |
| struct svm_cpu_data *svm_data; |
| uint64_t asid_generation; |
| uint64_t sysenter_esp; |
| uint64_t sysenter_eip; |
| |
| u64 next_rip; |
| |
| u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS]; |
| u64 host_gs_base; |
| |
| u32 *msrpm; |
| struct vmcb *hsave; |
| u64 hsave_msr; |
| |
| u64 nested_vmcb; |
| |
| /* These are the merged vectors */ |
| u32 *nested_msrpm; |
| |
| /* gpa pointers to the real vectors */ |
| u64 nested_vmcb_msrpm; |
| }; |
| |
| /* enable NPT for AMD64 and X86 with PAE */ |
| #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) |
| static bool npt_enabled = true; |
| #else |
| static bool npt_enabled = false; |
| #endif |
| static int npt = 1; |
| |
| module_param(npt, int, S_IRUGO); |
| |
| static int nested = 0; |
| module_param(nested, int, S_IRUGO); |
| |
| static void svm_flush_tlb(struct kvm_vcpu *vcpu); |
| |
| static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override); |
| static int nested_svm_vmexit(struct vcpu_svm *svm); |
| static int nested_svm_vmsave(struct vcpu_svm *svm, void *nested_vmcb, |
| void *arg2, void *opaque); |
| static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, |
| bool has_error_code, u32 error_code); |
| |
| static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) |
| { |
| return container_of(vcpu, struct vcpu_svm, vcpu); |
| } |
| |
| static inline bool is_nested(struct vcpu_svm *svm) |
| { |
| return svm->nested_vmcb; |
| } |
| |
| static unsigned long iopm_base; |
| |
| struct kvm_ldttss_desc { |
| u16 limit0; |
| u16 base0; |
| unsigned base1 : 8, type : 5, dpl : 2, p : 1; |
| unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8; |
| u32 base3; |
| u32 zero1; |
| } __attribute__((packed)); |
| |
| struct svm_cpu_data { |
| int cpu; |
| |
| u64 asid_generation; |
| u32 max_asid; |
| u32 next_asid; |
| struct kvm_ldttss_desc *tss_desc; |
| |
| struct page *save_area; |
| }; |
| |
| static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); |
| static uint32_t svm_features; |
| |
| struct svm_init_data { |
| int cpu; |
| int r; |
| }; |
| |
| static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; |
| |
| #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) |
| #define MSRS_RANGE_SIZE 2048 |
| #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) |
| |
| #define MAX_INST_SIZE 15 |
| |
| static inline u32 svm_has(u32 feat) |
| { |
| return svm_features & feat; |
| } |
| |
| static inline void clgi(void) |
| { |
| asm volatile (__ex(SVM_CLGI)); |
| } |
| |
| static inline void stgi(void) |
| { |
| asm volatile (__ex(SVM_STGI)); |
| } |
| |
| static inline void invlpga(unsigned long addr, u32 asid) |
| { |
| asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid)); |
| } |
| |
| static inline void force_new_asid(struct kvm_vcpu *vcpu) |
| { |
| to_svm(vcpu)->asid_generation--; |
| } |
| |
| static inline void flush_guest_tlb(struct kvm_vcpu *vcpu) |
| { |
| force_new_asid(vcpu); |
| } |
| |
| static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| if (!npt_enabled && !(efer & EFER_LMA)) |
| efer &= ~EFER_LME; |
| |
| to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME; |
| vcpu->arch.shadow_efer = efer; |
| } |
| |
| static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, |
| bool has_error_code, u32 error_code) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* If we are within a nested VM we'd better #VMEXIT and let the |
| guest handle the exception */ |
| if (nested_svm_check_exception(svm, nr, has_error_code, error_code)) |
| return; |
| |
| svm->vmcb->control.event_inj = nr |
| | SVM_EVTINJ_VALID |
| | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) |
| | SVM_EVTINJ_TYPE_EXEPT; |
| svm->vmcb->control.event_inj_err = error_code; |
| } |
| |
| static int is_external_interrupt(u32 info) |
| { |
| info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; |
| return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); |
| } |
| |
| static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u32 ret = 0; |
| |
| if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) |
| ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS; |
| return ret & mask; |
| } |
| |
| static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (mask == 0) |
| svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; |
| else |
| svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; |
| |
| } |
| |
| static void skip_emulated_instruction(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (!svm->next_rip) { |
| if (emulate_instruction(vcpu, vcpu->run, 0, 0, EMULTYPE_SKIP) != |
| EMULATE_DONE) |
| printk(KERN_DEBUG "%s: NOP\n", __func__); |
| return; |
| } |
| if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE) |
| printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n", |
| __func__, kvm_rip_read(vcpu), svm->next_rip); |
| |
| kvm_rip_write(vcpu, svm->next_rip); |
| svm_set_interrupt_shadow(vcpu, 0); |
| } |
| |
| static int has_svm(void) |
| { |
| const char *msg; |
| |
| if (!cpu_has_svm(&msg)) { |
| printk(KERN_INFO "has_svm: %s\n", msg); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void svm_hardware_disable(void *garbage) |
| { |
| cpu_svm_disable(); |
| } |
| |
| static void svm_hardware_enable(void *garbage) |
| { |
| |
| struct svm_cpu_data *svm_data; |
| uint64_t efer; |
| struct descriptor_table gdt_descr; |
| struct desc_struct *gdt; |
| int me = raw_smp_processor_id(); |
| |
| if (!has_svm()) { |
| printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me); |
| return; |
| } |
| svm_data = per_cpu(svm_data, me); |
| |
| if (!svm_data) { |
| printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n", |
| me); |
| return; |
| } |
| |
| svm_data->asid_generation = 1; |
| svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; |
| svm_data->next_asid = svm_data->max_asid + 1; |
| |
| kvm_get_gdt(&gdt_descr); |
| gdt = (struct desc_struct *)gdt_descr.base; |
| svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); |
| |
| rdmsrl(MSR_EFER, efer); |
| wrmsrl(MSR_EFER, efer | EFER_SVME); |
| |
| wrmsrl(MSR_VM_HSAVE_PA, |
| page_to_pfn(svm_data->save_area) << PAGE_SHIFT); |
| } |
| |
| static void svm_cpu_uninit(int cpu) |
| { |
| struct svm_cpu_data *svm_data |
| = per_cpu(svm_data, raw_smp_processor_id()); |
| |
| if (!svm_data) |
| return; |
| |
| per_cpu(svm_data, raw_smp_processor_id()) = NULL; |
| __free_page(svm_data->save_area); |
| kfree(svm_data); |
| } |
| |
| static int svm_cpu_init(int cpu) |
| { |
| struct svm_cpu_data *svm_data; |
| int r; |
| |
| svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); |
| if (!svm_data) |
| return -ENOMEM; |
| svm_data->cpu = cpu; |
| svm_data->save_area = alloc_page(GFP_KERNEL); |
| r = -ENOMEM; |
| if (!svm_data->save_area) |
| goto err_1; |
| |
| per_cpu(svm_data, cpu) = svm_data; |
| |
| return 0; |
| |
| err_1: |
| kfree(svm_data); |
| return r; |
| |
| } |
| |
| static void set_msr_interception(u32 *msrpm, unsigned msr, |
| int read, int write) |
| { |
| int i; |
| |
| for (i = 0; i < NUM_MSR_MAPS; i++) { |
| if (msr >= msrpm_ranges[i] && |
| msr < msrpm_ranges[i] + MSRS_IN_RANGE) { |
| u32 msr_offset = (i * MSRS_IN_RANGE + msr - |
| msrpm_ranges[i]) * 2; |
| |
| u32 *base = msrpm + (msr_offset / 32); |
| u32 msr_shift = msr_offset % 32; |
| u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1); |
| *base = (*base & ~(0x3 << msr_shift)) | |
| (mask << msr_shift); |
| return; |
| } |
| } |
| BUG(); |
| } |
| |
| static void svm_vcpu_init_msrpm(u32 *msrpm) |
| { |
| memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); |
| |
| #ifdef CONFIG_X86_64 |
| set_msr_interception(msrpm, MSR_GS_BASE, 1, 1); |
| set_msr_interception(msrpm, MSR_FS_BASE, 1, 1); |
| set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1); |
| set_msr_interception(msrpm, MSR_LSTAR, 1, 1); |
| set_msr_interception(msrpm, MSR_CSTAR, 1, 1); |
| set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1); |
| #endif |
| set_msr_interception(msrpm, MSR_K6_STAR, 1, 1); |
| set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1); |
| } |
| |
| static void svm_enable_lbrv(struct vcpu_svm *svm) |
| { |
| u32 *msrpm = svm->msrpm; |
| |
| svm->vmcb->control.lbr_ctl = 1; |
| set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); |
| set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); |
| set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); |
| set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1); |
| } |
| |
| static void svm_disable_lbrv(struct vcpu_svm *svm) |
| { |
| u32 *msrpm = svm->msrpm; |
| |
| svm->vmcb->control.lbr_ctl = 0; |
| set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); |
| set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); |
| set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); |
| set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); |
| } |
| |
| static __init int svm_hardware_setup(void) |
| { |
| int cpu; |
| struct page *iopm_pages; |
| void *iopm_va; |
| int r; |
| |
| iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); |
| |
| if (!iopm_pages) |
| return -ENOMEM; |
| |
| iopm_va = page_address(iopm_pages); |
| memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); |
| iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; |
| |
| if (boot_cpu_has(X86_FEATURE_NX)) |
| kvm_enable_efer_bits(EFER_NX); |
| |
| if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) |
| kvm_enable_efer_bits(EFER_FFXSR); |
| |
| if (nested) { |
| printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); |
| kvm_enable_efer_bits(EFER_SVME); |
| } |
| |
