| /* |
| * Copyright (c) 2007-2013 Nicira, Inc. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of version 2 of the GNU General Public |
| * License as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA |
| */ |
| |
| #include "flow.h" |
| #include "datapath.h" |
| #include <linux/uaccess.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/if_ether.h> |
| #include <linux/if_vlan.h> |
| #include <net/llc_pdu.h> |
| #include <linux/kernel.h> |
| #include <linux/jhash.h> |
| #include <linux/jiffies.h> |
| #include <linux/llc.h> |
| #include <linux/module.h> |
| #include <linux/in.h> |
| #include <linux/rcupdate.h> |
| #include <linux/if_arp.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/icmp.h> |
| #include <linux/icmpv6.h> |
| #include <linux/rculist.h> |
| #include <net/ip.h> |
| #include <net/ip_tunnels.h> |
| #include <net/ipv6.h> |
| #include <net/ndisc.h> |
| |
| static struct kmem_cache *flow_cache; |
| |
| static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask, |
| struct sw_flow_key_range *range, u8 val); |
| |
| static void update_range__(struct sw_flow_match *match, |
| size_t offset, size_t size, bool is_mask) |
| { |
| struct sw_flow_key_range *range = NULL; |
| size_t start = offset; |
| size_t end = offset + size; |
| |
| if (!is_mask) |
| range = &match->range; |
| else if (match->mask) |
| range = &match->mask->range; |
| |
| if (!range) |
| return; |
| |
| if (range->start == range->end) { |
| range->start = start; |
| range->end = end; |
| return; |
| } |
| |
| if (range->start > start) |
| range->start = start; |
| |
| if (range->end < end) |
| range->end = end; |
| } |
| |
| #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ |
| do { \ |
| update_range__(match, offsetof(struct sw_flow_key, field), \ |
| sizeof((match)->key->field), is_mask); \ |
| if (is_mask) { \ |
| if ((match)->mask) \ |
| (match)->mask->key.field = value; \ |
| } else { \ |
| (match)->key->field = value; \ |
| } \ |
| } while (0) |
| |
| #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ |
| do { \ |
| update_range__(match, offsetof(struct sw_flow_key, field), \ |
| len, is_mask); \ |
| if (is_mask) { \ |
| if ((match)->mask) \ |
| memcpy(&(match)->mask->key.field, value_p, len);\ |
| } else { \ |
| memcpy(&(match)->key->field, value_p, len); \ |
| } \ |
| } while (0) |
| |
| void ovs_match_init(struct sw_flow_match *match, |
| struct sw_flow_key *key, |
| struct sw_flow_mask *mask) |
| { |
| memset(match, 0, sizeof(*match)); |
| match->key = key; |
| match->mask = mask; |
| |
| memset(key, 0, sizeof(*key)); |
| |
| if (mask) { |
| memset(&mask->key, 0, sizeof(mask->key)); |
| mask->range.start = mask->range.end = 0; |
| } |
| } |
| |
| static bool ovs_match_validate(const struct sw_flow_match *match, |
| u64 key_attrs, u64 mask_attrs) |
| { |
| u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET; |
| u64 mask_allowed = key_attrs; /* At most allow all key attributes */ |
| |
| /* The following mask attributes allowed only if they |
| * pass the validation tests. */ |
| mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) |
| | (1 << OVS_KEY_ATTR_IPV6) |
| | (1 << OVS_KEY_ATTR_TCP) |
| | (1 << OVS_KEY_ATTR_UDP) |
| | (1 << OVS_KEY_ATTR_ICMP) |
| | (1 << OVS_KEY_ATTR_ICMPV6) |
| | (1 << OVS_KEY_ATTR_ARP) |
| | (1 << OVS_KEY_ATTR_ND)); |
| |
| /* Always allowed mask fields. */ |
| mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) |
| | (1 << OVS_KEY_ATTR_IN_PORT) |
| | (1 << OVS_KEY_ATTR_ETHERTYPE)); |
| |
| /* Check key attributes. */ |
| if (match->key->eth.type == htons(ETH_P_ARP) |
| || match->key->eth.type == htons(ETH_P_RARP)) { |
| key_expected |= 1 << OVS_KEY_ATTR_ARP; |
| if (match->mask && (match->mask->key.eth.type == htons(0xffff))) |
| mask_allowed |= 1 << OVS_KEY_ATTR_ARP; |
| } |
| |
| if (match->key->eth.type == htons(ETH_P_IP)) { |
| key_expected |= 1 << OVS_KEY_ATTR_IPV4; |
| if (match->mask && (match->mask->key.eth.type == htons(0xffff))) |
| mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; |
| |
| if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { |
| if (match->key->ip.proto == IPPROTO_UDP) { |
| key_expected |= 1 << OVS_KEY_ATTR_UDP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_UDP; |
| } |
| |
| if (match->key->ip.proto == IPPROTO_TCP) { |
| key_expected |= 1 << OVS_KEY_ATTR_TCP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_TCP; |
| } |
| |
| if (match->key->ip.proto == IPPROTO_ICMP) { |
| key_expected |= 1 << OVS_KEY_ATTR_ICMP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; |
| } |
| } |
| } |
| |
| if (match->key->eth.type == htons(ETH_P_IPV6)) { |
| key_expected |= 1 << OVS_KEY_ATTR_IPV6; |
| if (match->mask && (match->mask->key.eth.type == htons(0xffff))) |
| mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; |
| |
| if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { |
| if (match->key->ip.proto == IPPROTO_UDP) { |
| key_expected |= 1 << OVS_KEY_ATTR_UDP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_UDP; |
| } |
| |
| if (match->key->ip.proto == IPPROTO_TCP) { |
| key_expected |= 1 << OVS_KEY_ATTR_TCP; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_TCP; |
| } |
| |
| if (match->key->ip.proto == IPPROTO_ICMPV6) { |
| key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; |
| if (match->mask && (match->mask->key.ip.proto == 0xff)) |
| mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; |
| |
| if (match->key->ipv6.tp.src == |
| htons(NDISC_NEIGHBOUR_SOLICITATION) || |
| match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { |
| key_expected |= 1 << OVS_KEY_ATTR_ND; |
| if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff))) |
| mask_allowed |= 1 << OVS_KEY_ATTR_ND; |
| } |
| } |
| } |
| } |
| |
| if ((key_attrs & key_expected) != key_expected) { |
| /* Key attributes check failed. */ |
| OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n", |
| key_attrs, key_expected); |
| return false; |
| } |
| |
| if ((mask_attrs & mask_allowed) != mask_attrs) { |
| /* Mask attributes check failed. */ |
| OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n", |
| mask_attrs, mask_allowed); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int check_header(struct sk_buff *skb, int len) |
| { |
| if (unlikely(skb->len < len)) |
| return -EINVAL; |
| if (unlikely(!pskb_may_pull(skb, len))) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static bool arphdr_ok(struct sk_buff *skb) |
| { |
| return pskb_may_pull(skb, skb_network_offset(skb) + |
| sizeof(struct arp_eth_header)); |
| } |
| |
| static int check_iphdr(struct sk_buff *skb) |
| { |
| unsigned int nh_ofs = skb_network_offset(skb); |
| unsigned int ip_len; |
| int err; |
| |
| err = check_header(skb, nh_ofs + sizeof(struct iphdr)); |