| for_each_online_cpu(cpu) { |
| r = svm_cpu_init(cpu); |
| if (r) |
| goto err; |
| } |
| |
| svm_features = cpuid_edx(SVM_CPUID_FUNC); |
| |
| if (!svm_has(SVM_FEATURE_NPT)) |
| npt_enabled = false; |
| |
| if (npt_enabled && !npt) { |
| printk(KERN_INFO "kvm: Nested Paging disabled\n"); |
| npt_enabled = false; |
| } |
| |
| if (npt_enabled) { |
| printk(KERN_INFO "kvm: Nested Paging enabled\n"); |
| kvm_enable_tdp(); |
| } else |
| kvm_disable_tdp(); |
| |
| return 0; |
| |
| err: |
| __free_pages(iopm_pages, IOPM_ALLOC_ORDER); |
| iopm_base = 0; |
| return r; |
| } |
| |
| static __exit void svm_hardware_unsetup(void) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) |
| svm_cpu_uninit(cpu); |
| |
| __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); |
| iopm_base = 0; |
| } |
| |
| static void init_seg(struct vmcb_seg *seg) |
| { |
| seg->selector = 0; |
| seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | |
| SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ |
| seg->limit = 0xffff; |
| seg->base = 0; |
| } |
| |
| static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) |
| { |
| seg->selector = 0; |
| seg->attrib = SVM_SELECTOR_P_MASK | type; |
| seg->limit = 0xffff; |
| seg->base = 0; |
| } |
| |
| static void init_vmcb(struct vcpu_svm *svm) |
| { |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| struct vmcb_save_area *save = &svm->vmcb->save; |
| |
| control->intercept_cr_read = INTERCEPT_CR0_MASK | |
| INTERCEPT_CR3_MASK | |
| INTERCEPT_CR4_MASK; |
| |
| control->intercept_cr_write = INTERCEPT_CR0_MASK | |
| INTERCEPT_CR3_MASK | |
| INTERCEPT_CR4_MASK | |
| INTERCEPT_CR8_MASK; |
| |
| control->intercept_dr_read = INTERCEPT_DR0_MASK | |
| INTERCEPT_DR1_MASK | |
| INTERCEPT_DR2_MASK | |
| INTERCEPT_DR3_MASK; |
| |
| control->intercept_dr_write = INTERCEPT_DR0_MASK | |
| INTERCEPT_DR1_MASK | |
| INTERCEPT_DR2_MASK | |
| INTERCEPT_DR3_MASK | |
| INTERCEPT_DR5_MASK | |
| INTERCEPT_DR7_MASK; |
| |
| control->intercept_exceptions = (1 << PF_VECTOR) | |
| (1 << UD_VECTOR) | |
| (1 << MC_VECTOR); |
| |
| |
| control->intercept = (1ULL << INTERCEPT_INTR) | |
| (1ULL << INTERCEPT_NMI) | |
| (1ULL << INTERCEPT_SMI) | |
| (1ULL << INTERCEPT_CPUID) | |
| (1ULL << INTERCEPT_INVD) | |
| (1ULL << INTERCEPT_HLT) | |
| (1ULL << INTERCEPT_INVLPG) | |
| (1ULL << INTERCEPT_INVLPGA) | |
| (1ULL << INTERCEPT_IOIO_PROT) | |
| (1ULL << INTERCEPT_MSR_PROT) | |
| (1ULL << INTERCEPT_TASK_SWITCH) | |
| (1ULL << INTERCEPT_SHUTDOWN) | |
| (1ULL << INTERCEPT_VMRUN) | |
| (1ULL << INTERCEPT_VMMCALL) | |
| (1ULL << INTERCEPT_VMLOAD) | |
| (1ULL << INTERCEPT_VMSAVE) | |
| (1ULL << INTERCEPT_STGI) | |
| (1ULL << INTERCEPT_CLGI) | |
| (1ULL << INTERCEPT_SKINIT) | |
| (1ULL << INTERCEPT_WBINVD) | |
| (1ULL << INTERCEPT_MONITOR) | |
| (1ULL << INTERCEPT_MWAIT); |
| |
| control->iopm_base_pa = iopm_base; |
| control->msrpm_base_pa = __pa(svm->msrpm); |
| control->tsc_offset = 0; |
| control->int_ctl = V_INTR_MASKING_MASK; |
| |
| init_seg(&save->es); |
| init_seg(&save->ss); |
| init_seg(&save->ds); |
| init_seg(&save->fs); |
| init_seg(&save->gs); |
| |
| save->cs.selector = 0xf000; |
| /* Executable/Readable Code Segment */ |
| save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | |
| SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; |
| save->cs.limit = 0xffff; |
| /* |
| * cs.base should really be 0xffff0000, but vmx can't handle that, so |
| * be consistent with it. |
| * |
| * Replace when we have real mode working for vmx. |
| */ |
| save->cs.base = 0xf0000; |
| |
| save->gdtr.limit = 0xffff; |
| save->idtr.limit = 0xffff; |
| |
| init_sys_seg(&save->ldtr, SEG_TYPE_LDT); |
| init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); |
| |
| save->efer = EFER_SVME; |
| save->dr6 = 0xffff0ff0; |
| save->dr7 = 0x400; |
| save->rflags = 2; |
| save->rip = 0x0000fff0; |
| svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; |
| |
| /* |
| * cr0 val on cpu init should be 0x60000010, we enable cpu |
| * cache by default. the orderly way is to enable cache in bios. |
| */ |
| save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP; |
| save->cr4 = X86_CR4_PAE; |
| /* rdx = ?? */ |
| |
| if (npt_enabled) { |
| /* Setup VMCB for Nested Paging */ |
| control->nested_ctl = 1; |
| control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) | |
| (1ULL << INTERCEPT_INVLPG)); |
| control->intercept_exceptions &= ~(1 << PF_VECTOR); |
| control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK| |
| INTERCEPT_CR3_MASK); |
| control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK| |
| INTERCEPT_CR3_MASK); |
| save->g_pat = 0x0007040600070406ULL; |
| /* enable caching because the QEMU Bios doesn't enable it */ |
| save->cr0 = X86_CR0_ET; |
| save->cr3 = 0; |
| save->cr4 = 0; |
| } |
| force_new_asid(&svm->vcpu); |
| |
| svm->nested_vmcb = 0; |
| svm->vcpu.arch.hflags = HF_GIF_MASK; |
| } |
| |
| static int svm_vcpu_reset(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| init_vmcb(svm); |
| |
| if (!kvm_vcpu_is_bsp(vcpu)) { |
| kvm_rip_write(vcpu, 0); |
| svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12; |
| svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8; |
| } |
| vcpu->arch.regs_avail = ~0; |
| vcpu->arch.regs_dirty = ~0; |
| |
| return 0; |
| } |
| |
| static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) |
| { |
| struct vcpu_svm *svm; |
| struct page *page; |
| struct page *msrpm_pages; |
| struct page *hsave_page; |
| struct page *nested_msrpm_pages; |
| int err; |
| |
| svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| if (!svm) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| err = kvm_vcpu_init(&svm->vcpu, kvm, id); |
| if (err) |
| goto free_svm; |
| |
| page = alloc_page(GFP_KERNEL); |
| if (!page) { |
| err = -ENOMEM; |
| goto uninit; |
| } |
| |
| err = -ENOMEM; |
| msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); |
| if (!msrpm_pages) |
| goto uninit; |
| |
| nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); |
| if (!nested_msrpm_pages) |
| goto uninit; |
| |
| svm->msrpm = page_address(msrpm_pages); |
| svm_vcpu_init_msrpm(svm->msrpm); |
| |
| hsave_page = alloc_page(GFP_KERNEL); |
| if (!hsave_page) |
| goto uninit; |
| svm->hsave = page_address(hsave_page); |
| |
| svm->nested_msrpm = page_address(nested_msrpm_pages); |
| |
| svm->vmcb = page_address(page); |
| clear_page(svm->vmcb); |
| svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT; |
| svm->asid_generation = 0; |
| init_vmcb(svm); |
| |
| fx_init(&svm->vcpu); |
| svm->vcpu.fpu_active = 1; |
| svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE; |
| if (kvm_vcpu_is_bsp(&svm->vcpu)) |
| svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; |
| |
| return &svm->vcpu; |
| |
| uninit: |
| kvm_vcpu_uninit(&svm->vcpu); |
| free_svm: |
| kmem_cache_free(kvm_vcpu_cache, svm); |
| out: |
| return ERR_PTR(err); |
| } |
| |
| static void svm_free_vcpu(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT)); |
| __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); |
| __free_page(virt_to_page(svm->hsave)); |
| __free_pages(virt_to_page(svm->nested_msrpm), MSRPM_ALLOC_ORDER); |
| kvm_vcpu_uninit(vcpu); |
| kmem_cache_free(kvm_vcpu_cache, svm); |
| } |
| |
| static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int i; |
| |
| if (unlikely(cpu != vcpu->cpu)) { |
| u64 tsc_this, delta; |
| |
| /* |
| * Make sure that the guest sees a monotonically |
| * increasing TSC. |
| */ |
| rdtscll(tsc_this); |
| delta = vcpu->arch.host_tsc - tsc_this; |
| svm->vmcb->control.tsc_offset += delta; |
| vcpu->cpu = cpu; |
| kvm_migrate_timers(vcpu); |
| svm->asid_generation = 0; |
| } |
| |
| for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) |
| rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); |
| } |
| |
| static void svm_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int i; |
| |
| ++vcpu->stat.host_state_reload; |
| for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) |
| wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); |
| |
| rdtscll(vcpu->arch.host_tsc); |
| } |
| |
| static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) |
| { |
| return to_svm(vcpu)->vmcb->save.rflags; |
| } |
| |
| static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| { |
| to_svm(vcpu)->vmcb->save.rflags = rflags; |
| } |
| |
| static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) |
| { |
| switch (reg) { |
| case VCPU_EXREG_PDPTR: |
| BUG_ON(!npt_enabled); |
| load_pdptrs(vcpu, vcpu->arch.cr3); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static void svm_set_vintr(struct vcpu_svm *svm) |
| { |
| svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR; |
| } |
| |
| static void svm_clear_vintr(struct vcpu_svm *svm) |
| { |
| svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR); |
| } |
| |
| static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; |
| |
| switch (seg) { |
| case VCPU_SREG_CS: return &save->cs; |
| case VCPU_SREG_DS: return &save->ds; |
| case VCPU_SREG_ES: return &save->es; |
| case VCPU_SREG_FS: return &save->fs; |
| case VCPU_SREG_GS: return &save->gs; |
| case VCPU_SREG_SS: return &save->ss; |
| case VCPU_SREG_TR: return &save->tr; |
| case VCPU_SREG_LDTR: return &save->ldtr; |
| } |
| BUG(); |
| return NULL; |
| } |
| |
| static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct vmcb_seg *s = svm_seg(vcpu, seg); |
| |
| return s->base; |
| } |
| |
| static void svm_get_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| struct vmcb_seg *s = svm_seg(vcpu, seg); |
| |
| var->base = s->base; |
| var->limit = s->limit; |
| var->selector = s->selector; |
| var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; |
| var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; |
| var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; |
| var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; |
| var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; |
| var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; |
| var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; |
| var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1; |
| |
| /* AMD's VMCB does not have an explicit unusable field, so emulate it |
| * for cross vendor migration purposes by "not present" |
| */ |
| var->unusable = !var->present || (var->type == 0); |
| |
| switch (seg) { |
| case VCPU_SREG_CS: |
| /* |
| * SVM always stores 0 for the 'G' bit in the CS selector in |
| * the VMCB on a VMEXIT. This hurts cross-vendor migration: |
| * Intel's VMENTRY has a check on the 'G' bit. |
| */ |
| var->g = s->limit > 0xfffff; |
| break; |
| case VCPU_SREG_TR: |
| /* |
| * Work around a bug where the busy flag in the tr selector |
| * isn't exposed |
| */ |
| var->type |= 0x2; |
| break; |
| case VCPU_SREG_DS: |
| case VCPU_SREG_ES: |
| case VCPU_SREG_FS: |
| case VCPU_SREG_GS: |
| /* |
| * The accessed bit must always be set in the segment |
| * descriptor cache, although it can be cleared in the |
| * descriptor, the cached bit always remains at 1. Since |
| * Intel has a check on this, set it here to support |
| * cross-vendor migration. |
| */ |
| if (!var->unusable) |
| var->type |= 0x1; |
| break; |
| case VCPU_SREG_SS: |
| /* On AMD CPUs sometimes the DB bit in the segment |
| * descriptor is left as 1, although the whole segment has |
| * been made unusable. Clear it here to pass an Intel VMX |
| * entry check when cross vendor migrating. |
| */ |
| if (var->unusable) |
| var->db = 0; |
| break; |
| } |
| } |
| |
| static int svm_get_cpl(struct kvm_vcpu *vcpu) |
| { |
| struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; |
| |
| return save->cpl; |
| } |
| |
| static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| dt->limit = svm->vmcb->save.idtr.limit; |
| dt->base = svm->vmcb->save.idtr.base; |
| } |
| |
| static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| svm->vmcb->save.idtr.limit = dt->limit; |
| svm->vmcb->save.idtr.base = dt->base ; |
| } |
| |
| static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| dt->limit = svm->vmcb->save.gdtr.limit; |
| dt->base = svm->vmcb->save.gdtr.base; |
| } |
| |
| static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| svm->vmcb->save.gdtr.limit = dt->limit; |
| svm->vmcb->save.gdtr.base = dt->base ; |
| } |
| |
| static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| #ifdef CONFIG_X86_64 |
| if (vcpu->arch.shadow_efer & EFER_LME) { |
| if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { |
| vcpu->arch.shadow_efer |= EFER_LMA; |
| svm->vmcb->save.efer |= EFER_LMA | EFER_LME; |
| } |
| |
| if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { |
| vcpu->arch.shadow_efer &= ~EFER_LMA; |
| svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); |
| } |
| } |
| #endif |
| if (npt_enabled) |
| goto set; |
| |
| if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) { |
| svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR); |
| vcpu->fpu_active = 1; |
| } |
| |
| vcpu->arch.cr0 = cr0; |
| cr0 |= X86_CR0_PG | X86_CR0_WP; |
| if (!vcpu->fpu_active) { |
| svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR); |
| cr0 |= X86_CR0_TS; |
| } |
| set: |
| /* |
| * re-enable caching here because the QEMU bios |
| * does not do it - this results in some delay at |
| * reboot |
| */ |
| cr0 &= ~(X86_CR0_CD | X86_CR0_NW); |
| svm->vmcb->save.cr0 = cr0; |
| } |
| |
| static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE; |
| unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; |
| |
| if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) |
| force_new_asid(vcpu); |
| |
| vcpu->arch.cr4 = cr4; |
| if (!npt_enabled) |
| cr4 |= X86_CR4_PAE; |
| cr4 |= host_cr4_mce; |
| to_svm(vcpu)->vmcb->save.cr4 = cr4; |
| } |
| |
| static void svm_set_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb_seg *s = svm_seg(vcpu, seg); |
| |
| s->base = var->base; |
| s->limit = var->limit; |
| s->selector = var->selector; |
| if (var->unusable) |
| s->attrib = 0; |
| else { |
| s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); |
| s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; |
| s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; |
| s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT; |
| s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; |
| s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; |
| s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; |
| s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; |
| } |
| if (seg == VCPU_SREG_CS) |
| svm->vmcb->save.cpl |
| = (svm->vmcb->save.cs.attrib |
| >> SVM_SELECTOR_DPL_SHIFT) & 3; |
| |
| } |
| |
| static void update_db_intercept(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| svm->vmcb->control.intercept_exceptions &= |
| ~((1 << DB_VECTOR) | (1 << BP_VECTOR)); |
| |
| if (vcpu->arch.singlestep) |
| svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR); |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { |
| if (vcpu->guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) |
| svm->vmcb->control.intercept_exceptions |= |
| 1 << DB_VECTOR; |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
| svm->vmcb->control.intercept_exceptions |= |
| 1 << BP_VECTOR; |
| } else |
| vcpu->guest_debug = 0; |
| } |
| |
| static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) |
| { |
| int old_debug = vcpu->guest_debug; |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| vcpu->guest_debug = dbg->control; |
| |
| update_db_intercept(vcpu); |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
| svm->vmcb->save.dr7 = dbg->arch.debugreg[7]; |
| else |
| svm->vmcb->save.dr7 = vcpu->arch.dr7; |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| svm->vmcb->save.rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF; |
| else if (old_debug & KVM_GUESTDBG_SINGLESTEP) |
| svm->vmcb->save.rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); |
| |
| return 0; |
| } |
| |
| static void load_host_msrs(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_X86_64 |
| wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base); |
| #endif |
| } |
| |
| static void save_host_msrs(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_X86_64 |
| rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base); |
| #endif |
| } |
| |
| static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data) |
| { |
| if (svm_data->next_asid > svm_data->max_asid) { |
| ++svm_data->asid_generation; |
| svm_data->next_asid = 1; |
| svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; |
| } |
| |
| svm->asid_generation = svm_data->asid_generation; |
| svm->vmcb->control.asid = svm_data->next_asid++; |
| } |
| |
| static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| unsigned long val; |
| |
| switch (dr) { |
| case 0 ... 3: |
| val = vcpu->arch.db[dr]; |
| break; |
| case 6: |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
| val = vcpu->arch.dr6; |
| else |
| val = svm->vmcb->save.dr6; |
| break; |
| case 7: |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
| val = vcpu->arch.dr7; |
| else |
| val = svm->vmcb->save.dr7; |
| break; |
| default: |
| val = 0; |
| } |
| |
| return val; |
| } |
| |
| static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value, |
| int *exception) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| *exception = 0; |
| |
| switch (dr) { |
| case 0 ... 3: |
| vcpu->arch.db[dr] = value; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) |
| vcpu->arch.eff_db[dr] = value; |
| return; |
| case 4 ... 5: |
| if (vcpu->arch.cr4 & X86_CR4_DE) |
| *exception = UD_VECTOR; |
| return; |
| case 6: |
| if (value & 0xffffffff00000000ULL) { |
| *exception = GP_VECTOR; |
| return; |
| } |
| vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1; |
| return; |
| case 7: |
| if (value & 0xffffffff00000000ULL) { |
| *exception = GP_VECTOR; |
| return; |
| } |
| vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { |
| svm->vmcb->save.dr7 = vcpu->arch.dr7; |
| vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK); |
| } |
| return; |
| default: |
| /* FIXME: Possible case? */ |
| printk(KERN_DEBUG "%s: unexpected dr %u\n", |
| __func__, dr); |
| *exception = UD_VECTOR; |
| return; |
| } |
| } |
| |
| static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| u64 fault_address; |
| u32 error_code; |
| |
| fault_address = svm->vmcb->control.exit_info_2; |
| error_code = svm->vmcb->control.exit_info_1; |
| |
| trace_kvm_page_fault(fault_address, error_code); |
| /* |
| * FIXME: Tis shouldn't be necessary here, but there is a flush |
| * missing in the MMU code. Until we find this bug, flush the |
| * complete TLB here on an NPF |
| */ |
| if (npt_enabled) |
| svm_flush_tlb(&svm->vcpu); |
| else { |
| if (kvm_event_needs_reinjection(&svm->vcpu)) |
| kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address); |
| } |
| return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code); |
| } |
| |
| static int db_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| if (!(svm->vcpu.guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && |
| !svm->vcpu.arch.singlestep) { |