| if (unlikely(err)) |
| return err; |
| |
| ip_len = ip_hdrlen(skb); |
| if (unlikely(ip_len < sizeof(struct iphdr) || |
| skb->len < nh_ofs + ip_len)) |
| return -EINVAL; |
| |
| skb_set_transport_header(skb, nh_ofs + ip_len); |
| return 0; |
| } |
| |
| static bool tcphdr_ok(struct sk_buff *skb) |
| { |
| int th_ofs = skb_transport_offset(skb); |
| int tcp_len; |
| |
| if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) |
| return false; |
| |
| tcp_len = tcp_hdrlen(skb); |
| if (unlikely(tcp_len < sizeof(struct tcphdr) || |
| skb->len < th_ofs + tcp_len)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool udphdr_ok(struct sk_buff *skb) |
| { |
| return pskb_may_pull(skb, skb_transport_offset(skb) + |
| sizeof(struct udphdr)); |
| } |
| |
| static bool icmphdr_ok(struct sk_buff *skb) |
| { |
| return pskb_may_pull(skb, skb_transport_offset(skb) + |
| sizeof(struct icmphdr)); |
| } |
| |
| u64 ovs_flow_used_time(unsigned long flow_jiffies) |
| { |
| struct timespec cur_ts; |
| u64 cur_ms, idle_ms; |
| |
| ktime_get_ts(&cur_ts); |
| idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); |
| cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + |
| cur_ts.tv_nsec / NSEC_PER_MSEC; |
| |
| return cur_ms - idle_ms; |
| } |
| |
| static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) |
| { |
| unsigned int nh_ofs = skb_network_offset(skb); |
| unsigned int nh_len; |
| int payload_ofs; |
| struct ipv6hdr *nh; |
| uint8_t nexthdr; |
| __be16 frag_off; |
| int err; |
| |
| err = check_header(skb, nh_ofs + sizeof(*nh)); |
| if (unlikely(err)) |
| return err; |
| |
| nh = ipv6_hdr(skb); |
| nexthdr = nh->nexthdr; |
| payload_ofs = (u8 *)(nh + 1) - skb->data; |
| |
| key->ip.proto = NEXTHDR_NONE; |
| key->ip.tos = ipv6_get_dsfield(nh); |
| key->ip.ttl = nh->hop_limit; |
| key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); |
| key->ipv6.addr.src = nh->saddr; |
| key->ipv6.addr.dst = nh->daddr; |
| |
| payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); |
| if (unlikely(payload_ofs < 0)) |
| return -EINVAL; |
| |
| if (frag_off) { |
| if (frag_off & htons(~0x7)) |
| key->ip.frag = OVS_FRAG_TYPE_LATER; |
| else |
| key->ip.frag = OVS_FRAG_TYPE_FIRST; |
| } |
| |
| nh_len = payload_ofs - nh_ofs; |
| skb_set_transport_header(skb, nh_ofs + nh_len); |
| key->ip.proto = nexthdr; |
| return nh_len; |
| } |
| |
| static bool icmp6hdr_ok(struct sk_buff *skb) |
| { |
| return pskb_may_pull(skb, skb_transport_offset(skb) + |
| sizeof(struct icmp6hdr)); |
| } |
| |
| void ovs_flow_key_mask(struct sw_flow_key *dst, const struct sw_flow_key *src, |
| const struct sw_flow_mask *mask) |
| { |
| u8 *m = (u8 *)&mask->key + mask->range.start; |
| u8 *s = (u8 *)src + mask->range.start; |
| u8 *d = (u8 *)dst + mask->range.start; |
| int i; |
| |
| memset(dst, 0, sizeof(*dst)); |
| for (i = 0; i < ovs_sw_flow_mask_size_roundup(mask); i++) { |
| *d = *s & *m; |
| d++, s++, m++; |
| } |
| } |
| |
| #define TCP_FLAGS_OFFSET 13 |
| #define TCP_FLAG_MASK 0x3f |
| |
| void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb) |
| { |
| u8 tcp_flags = 0; |
| |
| if ((flow->key.eth.type == htons(ETH_P_IP) || |
| flow->key.eth.type == htons(ETH_P_IPV6)) && |
| flow->key.ip.proto == IPPROTO_TCP && |
| likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) { |
| u8 *tcp = (u8 *)tcp_hdr(skb); |
| tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; |
| } |
| |
| spin_lock(&flow->lock); |
| flow->used = jiffies; |
| flow->packet_count++; |
| flow->byte_count += skb->len; |
| flow->tcp_flags |= tcp_flags; |
| spin_unlock(&flow->lock); |
| } |
| |
| struct sw_flow_actions *ovs_flow_actions_alloc(int size) |
| { |
| struct sw_flow_actions *sfa; |
| |
| if (size > MAX_ACTIONS_BUFSIZE) |
| return ERR_PTR(-EINVAL); |
| |
| sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); |
| if (!sfa) |
| return ERR_PTR(-ENOMEM); |
| |
| sfa->actions_len = 0; |
| return sfa; |
| } |
| |
| struct sw_flow *ovs_flow_alloc(void) |
| { |
| struct sw_flow *flow; |
| |
| flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); |
| if (!flow) |
| return ERR_PTR(-ENOMEM); |
| |
| spin_lock_init(&flow->lock); |
| flow->sf_acts = NULL; |
| flow->mask = NULL; |
| |
| return flow; |
| } |
| |
| static struct hlist_head *find_bucket(struct flow_table *table, u32 hash) |
| { |
| hash = jhash_1word(hash, table->hash_seed); |
| return flex_array_get(table->buckets, |
| (hash & (table->n_buckets - 1))); |
| } |
| |
| static struct flex_array *alloc_buckets(unsigned int n_buckets) |
| { |
| struct flex_array *buckets; |
| int i, err; |
| |
| buckets = flex_array_alloc(sizeof(struct hlist_head), |
| n_buckets, GFP_KERNEL); |
| if (!buckets) |
| return NULL; |
| |
| err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL); |
| if (err) { |
| flex_array_free(buckets); |
| return NULL; |
| } |
| |
| for (i = 0; i < n_buckets; i++) |
| INIT_HLIST_HEAD((struct hlist_head *) |
| flex_array_get(buckets, i)); |
| |
| return buckets; |
| } |
| |
| static void free_buckets(struct flex_array *buckets) |
| { |
| flex_array_free(buckets); |
| } |
| |
| static struct flow_table *__flow_tbl_alloc(int new_size) |
| { |
| struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL); |
| |
| if (!table) |
| return NULL; |
| |
| table->buckets = alloc_buckets(new_size); |
| |
| if (!table->buckets) { |
| kfree(table); |
| return NULL; |
| } |
| table->n_buckets = new_size; |
| table->count = 0; |
| table->node_ver = 0; |
| table->keep_flows = false; |
| get_random_bytes(&table->hash_seed, sizeof(u32)); |
| table->mask_list = NULL; |
| |
| return table; |
| } |
| |
| static void __flow_tbl_destroy(struct flow_table *table) |
| { |
| int i; |
| |
| if (table->keep_flows) |
| goto skip_flows; |
| |
| for (i = 0; i < table->n_buckets; i++) { |
| struct sw_flow *flow; |
| struct hlist_head *head = flex_array_get(table->buckets, i); |
| struct hlist_node *n; |
| int ver = table->node_ver; |
| |
| hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) { |
| hlist_del(&flow->hash_node[ver]); |
| ovs_flow_free(flow, false); |
| } |
| } |
| |
| BUG_ON(!list_empty(table->mask_list)); |
| kfree(table->mask_list); |
| |
| skip_flows: |
| free_buckets(table->buckets); |
| kfree(table); |
| } |
| |
| struct flow_table *ovs_flow_tbl_alloc(int new_size) |
| { |
| struct flow_table *table = __flow_tbl_alloc(new_size); |
| |
| if (!table) |
| return NULL; |
| |
| table->mask_list = kmalloc(sizeof(struct list_head), GFP_KERNEL); |
| if (!table->mask_list) { |
| table->keep_flows = true; |
| __flow_tbl_destroy(table); |
| return NULL; |
| } |
| INIT_LIST_HEAD(table->mask_list); |
| |
| return table; |
| } |
| |
| static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) |