| kvm_queue_exception(&svm->vcpu, DB_VECTOR); |
| return 1; |
| } |
| |
| if (svm->vcpu.arch.singlestep) { |
| svm->vcpu.arch.singlestep = false; |
| if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) |
| svm->vmcb->save.rflags &= |
| ~(X86_EFLAGS_TF | X86_EFLAGS_RF); |
| update_db_intercept(&svm->vcpu); |
| } |
| |
| if (svm->vcpu.guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){ |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| kvm_run->debug.arch.pc = |
| svm->vmcb->save.cs.base + svm->vmcb->save.rip; |
| kvm_run->debug.arch.exception = DB_VECTOR; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int bp_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; |
| kvm_run->debug.arch.exception = BP_VECTOR; |
| return 0; |
| } |
| |
| static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| int er; |
| |
| er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD); |
| if (er != EMULATE_DONE) |
| kvm_queue_exception(&svm->vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR); |
| if (!(svm->vcpu.arch.cr0 & X86_CR0_TS)) |
| svm->vmcb->save.cr0 &= ~X86_CR0_TS; |
| svm->vcpu.fpu_active = 1; |
| |
| return 1; |
| } |
| |
| static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| /* |
| * On an #MC intercept the MCE handler is not called automatically in |
| * the host. So do it by hand here. |
| */ |
| asm volatile ( |
| "int $0x12\n"); |
| /* not sure if we ever come back to this point */ |
| |
| return 1; |
| } |
| |
| static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| /* |
| * VMCB is undefined after a SHUTDOWN intercept |
| * so reinitialize it. |
| */ |
| clear_page(svm->vmcb); |
| init_vmcb(svm); |
| |
| kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; |
| return 0; |
| } |
| |
| static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ |
| int size, in, string; |
| unsigned port; |
| |
| ++svm->vcpu.stat.io_exits; |
| |
| svm->next_rip = svm->vmcb->control.exit_info_2; |
| |
| string = (io_info & SVM_IOIO_STR_MASK) != 0; |
| |
| if (string) { |
| if (emulate_instruction(&svm->vcpu, |
| kvm_run, 0, 0, 0) == EMULATE_DO_MMIO) |
| return 0; |
| return 1; |
| } |
| |
| in = (io_info & SVM_IOIO_TYPE_MASK) != 0; |
| port = io_info >> 16; |
| size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; |
| |
| skip_emulated_instruction(&svm->vcpu); |
| return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port); |
| } |
| |
| static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| return 1; |
| } |
| |
| static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| ++svm->vcpu.stat.irq_exits; |
| return 1; |
| } |
| |
| static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| return 1; |
| } |
| |
| static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| svm->next_rip = kvm_rip_read(&svm->vcpu) + 1; |
| skip_emulated_instruction(&svm->vcpu); |
| return kvm_emulate_halt(&svm->vcpu); |
| } |
| |
| static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| skip_emulated_instruction(&svm->vcpu); |
| kvm_emulate_hypercall(&svm->vcpu); |
| return 1; |
| } |
| |
| static int nested_svm_check_permissions(struct vcpu_svm *svm) |
| { |
| if (!(svm->vcpu.arch.shadow_efer & EFER_SVME) |
| || !is_paging(&svm->vcpu)) { |
| kvm_queue_exception(&svm->vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| if (svm->vmcb->save.cpl) { |
| kvm_inject_gp(&svm->vcpu, 0); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, |
| bool has_error_code, u32 error_code) |
| { |
| if (is_nested(svm)) { |
| svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr; |
| svm->vmcb->control.exit_code_hi = 0; |
| svm->vmcb->control.exit_info_1 = error_code; |
| svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2; |
| if (nested_svm_exit_handled(svm, false)) { |
| nsvm_printk("VMexit -> EXCP 0x%x\n", nr); |
| |
| nested_svm_vmexit(svm); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static inline int nested_svm_intr(struct vcpu_svm *svm) |
| { |
| if (is_nested(svm)) { |
| if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) |
| return 0; |
| |
| if (!(svm->vcpu.arch.hflags & HF_HIF_MASK)) |
| return 0; |
| |
| svm->vmcb->control.exit_code = SVM_EXIT_INTR; |
| |
| if (nested_svm_exit_handled(svm, false)) { |
| nsvm_printk("VMexit -> INTR\n"); |
| nested_svm_vmexit(svm); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct page *nested_svm_get_page(struct vcpu_svm *svm, u64 gpa) |
| { |
| struct page *page; |
| |
| down_read(¤t->mm->mmap_sem); |
| page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT); |
| up_read(¤t->mm->mmap_sem); |
| |
| if (is_error_page(page)) { |
| printk(KERN_INFO "%s: could not find page at 0x%llx\n", |
| __func__, gpa); |
| kvm_release_page_clean(page); |
| kvm_inject_gp(&svm->vcpu, 0); |
| return NULL; |
| } |
| return page; |
| } |
| |
| static int nested_svm_do(struct vcpu_svm *svm, |
| u64 arg1_gpa, u64 arg2_gpa, void *opaque, |
| int (*handler)(struct vcpu_svm *svm, |
| void *arg1, |
| void *arg2, |
| void *opaque)) |
| { |
| struct page *arg1_page; |
| struct page *arg2_page = NULL; |
| void *arg1; |
| void *arg2 = NULL; |
| int retval; |
| |
| arg1_page = nested_svm_get_page(svm, arg1_gpa); |
| if(arg1_page == NULL) |
| return 1; |
| |
| if (arg2_gpa) { |
| arg2_page = nested_svm_get_page(svm, arg2_gpa); |
| if(arg2_page == NULL) { |
| kvm_release_page_clean(arg1_page); |
| return 1; |
| } |
| } |
| |
| arg1 = kmap_atomic(arg1_page, KM_USER0); |
| if (arg2_gpa) |
| arg2 = kmap_atomic(arg2_page, KM_USER1); |
| |
| retval = handler(svm, arg1, arg2, opaque); |
| |
| kunmap_atomic(arg1, KM_USER0); |
| if (arg2_gpa) |
| kunmap_atomic(arg2, KM_USER1); |
| |
| kvm_release_page_dirty(arg1_page); |
| if (arg2_gpa) |
| kvm_release_page_dirty(arg2_page); |
| |
| return retval; |
| } |
| |
| static int nested_svm_exit_handled_real(struct vcpu_svm *svm, |
| void *arg1, |
| void *arg2, |
| void *opaque) |
| { |
| struct vmcb *nested_vmcb = (struct vmcb *)arg1; |
| bool kvm_overrides = *(bool *)opaque; |
| u32 exit_code = svm->vmcb->control.exit_code; |
| |
| if (kvm_overrides) { |
| switch (exit_code) { |
| case SVM_EXIT_INTR: |
| case SVM_EXIT_NMI: |
| return 0; |
| /* For now we are always handling NPFs when using them */ |
| case SVM_EXIT_NPF: |
| if (npt_enabled) |
| return 0; |
| break; |
| /* When we're shadowing, trap PFs */ |
| case SVM_EXIT_EXCP_BASE + PF_VECTOR: |
| if (!npt_enabled) |
| return 0; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| switch (exit_code) { |
| case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: { |
| u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0); |
| if (nested_vmcb->control.intercept_cr_read & cr_bits) |
| return 1; |
| break; |
| } |
| case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: { |
| u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0); |
| if (nested_vmcb->control.intercept_cr_write & cr_bits) |
| return 1; |
| break; |
| } |
| case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: { |
| u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0); |
| if (nested_vmcb->control.intercept_dr_read & dr_bits) |
| return 1; |
| break; |
| } |
| case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: { |
| u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0); |
| if (nested_vmcb->control.intercept_dr_write & dr_bits) |
| return 1; |
| break; |
| } |
| case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { |
| u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); |
| if (nested_vmcb->control.intercept_exceptions & excp_bits) |
| return 1; |
| break; |
| } |
| default: { |
| u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR); |
| nsvm_printk("exit code: 0x%x\n", exit_code); |
| if (nested_vmcb->control.intercept & exit_bits) |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int nested_svm_exit_handled_msr(struct vcpu_svm *svm, |
| void *arg1, void *arg2, |
| void *opaque) |
| { |
| struct vmcb *nested_vmcb = (struct vmcb *)arg1; |
| u8 *msrpm = (u8 *)arg2; |
| u32 t0, t1; |
| u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX]; |
| u32 param = svm->vmcb->control.exit_info_1 & 1; |
| |
| if (!(nested_vmcb->control.intercept & (1ULL << INTERCEPT_MSR_PROT))) |
| return 0; |
| |
| switch(msr) { |
| case 0 ... 0x1fff: |
| t0 = (msr * 2) % 8; |
| t1 = msr / 8; |
| break; |
| case 0xc0000000 ... 0xc0001fff: |
| t0 = (8192 + msr - 0xc0000000) * 2; |
| t1 = (t0 / 8); |
| t0 %= 8; |
| break; |
| case 0xc0010000 ... 0xc0011fff: |
| t0 = (16384 + msr - 0xc0010000) * 2; |
| t1 = (t0 / 8); |
| t0 %= 8; |
| break; |
| default: |
| return 1; |
| break; |
| } |
| if (msrpm[t1] & ((1 << param) << t0)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override) |
| { |
| bool k = kvm_override; |
| |
| switch (svm->vmcb->control.exit_code) { |
| case SVM_EXIT_MSR: |
| return nested_svm_do(svm, svm->nested_vmcb, |
| svm->nested_vmcb_msrpm, NULL, |
| nested_svm_exit_handled_msr); |
| default: break; |
| } |
| |
| return nested_svm_do(svm, svm->nested_vmcb, 0, &k, |
| nested_svm_exit_handled_real); |
| } |
| |
| static int nested_svm_vmexit_real(struct vcpu_svm *svm, void *arg1, |
| void *arg2, void *opaque) |
| { |
| struct vmcb *nested_vmcb = (struct vmcb *)arg1; |
| struct vmcb *hsave = svm->hsave; |
| u64 nested_save[] = { nested_vmcb->save.cr0, |
| nested_vmcb->save.cr3, |
| nested_vmcb->save.cr4, |
| nested_vmcb->save.efer, |
| nested_vmcb->control.intercept_cr_read, |
| nested_vmcb->control.intercept_cr_write, |
| nested_vmcb->control.intercept_dr_read, |
| nested_vmcb->control.intercept_dr_write, |
| nested_vmcb->control.intercept_exceptions, |
| nested_vmcb->control.intercept, |
| nested_vmcb->control.msrpm_base_pa, |
| nested_vmcb->control.iopm_base_pa, |
| nested_vmcb->control.tsc_offset }; |
| |
| /* Give the current vmcb to the guest */ |
| memcpy(nested_vmcb, svm->vmcb, sizeof(struct vmcb)); |
| nested_vmcb->save.cr0 = nested_save[0]; |
| if (!npt_enabled) |
| nested_vmcb->save.cr3 = nested_save[1]; |
| nested_vmcb->save.cr4 = nested_save[2]; |
| nested_vmcb->save.efer = nested_save[3]; |
| nested_vmcb->control.intercept_cr_read = nested_save[4]; |
| nested_vmcb->control.intercept_cr_write = nested_save[5]; |
| nested_vmcb->control.intercept_dr_read = nested_save[6]; |
| nested_vmcb->control.intercept_dr_write = nested_save[7]; |
| nested_vmcb->control.intercept_exceptions = nested_save[8]; |
| nested_vmcb->control.intercept = nested_save[9]; |
| nested_vmcb->control.msrpm_base_pa = nested_save[10]; |
| nested_vmcb->control.iopm_base_pa = nested_save[11]; |
| nested_vmcb->control.tsc_offset = nested_save[12]; |
| |
| /* We always set V_INTR_MASKING and remember the old value in hflags */ |
| if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) |
| nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK; |
| |
| if ((nested_vmcb->control.int_ctl & V_IRQ_MASK) && |
| (nested_vmcb->control.int_vector)) { |
| nsvm_printk("WARNING: IRQ 0x%x still enabled on #VMEXIT\n", |
| nested_vmcb->control.int_vector); |
| } |
| |
| /* Restore the original control entries */ |
| svm->vmcb->control = hsave->control; |
| |
| /* Kill any pending exceptions */ |
| if (svm->vcpu.arch.exception.pending == true) |
| nsvm_printk("WARNING: Pending Exception\n"); |
| kvm_clear_exception_queue(&svm->vcpu); |
| kvm_clear_interrupt_queue(&svm->vcpu); |
| |
| /* Restore selected save entries */ |
| svm->vmcb->save.es = hsave->save.es; |
| svm->vmcb->save.cs = hsave->save.cs; |
| svm->vmcb->save.ss = hsave->save.ss; |
| svm->vmcb->save.ds = hsave->save.ds; |
| svm->vmcb->save.gdtr = hsave->save.gdtr; |
| svm->vmcb->save.idtr = hsave->save.idtr; |
| svm->vmcb->save.rflags = hsave->save.rflags; |
| svm_set_efer(&svm->vcpu, hsave->save.efer); |
| svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE); |
| svm_set_cr4(&svm->vcpu, hsave->save.cr4); |
| if (npt_enabled) { |
| svm->vmcb->save.cr3 = hsave->save.cr3; |
| svm->vcpu.arch.cr3 = hsave->save.cr3; |
| } else { |
| kvm_set_cr3(&svm->vcpu, hsave->save.cr3); |
| } |
| kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax); |
| kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp); |
| kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip); |
| svm->vmcb->save.dr7 = 0; |
| svm->vmcb->save.cpl = 0; |
| svm->vmcb->control.exit_int_info = 0; |
| |
| svm->vcpu.arch.hflags &= ~HF_GIF_MASK; |
| /* Exit nested SVM mode */ |
| svm->nested_vmcb = 0; |
| |
| return 0; |
| } |
| |
| static int nested_svm_vmexit(struct vcpu_svm *svm) |
| { |
| nsvm_printk("VMexit\n"); |
| if (nested_svm_do(svm, svm->nested_vmcb, 0, |
| NULL, nested_svm_vmexit_real)) |
| return 1; |
| |
| kvm_mmu_reset_context(&svm->vcpu); |
| kvm_mmu_load(&svm->vcpu); |
| |
| return 0; |
| } |
| |
| static int nested_svm_vmrun_msrpm(struct vcpu_svm *svm, void *arg1, |
| void *arg2, void *opaque) |
| { |
| int i; |
| u32 *nested_msrpm = (u32*)arg1; |
| for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++) |
| svm->nested_msrpm[i] = svm->msrpm[i] | nested_msrpm[i]; |
| svm->vmcb->control.msrpm_base_pa = __pa(svm->nested_msrpm); |
| |
| return 0; |
| } |
| |
| static int nested_svm_vmrun(struct vcpu_svm *svm, void *arg1, |
| void *arg2, void *opaque) |
| { |
| struct vmcb *nested_vmcb = (struct vmcb *)arg1; |
| struct vmcb *hsave = svm->hsave; |
| |
| /* nested_vmcb is our indicator if nested SVM is activated */ |
| svm->nested_vmcb = svm->vmcb->save.rax; |
| |
| /* Clear internal status */ |
| kvm_clear_exception_queue(&svm->vcpu); |
| kvm_clear_interrupt_queue(&svm->vcpu); |
| |
| /* Save the old vmcb, so we don't need to pick what we save, but |
| can restore everything when a VMEXIT occurs */ |
| memcpy(hsave, svm->vmcb, sizeof(struct vmcb)); |
| /* We need to remember the original CR3 in the SPT case */ |
| if (!npt_enabled) |
| hsave->save.cr3 = svm->vcpu.arch.cr3; |
| hsave->save.cr4 = svm->vcpu.arch.cr4; |
| hsave->save.rip = svm->next_rip; |
| |
| if (svm->vmcb->save.rflags & X86_EFLAGS_IF) |
| svm->vcpu.arch.hflags |= HF_HIF_MASK; |
| else |
| svm->vcpu.arch.hflags &= ~HF_HIF_MASK; |
| |
| /* Load the nested guest state */ |
| svm->vmcb->save.es = nested_vmcb->save.es; |
| svm->vmcb->save.cs = nested_vmcb->save.cs; |
| svm->vmcb->save.ss = nested_vmcb->save.ss; |
| svm->vmcb->save.ds = nested_vmcb->save.ds; |
| svm->vmcb->save.gdtr = nested_vmcb->save.gdtr; |
| svm->vmcb->save.idtr = nested_vmcb->save.idtr; |
| svm->vmcb->save.rflags = nested_vmcb->save.rflags; |
| svm_set_efer(&svm->vcpu, nested_vmcb->save.efer); |
| svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0); |
| svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4); |
| if (npt_enabled) { |
| svm->vmcb->save.cr3 = nested_vmcb->save.cr3; |
| svm->vcpu.arch.cr3 = nested_vmcb->save.cr3; |
| } else { |
| kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3); |
| kvm_mmu_reset_context(&svm->vcpu); |
| } |
| svm->vmcb->save.cr2 = nested_vmcb->save.cr2; |
| kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax); |
| kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp); |
| kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip); |
| /* In case we don't even reach vcpu_run, the fields are not updated */ |
| svm->vmcb->save.rax = nested_vmcb->save.rax; |
| svm->vmcb->save.rsp = nested_vmcb->save.rsp; |
| svm->vmcb->save.rip = nested_vmcb->save.rip; |
| svm->vmcb->save.dr7 = nested_vmcb->save.dr7; |
| svm->vmcb->save.dr6 = nested_vmcb->save.dr6; |
| svm->vmcb->save.cpl = nested_vmcb->save.cpl; |
| |
| /* We don't want a nested guest to be more powerful than the guest, |
| so all intercepts are ORed */ |
| svm->vmcb->control.intercept_cr_read |= |
| nested_vmcb->control.intercept_cr_read; |
| svm->vmcb->control.intercept_cr_write |= |
| nested_vmcb->control.intercept_cr_write; |
| svm->vmcb->control.intercept_dr_read |= |
| nested_vmcb->control.intercept_dr_read; |
| svm->vmcb->control.intercept_dr_write |= |
| nested_vmcb->control.intercept_dr_write; |
| svm->vmcb->control.intercept_exceptions |= |
| nested_vmcb->control.intercept_exceptions; |
| |
| svm->vmcb->control.intercept |= nested_vmcb->control.intercept; |
| |
| svm->nested_vmcb_msrpm = nested_vmcb->control.msrpm_base_pa; |
| |
| force_new_asid(&svm->vcpu); |
| svm->vmcb->control.exit_int_info = nested_vmcb->control.exit_int_info; |
| svm->vmcb->control.exit_int_info_err = nested_vmcb->control.exit_int_info_err; |
| svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK; |
| if (nested_vmcb->control.int_ctl & V_IRQ_MASK) { |
| nsvm_printk("nSVM Injecting Interrupt: 0x%x\n", |
| nested_vmcb->control.int_ctl); |
| } |
| if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK) |
| svm->vcpu.arch.hflags |= HF_VINTR_MASK; |
| else |
| svm->vcpu.arch.hflags &= ~HF_VINTR_MASK; |
| |
| nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n", |
| nested_vmcb->control.exit_int_info, |
| nested_vmcb->control.int_state); |
| |
| svm->vmcb->control.int_vector = nested_vmcb->control.int_vector; |
| svm->vmcb->control.int_state = nested_vmcb->control.int_state; |
| svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset; |
| if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID) |
| nsvm_printk("Injecting Event: 0x%x\n", |
| nested_vmcb->control.event_inj); |
| svm->vmcb->control.event_inj = nested_vmcb->control.event_inj; |
| svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err; |
| |
| svm->vcpu.arch.hflags |= HF_GIF_MASK; |
| |
| return 0; |
| } |
| |
| static int nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb) |
| { |
| to_vmcb->save.fs = from_vmcb->save.fs; |
| to_vmcb->save.gs = from_vmcb->save.gs; |
| to_vmcb->save.tr = from_vmcb->save.tr; |
| to_vmcb->save.ldtr = from_vmcb->save.ldtr; |
| to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; |
| to_vmcb->save.star = from_vmcb->save.star; |
| to_vmcb->save.lstar = from_vmcb->save.lstar; |
| to_vmcb->save.cstar = from_vmcb->save.cstar; |
| to_vmcb->save.sfmask = from_vmcb->save.sfmask; |
| to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; |
| to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; |
| to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; |
| |
| return 1; |
| } |
| |
| static int nested_svm_vmload(struct vcpu_svm *svm, void *nested_vmcb, |
| void *arg2, void *opaque) |
| { |
| return nested_svm_vmloadsave((struct vmcb *)nested_vmcb, svm->vmcb); |
| } |
| |
| static int nested_svm_vmsave(struct vcpu_svm *svm, void *nested_vmcb, |
| void *arg2, void *opaque) |
| { |
| return nested_svm_vmloadsave(svm->vmcb, (struct vmcb *)nested_vmcb); |
| } |
| |
| static int vmload_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| if (nested_svm_check_permissions(svm)) |
| return 1; |
| |
| svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| skip_emulated_instruction(&svm->vcpu); |
| |
| nested_svm_do(svm, svm->vmcb->save.rax, 0, NULL, nested_svm_vmload); |
| |
| return 1; |
| } |
| |
| static int vmsave_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| if (nested_svm_check_permissions(svm)) |
| return 1; |
| |
| svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| skip_emulated_instruction(&svm->vcpu); |
| |
| nested_svm_do(svm, svm->vmcb->save.rax, 0, NULL, nested_svm_vmsave); |
| |
| return 1; |
| } |
| |
| static int vmrun_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| nsvm_printk("VMrun\n"); |
| if (nested_svm_check_permissions(svm)) |
| return 1; |
| |
| svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| skip_emulated_instruction(&svm->vcpu); |
| |
| if (nested_svm_do(svm, svm->vmcb->save.rax, 0, |
| NULL, nested_svm_vmrun)) |
| return 1; |
| |
| if (nested_svm_do(svm, svm->nested_vmcb_msrpm, 0, |
| NULL, nested_svm_vmrun_msrpm)) |
| return 1; |
| |
| return 1; |
| } |
| |
| static int stgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| if (nested_svm_check_permissions(svm)) |
| return 1; |
| |
| svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| skip_emulated_instruction(&svm->vcpu); |
| |
| svm->vcpu.arch.hflags |= HF_GIF_MASK; |
| |
| return 1; |
| } |
| |
| static int clgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| if (nested_svm_check_permissions(svm)) |
| return 1; |
| |
| svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| skip_emulated_instruction(&svm->vcpu); |
| |
| svm->vcpu.arch.hflags &= ~HF_GIF_MASK; |
| |
| /* After a CLGI no interrupts should come */ |
| svm_clear_vintr(svm); |
| svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; |
| |
| return 1; |
| } |
| |
| static int invlpga_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| nsvm_printk("INVLPGA\n"); |
| |
| /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ |
| kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]); |
| |
| svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; |
| skip_emulated_instruction(&svm->vcpu); |
| return 1; |
| } |
| |
| static int invalid_op_interception(struct vcpu_svm *svm, |
| struct kvm_run *kvm_run) |
| { |
| kvm_queue_exception(&svm->vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| static int task_switch_interception(struct vcpu_svm *svm, |
| struct kvm_run *kvm_run) |
| { |
| u16 tss_selector; |
| int reason; |
| int int_type = svm->vmcb->control.exit_int_info & |
| SVM_EXITINTINFO_TYPE_MASK; |
| int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; |
| uint32_t type = |
| svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; |
| uint32_t idt_v = |
| svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; |
| |
| tss_selector = (u16)svm->vmcb->control.exit_info_1; |
| |
| if (svm->vmcb->control.exit_info_2 & |
| (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) |
| reason = TASK_SWITCH_IRET; |
| else if (svm->vmcb->control.exit_info_2 & |
| (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) |
| reason = TASK_SWITCH_JMP; |
| else if (idt_v) |
| reason = TASK_SWITCH_GATE; |
| else |
| reason = TASK_SWITCH_CALL; |
| |
| if (reason == TASK_SWITCH_GATE) { |
| switch (type) { |
| case SVM_EXITINTINFO_TYPE_NMI: |
| svm->vcpu.arch.nmi_injected = false; |
| break; |
| case SVM_EXITINTINFO_TYPE_EXEPT: |
| kvm_clear_exception_queue(&svm->vcpu); |
| break; |
| case SVM_EXITINTINFO_TYPE_INTR: |
| kvm_clear_interrupt_queue(&svm->vcpu); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (reason != TASK_SWITCH_GATE || |
| int_type == SVM_EXITINTINFO_TYPE_SOFT || |
| (int_type == SVM_EXITINTINFO_TYPE_EXEPT && |
| (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) |
| skip_emulated_instruction(&svm->vcpu); |
| |
| return kvm_task_switch(&svm->vcpu, tss_selector, reason); |
| } |
| |
| static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; |
| kvm_emulate_cpuid(&svm->vcpu); |
| return 1; |
| } |
| |
| static int iret_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| ++svm->vcpu.stat.nmi_window_exits; |
| svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET); |
| svm->vcpu.arch.hflags |= HF_IRET_MASK; |
| return 1; |
| } |
| |
| static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE) |
| pr_unimpl(&svm->vcpu, "%s: failed\n", __func__); |
| return 1; |
| } |
| |
| static int emulate_on_interception(struct vcpu_svm *svm, |
| struct kvm_run *kvm_run) |
| { |
| if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE) |
| pr_unimpl(&svm->vcpu, "%s: failed\n", __func__); |
| return 1; |
| } |
| |
| static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| u8 cr8_prev = kvm_get_cr8(&svm->vcpu); |
| /* instruction emulation calls kvm_set_cr8() */ |
| emulate_instruction(&svm->vcpu, NULL, 0, 0, 0); |
| if (irqchip_in_kernel(svm->vcpu.kvm)) { |
| svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK; |
| return 1; |
| } |
| if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) |
| return 1; |
| kvm_run->exit_reason = KVM_EXIT_SET_TPR; |
| return 0; |
| } |
| |
| static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| switch (ecx) { |
| case MSR_IA32_TSC: { |
| u64 tsc; |
| |
| rdtscll(tsc); |
| *data = svm->vmcb->control.tsc_offset + tsc; |
| break; |
| } |
| case MSR_K6_STAR: |
| *data = svm->vmcb->save.star; |
| break; |
| #ifdef CONFIG_X86_64 |
| case MSR_LSTAR: |
| *data = svm->vmcb->save.lstar; |
| break; |
| case MSR_CSTAR: |
| *data = svm->vmcb->save.cstar; |
| break; |
| case MSR_KERNEL_GS_BASE: |
| *data = svm->vmcb->save.kernel_gs_base; |
| break; |
| case MSR_SYSCALL_MASK: |
| *data = svm->vmcb->save.sfmask; |
| break; |
| #endif |
| case MSR_IA32_SYSENTER_CS: |
| *data = svm->vmcb->save.sysenter_cs; |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| *data = svm->sysenter_eip; |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| *data = svm->sysenter_esp; |
| break; |
| /* Nobody will change the following 5 values in the VMCB so |
| we can safely return them on rdmsr. They will always be 0 |
| until LBRV is implemented. */ |
| case MSR_IA32_DEBUGCTLMSR: |
| *data = svm->vmcb->save.dbgctl; |
| break; |
| case MSR_IA32_LASTBRANCHFROMIP: |
| *data = svm->vmcb->save.br_from; |
| break; |
| case MSR_IA32_LASTBRANCHTOIP: |
| *data = svm->vmcb->save.br_to; |
| break; |
| case MSR_IA32_LASTINTFROMIP: |
| *data = svm->vmcb->save.last_excp_from; |
| break; |
| case MSR_IA32_LASTINTTOIP: |
| *data = svm->vmcb->save.last_excp_to; |
| break; |
| case MSR_VM_HSAVE_PA: |
| *data = svm->hsave_msr; |
| break; |
| case MSR_VM_CR: |
| *data = 0; |
| break; |
| case MSR_IA32_UCODE_REV: |
| *data = 0x01000065; |
| break; |
| default: |
| return kvm_get_msr_common(vcpu, ecx, data); |
| } |
| return 0; |
| } |
| |
| static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; |
| u64 data; |
| |
| if (svm_get_msr(&svm->vcpu, ecx, &data)) |
| kvm_inject_gp(&svm->vcpu, 0); |
| else { |
| trace_kvm_msr_read(ecx, data); |
| |
| svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff; |
| svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32; |
| svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; |
| skip_emulated_instruction(&svm->vcpu); |
| } |
| return 1; |
| } |
| |
| static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| switch (ecx) { |
| case MSR_IA32_TSC: { |
| u64 tsc; |
| |
| rdtscll(tsc); |
| svm->vmcb->control.tsc_offset = data - tsc; |
| break; |
| } |
| case MSR_K6_STAR: |
| svm->vmcb->save.star = data; |
| break; |
| #ifdef CONFIG_X86_64 |
| case MSR_LSTAR: |
| svm->vmcb->save.lstar = data; |
| break; |
| case MSR_CSTAR: |
| svm->vmcb->save.cstar = data; |
| break; |
| case MSR_KERNEL_GS_BASE: |
| svm->vmcb->save.kernel_gs_base = data; |
| break; |
| case MSR_SYSCALL_MASK: |
| svm->vmcb->save.sfmask = data; |
| break; |
| #endif |
| case MSR_IA32_SYSENTER_CS: |
| svm->vmcb->save.sysenter_cs = data; |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| svm->sysenter_eip = data; |
| svm->vmcb->save.sysenter_eip = data; |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| svm->sysenter_esp = data; |
| svm->vmcb->save.sysenter_esp = data; |
| break; |
| case MSR_IA32_DEBUGCTLMSR: |
| if (!svm_has(SVM_FEATURE_LBRV)) { |
| pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", |
| __func__, data); |
| break; |
| } |
| if (data & DEBUGCTL_RESERVED_BITS) |
| return 1; |
| |
| svm->vmcb->save.dbgctl = data; |
| if (data & (1ULL<<0)) |
| svm_enable_lbrv(svm); |
| else |
| svm_disable_lbrv(svm); |
| break; |
| case MSR_VM_HSAVE_PA: |
| svm->hsave_msr = data; |
| break; |
| case MSR_VM_CR: |
| case MSR_VM_IGNNE: |
| pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); |
| break; |
| default: |
| return kvm_set_msr_common(vcpu, ecx, data); |
| } |
| return 0; |
| } |
| |
| static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; |
| u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u) |
| | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32); |
| |
| trace_kvm_msr_write(ecx, data); |
| |
| svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; |
| if (svm_set_msr(&svm->vcpu, ecx, data)) |
| kvm_inject_gp(&svm->vcpu, 0); |
| else |
| skip_emulated_instruction(&svm->vcpu); |
| return 1; |
| } |
| |
| static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run) |
| { |
| if (svm->vmcb->control.exit_info_1) |
| return wrmsr_interception(svm, kvm_run); |
| else |
| return rdmsr_interception(svm, kvm_run); |
| } |
| |
| static int interrupt_window_interception(struct vcpu_svm *svm, |
| struct kvm_run *kvm_run) |
| { |
| svm_clear_vintr(svm); |
| svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; |
| /* |
| * If the user space waits to inject interrupts, exit as soon as |
| * possible |
| */ |
| if (!irqchip_in_kernel(svm->vcpu.kvm) && |
| kvm_run->request_interrupt_window && |
| !kvm_cpu_has_interrupt(&svm->vcpu)) { |
| ++svm->vcpu.stat.irq_window_exits; |
| kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int (*svm_exit_handlers[])(struct vcpu_svm *svm, |
| struct kvm_run *kvm_run) = { |
| [SVM_EXIT_READ_CR0] = emulate_on_interception, |
| [SVM_EXIT_READ_CR3] = emulate_on_interception, |
| [SVM_EXIT_READ_CR4] = emulate_on_interception, |
| [SVM_EXIT_READ_CR8] = emulate_on_interception, |
| /* for now: */ |
| [SVM_EXIT_WRITE_CR0] = emulate_on_interception, |
| [SVM_EXIT_WRITE_CR3] = emulate_on_interception, |
| [SVM_EXIT_WRITE_CR4] = emulate_on_interception, |
| [SVM_EXIT_WRITE_CR8] = cr8_write_interception, |
| [SVM_EXIT_READ_DR0] = emulate_on_interception, |
| [SVM_EXIT_READ_DR1] = emulate_on_interception, |
| [SVM_EXIT_READ_DR2] = emulate_on_interception, |
| [SVM_EXIT_READ_DR3] = emulate_on_interception, |
| [SVM_EXIT_WRITE_DR0] = emulate_on_interception, |
| [SVM_EXIT_WRITE_DR1] = emulate_on_interception, |
| [SVM_EXIT_WRITE_DR2] = emulate_on_interception, |
| [SVM_EXIT_WRITE_DR3] = emulate_on_interception, |
| [SVM_EXIT_WRITE_DR5] = emulate_on_interception, |
| [SVM_EXIT_WRITE_DR7] = emulate_on_interception, |
| [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, |
| [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, |
| [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, |
| [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, |
| [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception, |
| [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, |
| [SVM_EXIT_INTR] = intr_interception, |
| [SVM_EXIT_NMI] = nmi_interception, |
| [SVM_EXIT_SMI] = nop_on_interception, |
| [SVM_EXIT_INIT] = nop_on_interception, |
| [SVM_EXIT_VINTR] = interrupt_window_interception, |
| /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */ |
| [SVM_EXIT_CPUID] = cpuid_interception, |
| [SVM_EXIT_IRET] = iret_interception, |
| [SVM_EXIT_INVD] = emulate_on_interception, |
| [SVM_EXIT_HLT] = halt_interception, |
| [SVM_EXIT_INVLPG] = invlpg_interception, |
| [SVM_EXIT_INVLPGA] = invlpga_interception, |
| [SVM_EXIT_IOIO] = io_interception, |
| [SVM_EXIT_MSR] = msr_interception, |
| [SVM_EXIT_TASK_SWITCH] = task_switch_interception, |
| [SVM_EXIT_SHUTDOWN] = shutdown_interception, |
| [SVM_EXIT_VMRUN] = vmrun_interception, |
| [SVM_EXIT_VMMCALL] = vmmcall_interception, |
| [SVM_EXIT_VMLOAD] = vmload_interception, |
| [SVM_EXIT_VMSAVE] = vmsave_interception, |
| [SVM_EXIT_STGI] = stgi_interception, |
| [SVM_EXIT_CLGI] = clgi_interception, |
| [SVM_EXIT_SKINIT] = invalid_op_interception, |
| [SVM_EXIT_WBINVD] = emulate_on_interception, |
| [SVM_EXIT_MONITOR] = invalid_op_interception, |
| [SVM_EXIT_MWAIT] = invalid_op_interception, |
| [SVM_EXIT_NPF] = pf_interception, |
| }; |
| |
| static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u32 exit_code = svm->vmcb->control.exit_code; |
| |
| trace_kvm_exit(exit_code, svm->vmcb->save.rip); |
| |
| if (is_nested(svm)) { |
| nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n", |
| exit_code, svm->vmcb->control.exit_info_1, |
| svm->vmcb->control.exit_info_2, svm->vmcb->save.rip); |
| if (nested_svm_exit_handled(svm, true)) { |
| nested_svm_vmexit(svm); |
| nsvm_printk("-> #VMEXIT\n"); |
| return 1; |
| } |
| } |
| |
| if (npt_enabled) { |
| int mmu_reload = 0; |
| if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) { |
| svm_set_cr0(vcpu, svm->vmcb->save.cr0); |
| mmu_reload = 1; |
| } |
| vcpu->arch.cr0 = svm->vmcb->save.cr0; |
| vcpu->arch.cr3 = svm->vmcb->save.cr3; |
| if (mmu_reload) { |
| kvm_mmu_reset_context(vcpu); |
| kvm_mmu_load(vcpu); |
| } |
| } |
| |
| |
| if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { |
| kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| kvm_run->fail_entry.hardware_entry_failure_reason |
| = svm->vmcb->control.exit_code; |
| return 0; |
| } |
| |
| if (is_external_interrupt(svm->vmcb->control.exit_int_info) && |
| exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && |
| exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH) |
| printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x " |
| "exit_code 0x%x\n", |
| __func__, svm->vmcb->control.exit_int_info, |
| exit_code); |
| |
| if (exit_code >= ARRAY_SIZE(svm_exit_handlers) |
| || !svm_exit_handlers[exit_code]) { |
| kvm_run->exit_reason = KVM_EXIT_UNKNOWN; |
| kvm_run->hw.hardware_exit_reason = exit_code; |
| return 0; |
| } |
| |
| return svm_exit_handlers[exit_code](svm, kvm_run); |
| } |
| |
| static void reload_tss(struct kvm_vcpu *vcpu) |
| { |
| int cpu = raw_smp_processor_id(); |
| |
| struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu); |
| svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */ |
| load_TR_desc(); |
| } |
| |
| static void pre_svm_run(struct vcpu_svm *svm) |
| { |
| int cpu = raw_smp_processor_id(); |
| |
| struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu); |
| |
| svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; |
| /* FIXME: handle wraparound of asid_generation */ |
| if (svm->asid_generation != svm_data->asid_generation) |
| new_asid(svm, svm_data); |
| } |
| |
| static void svm_inject_nmi(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; |
| vcpu->arch.hflags |= HF_NMI_MASK; |
| svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET); |
| ++vcpu->stat.nmi_injections; |
| } |
| |
| static inline void svm_inject_irq(struct vcpu_svm *svm, int irq) |
| { |
| struct vmcb_control_area *control; |
| |
| trace_kvm_inj_virq(irq); |
| |
| ++svm->vcpu.stat.irq_injections; |
| control = &svm->vmcb->control; |
| control->int_vector = irq; |
| control->int_ctl &= ~V_INTR_PRIO_MASK; |
| control->int_ctl |= V_IRQ_MASK | |
| ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); |
| } |
| |
| static void svm_set_irq(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| BUG_ON(!(svm->vcpu.arch.hflags & HF_GIF_MASK)); |
| |
| svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | |
| SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; |
| } |
| |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (irr == -1) |
| return; |
| |
| if (tpr >= irr) |
| svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK; |
| } |
| |
| static int svm_nmi_allowed(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb *vmcb = svm->vmcb; |
| return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) && |
| !(svm->vcpu.arch.hflags & HF_NMI_MASK); |
| } |
| |
| static int svm_interrupt_allowed(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb *vmcb = svm->vmcb; |
| return (vmcb->save.rflags & X86_EFLAGS_IF) && |
| !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) && |
| (svm->vcpu.arch.hflags & HF_GIF_MASK) && |
| !is_nested(svm); |
| } |
| |
| static void enable_irq_window(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| nsvm_printk("Trying to open IRQ window\n"); |
| |
| nested_svm_intr(svm); |
| |
| /* In case GIF=0 we can't rely on the CPU to tell us when |
| * GIF becomes 1, because that's a separate STGI/VMRUN intercept. |
| * The next time we get that intercept, this function will be |
| * called again though and we'll get the vintr intercept. */ |
| if (svm->vcpu.arch.hflags & HF_GIF_MASK) { |
| svm_set_vintr(svm); |
| svm_inject_irq(svm, 0x0); |
| } |
| } |
| |
| static void enable_nmi_window(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) |
| == HF_NMI_MASK) |
| return; /* IRET will cause a vm exit */ |
| |
| /* Something prevents NMI from been injected. Single step over |
| possible problem (IRET or exception injection or interrupt |
| shadow) */ |
| vcpu->arch.singlestep = true; |
| svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); |
| update_db_intercept(vcpu); |
| } |
| |
| static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) |
| { |
| return 0; |
| } |
| |
| static void svm_flush_tlb(struct kvm_vcpu *vcpu) |
| { |
| force_new_asid(vcpu); |
| } |
| |
| static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) { |
| int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; |
| kvm_set_cr8(vcpu, cr8); |
| } |
| } |
| |
| static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u64 cr8; |
| |
| cr8 = kvm_get_cr8(vcpu); |
| svm->vmcb->control.int_ctl &= ~V_TPR_MASK; |
| svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; |
| } |
| |
| static void svm_complete_interrupts(struct vcpu_svm *svm) |
| { |
| u8 vector; |
| int type; |
| u32 exitintinfo = svm->vmcb->control.exit_int_info; |
| |
| if (svm->vcpu.arch.hflags & HF_IRET_MASK) |
| svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); |
| |
| svm->vcpu.arch.nmi_injected = false; |
| kvm_clear_exception_queue(&svm->vcpu); |
| kvm_clear_interrupt_queue(&svm->vcpu); |
| |
| if (!(exitintinfo & SVM_EXITINTINFO_VALID)) |
| return; |
| |
| vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; |
| type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; |
| |
| switch (type) { |
| case SVM_EXITINTINFO_TYPE_NMI: |
| svm->vcpu.arch.nmi_injected = true; |
| break; |
| case SVM_EXITINTINFO_TYPE_EXEPT: |
| /* In case of software exception do not reinject an exception |
| vector, but re-execute and instruction instead */ |
| if (is_nested(svm)) |
| break; |
| if (kvm_exception_is_soft(vector)) |
| break; |
| if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { |
| u32 err = svm->vmcb->control.exit_int_info_err; |
| kvm_queue_exception_e(&svm->vcpu, vector, err); |
| |
| } else |
| kvm_queue_exception(&svm->vcpu, vector); |
| break; |
| case SVM_EXITINTINFO_TYPE_INTR: |
| kvm_queue_interrupt(&svm->vcpu, vector, false); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| #ifdef CONFIG_X86_64 |
| #define R "r" |
| #else |
| #define R "e" |
| #endif |
| |
| static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u16 fs_selector; |
| u16 gs_selector; |
| u16 ldt_selector; |
| |
| svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; |
| svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; |
| svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; |
| |
| pre_svm_run(svm); |
| |
| sync_lapic_to_cr8(vcpu); |
| |
| save_host_msrs(vcpu); |
| fs_selector = kvm_read_fs(); |
| gs_selector = kvm_read_gs(); |
| ldt_selector = kvm_read_ldt(); |
| if (!is_nested(svm)) |
| svm->vmcb->save.cr2 = vcpu->arch.cr2; |
| /* required for live migration with NPT */ |
| if (npt_enabled) |
| svm->vmcb->save.cr3 = vcpu->arch.cr3; |
| |
| clgi(); |
| |
| local_irq_enable(); |
| |
| asm volatile ( |
| "push %%"R"bp; \n\t" |
| "mov %c[rbx](%[svm]), %%"R"bx \n\t" |
| "mov %c[rcx](%[svm]), %%"R"cx \n\t" |
| "mov %c[rdx](%[svm]), %%"R"dx \n\t" |
| "mov %c[rsi](%[svm]), %%"R"si \n\t" |
| "mov %c[rdi](%[svm]), %%"R"di \n\t" |
| "mov %c[rbp](%[svm]), %%"R"bp \n\t" |
| #ifdef CONFIG_X86_64 |
| "mov %c[r8](%[svm]), %%r8 \n\t" |
| "mov %c[r9](%[svm]), %%r9 \n\t" |
| "mov %c[r10](%[svm]), %%r10 \n\t" |
| "mov %c[r11](%[svm]), %%r11 \n\t" |
| "mov %c[r12](%[svm]), %%r12 \n\t" |
| "mov %c[r13](%[svm]), %%r13 \n\t" |
| "mov %c[r14](%[svm]), %%r14 \n\t" |
| "mov %c[r15](%[svm]), %%r15 \n\t" |
| #endif |
| |
| /* Enter guest mode */ |
| "push %%"R"ax \n\t" |
| "mov %c[vmcb](%[svm]), %%"R"ax \n\t" |
| __ex(SVM_VMLOAD) "\n\t" |
| __ex(SVM_VMRUN) "\n\t" |
| __ex(SVM_VMSAVE) "\n\t" |
| "pop %%"R"ax \n\t" |
| |
| /* Save guest registers, load host registers */ |
| "mov %%"R"bx, %c[rbx](%[svm]) \n\t" |
| "mov %%"R"cx, %c[rcx](%[svm]) \n\t" |
| "mov %%"R"dx, %c[rdx](%[svm]) \n\t" |
| "mov %%"R"si, %c[rsi](%[svm]) \n\t" |
| "mov %%"R"di, %c[rdi](%[svm]) \n\t" |
| "mov %%"R"bp, %c[rbp](%[svm]) \n\t" |
| #ifdef CONFIG_X86_64 |
| "mov %%r8, %c[r8](%[svm]) \n\t" |
| "mov %%r9, %c[r9](%[svm]) \n\t" |
| "mov %%r10, %c[r10](%[svm]) \n\t" |
| "mov %%r11, %c[r11](%[svm]) \n\t" |
| "mov %%r12, %c[r12](%[svm]) \n\t" |
| "mov %%r13, %c[r13](%[svm]) \n\t" |
| "mov %%r14, %c[r14](%[svm]) \n\t" |
| "mov %%r15, %c[r15](%[svm]) \n\t" |
| #endif |
| "pop %%"R"bp" |
| : |
| : [svm]"a"(svm), |
| [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), |
| [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])), |
| [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])), |
| [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])), |
| [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])), |
| [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])), |
| [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP])) |
| #ifdef CONFIG_X86_64 |
| , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])), |
| [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])), |
| [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])), |
| [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])), |
| [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])), |
| [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])), |
| [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])), |
| [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15])) |
| #endif |
| : "cc", "memory" |
| , R"bx", R"cx", R"dx", R"si", R"di" |
| #ifdef CONFIG_X86_64 |
| , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15" |
| #endif |
| ); |
| |
| vcpu->arch.cr2 = svm->vmcb->save.cr2; |
| vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; |
| vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; |
| vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; |
| |
| kvm_load_fs(fs_selector); |
| kvm_load_gs(gs_selector); |
| kvm_load_ldt(ldt_selector); |
| load_host_msrs(vcpu); |
| |
| reload_tss(vcpu); |
| |
| local_irq_disable(); |
| |
| stgi(); |
| |
| sync_cr8_to_lapic(vcpu); |
| |
| svm->next_rip = 0; |
| |
| if (npt_enabled) { |
| vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); |
| vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); |
| } |
| |
| svm_complete_interrupts(svm); |
| } |
| |
| #undef R |
| |
| static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (npt_enabled) { |
| svm->vmcb->control.nested_cr3 = root; |
| force_new_asid(vcpu); |
| return; |
| } |
| |
| svm->vmcb->save.cr3 = root; |
| force_new_asid(vcpu); |
| |
| if (vcpu->fpu_active) { |
| svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR); |
| svm->vmcb->save.cr0 |= X86_CR0_TS; |
| vcpu->fpu_active = 0; |
| } |
| } |
| |
| static int is_disabled(void) |
| { |
| u64 vm_cr; |
| |
| rdmsrl(MSR_VM_CR, vm_cr); |
| if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void |
| svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) |
| { |
| /* |
| * Patch in the VMMCALL instruction: |
| */ |
| hypercall[0] = 0x0f; |
| hypercall[1] = 0x01; |
| hypercall[2] = 0xd9; |
| } |
| |
| static void svm_check_processor_compat(void *rtn) |
| { |
| *(int *)rtn = 0; |
| } |
| |
| static bool svm_cpu_has_accelerated_tpr(void) |
| { |
| return false; |
| } |
| |
| static int get_npt_level(void) |
| { |
| #ifdef CONFIG_X86_64 |
| return PT64_ROOT_LEVEL; |
| #else |
| return PT32E_ROOT_LEVEL; |
| #endif |
| } |
| |
| static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) |
| { |
| return 0; |
| } |
| |
| static const struct trace_print_flags svm_exit_reasons_str[] = { |
| { SVM_EXIT_READ_CR0, "read_cr0" }, |
| { SVM_EXIT_READ_CR3, "read_cr3" }, |
| { SVM_EXIT_READ_CR4, "read_cr4" }, |
| { SVM_EXIT_READ_CR8, "read_cr8" }, |
| { SVM_EXIT_WRITE_CR0, "write_cr0" }, |
| { SVM_EXIT_WRITE_CR3, "write_cr3" }, |
| { SVM_EXIT_WRITE_CR4, "write_cr4" }, |
| { SVM_EXIT_WRITE_CR8, "write_cr8" }, |
| { SVM_EXIT_READ_DR0, "read_dr0" }, |
| { SVM_EXIT_READ_DR1, "read_dr1" }, |
| { SVM_EXIT_READ_DR2, "read_dr2" }, |
| { SVM_EXIT_READ_DR3, "read_dr3" }, |
| { SVM_EXIT_WRITE_DR0, "write_dr0" }, |
| { SVM_EXIT_WRITE_DR1, "write_dr1" }, |
| { SVM_EXIT_WRITE_DR2, "write_dr2" }, |
| { SVM_EXIT_WRITE_DR3, "write_dr3" }, |
| { SVM_EXIT_WRITE_DR5, "write_dr5" }, |
| { SVM_EXIT_WRITE_DR7, "write_dr7" }, |
| { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" }, |
| { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" }, |
| { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" }, |
| { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" }, |
| { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" }, |
| { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" }, |
| { SVM_EXIT_INTR, "interrupt" }, |
| { SVM_EXIT_NMI, "nmi" }, |
| { SVM_EXIT_SMI, "smi" }, |
| { SVM_EXIT_INIT, "init" }, |
| { SVM_EXIT_VINTR, "vintr" }, |
| { SVM_EXIT_CPUID, "cpuid" }, |
| { SVM_EXIT_INVD, "invd" }, |
| { SVM_EXIT_HLT, "hlt" }, |
| { SVM_EXIT_INVLPG, "invlpg" }, |
| { SVM_EXIT_INVLPGA, "invlpga" }, |
| { SVM_EXIT_IOIO, "io" }, |
| { SVM_EXIT_MSR, "msr" }, |
| { SVM_EXIT_TASK_SWITCH, "task_switch" }, |
| { SVM_EXIT_SHUTDOWN, "shutdown" }, |
| { SVM_EXIT_VMRUN, "vmrun" }, |
| { SVM_EXIT_VMMCALL, "hypercall" }, |
| { SVM_EXIT_VMLOAD, "vmload" }, |
| { SVM_EXIT_VMSAVE, "vmsave" }, |
| { SVM_EXIT_STGI, "stgi" }, |
| { SVM_EXIT_CLGI, "clgi" }, |
| { SVM_EXIT_SKINIT, "skinit" }, |
| { SVM_EXIT_WBINVD, "wbinvd" }, |
| { SVM_EXIT_MONITOR, "monitor" }, |
| { SVM_EXIT_MWAIT, "mwait" }, |
| { SVM_EXIT_NPF, "npf" }, |
| { -1, NULL } |
| }; |
| |
| static struct kvm_x86_ops svm_x86_ops = { |
| .cpu_has_kvm_support = has_svm, |
| .disabled_by_bios = is_disabled, |
| .hardware_setup = svm_hardware_setup, |
| .hardware_unsetup = svm_hardware_unsetup, |
| .check_processor_compatibility = svm_check_processor_compat, |
| .hardware_enable = svm_hardware_enable, |
| .hardware_disable = svm_hardware_disable, |
| .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, |
| |
| .vcpu_create = svm_create_vcpu, |
| .vcpu_free = svm_free_vcpu, |
| .vcpu_reset = svm_vcpu_reset, |
| |
| .prepare_guest_switch = svm_prepare_guest_switch, |
| .vcpu_load = svm_vcpu_load, |
| .vcpu_put = svm_vcpu_put, |
| |
| .set_guest_debug = svm_guest_debug, |
| .get_msr = svm_get_msr, |
| .set_msr = svm_set_msr, |
| .get_segment_base = svm_get_segment_base, |
| .get_segment = svm_get_segment, |
| .set_segment = svm_set_segment, |
| .get_cpl = svm_get_cpl, |
| .get_cs_db_l_bits = kvm_get_cs_db_l_bits, |
| .decache_cr4_guest_bits = svm_decache_cr4_guest_bits, |
| .set_cr0 = svm_set_cr0, |
| .set_cr3 = svm_set_cr3, |
| .set_cr4 = svm_set_cr4, |
| .set_efer = svm_set_efer, |
| .get_idt = svm_get_idt, |
| .set_idt = svm_set_idt, |
| .get_gdt = svm_get_gdt, |
| .set_gdt = svm_set_gdt, |
| .get_dr = svm_get_dr, |
| .set_dr = svm_set_dr, |
| .cache_reg = svm_cache_reg, |
| .get_rflags = svm_get_rflags, |
| .set_rflags = svm_set_rflags, |
| |
| .tlb_flush = svm_flush_tlb, |
| |
| .run = svm_vcpu_run, |
| .handle_exit = handle_exit, |
| .skip_emulated_instruction = skip_emulated_instruction, |
| .set_interrupt_shadow = svm_set_interrupt_shadow, |
| .get_interrupt_shadow = svm_get_interrupt_shadow, |
| .patch_hypercall = svm_patch_hypercall, |
| .set_irq = svm_set_irq, |
| .set_nmi = svm_inject_nmi, |
| .queue_exception = svm_queue_exception, |
| .interrupt_allowed = svm_interrupt_allowed, |
| .nmi_allowed = svm_nmi_allowed, |
| .enable_nmi_window = enable_nmi_window, |
| .enable_irq_window = enable_irq_window, |
| .update_cr8_intercept = update_cr8_intercept, |
| |
| .set_tss_addr = svm_set_tss_addr, |
| .get_tdp_level = get_npt_level, |
| .get_mt_mask = svm_get_mt_mask, |
| |
| .exit_reasons_str = svm_exit_reasons_str, |
| }; |
| |
| static int __init svm_init(void) |
| { |
| return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm), |
| THIS_MODULE); |
| } |
| |
| static void __exit svm_exit(void) |
| { |
| kvm_exit(); |
| } |
| |
| module_init(svm_init) |
| module_exit(svm_exit) |