| { |
| struct flow_table *table = container_of(rcu, struct flow_table, rcu); |
| |
| __flow_tbl_destroy(table); |
| } |
| |
| void ovs_flow_tbl_destroy(struct flow_table *table, bool deferred) |
| { |
| if (!table) |
| return; |
| |
| if (deferred) |
| call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb); |
| else |
| __flow_tbl_destroy(table); |
| } |
| |
| struct sw_flow *ovs_flow_dump_next(struct flow_table *table, u32 *bucket, u32 *last) |
| { |
| struct sw_flow *flow; |
| struct hlist_head *head; |
| int ver; |
| int i; |
| |
| ver = table->node_ver; |
| while (*bucket < table->n_buckets) { |
| i = 0; |
| head = flex_array_get(table->buckets, *bucket); |
| hlist_for_each_entry_rcu(flow, head, hash_node[ver]) { |
| if (i < *last) { |
| i++; |
| continue; |
| } |
| *last = i + 1; |
| return flow; |
| } |
| (*bucket)++; |
| *last = 0; |
| } |
| |
| return NULL; |
| } |
| |
| static void __tbl_insert(struct flow_table *table, struct sw_flow *flow) |
| { |
| struct hlist_head *head; |
| |
| head = find_bucket(table, flow->hash); |
| hlist_add_head_rcu(&flow->hash_node[table->node_ver], head); |
| |
| table->count++; |
| } |
| |
| static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new) |
| { |
| int old_ver; |
| int i; |
| |
| old_ver = old->node_ver; |
| new->node_ver = !old_ver; |
| |
| /* Insert in new table. */ |
| for (i = 0; i < old->n_buckets; i++) { |
| struct sw_flow *flow; |
| struct hlist_head *head; |
| |
| head = flex_array_get(old->buckets, i); |
| |
| hlist_for_each_entry(flow, head, hash_node[old_ver]) |
| __tbl_insert(new, flow); |
| } |
| |
| new->mask_list = old->mask_list; |
| old->keep_flows = true; |
| } |
| |
| static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets) |
| { |
| struct flow_table *new_table; |
| |
| new_table = __flow_tbl_alloc(n_buckets); |
| if (!new_table) |
| return ERR_PTR(-ENOMEM); |
| |
| flow_table_copy_flows(table, new_table); |
| |
| return new_table; |
| } |
| |
| struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table) |
| { |
| return __flow_tbl_rehash(table, table->n_buckets); |
| } |
| |
| struct flow_table *ovs_flow_tbl_expand(struct flow_table *table) |
| { |
| return __flow_tbl_rehash(table, table->n_buckets * 2); |
| } |
| |
| static void __flow_free(struct sw_flow *flow) |
| { |
| kfree((struct sf_flow_acts __force *)flow->sf_acts); |
| kmem_cache_free(flow_cache, flow); |
| } |
| |
| static void rcu_free_flow_callback(struct rcu_head *rcu) |
| { |
| struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); |
| |
| __flow_free(flow); |
| } |
| |
| void ovs_flow_free(struct sw_flow *flow, bool deferred) |
| { |
| if (!flow) |
| return; |
| |
| ovs_sw_flow_mask_del_ref(flow->mask, deferred); |
| |
| if (deferred) |
| call_rcu(&flow->rcu, rcu_free_flow_callback); |
| else |
| __flow_free(flow); |
| } |
| |
| /* Schedules 'sf_acts' to be freed after the next RCU grace period. |
| * The caller must hold rcu_read_lock for this to be sensible. */ |
| void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts) |
| { |
| kfree_rcu(sf_acts, rcu); |
| } |
| |
| static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) |
| { |
| struct qtag_prefix { |
| __be16 eth_type; /* ETH_P_8021Q */ |
| __be16 tci; |
| }; |
| struct qtag_prefix *qp; |
| |
| if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) |
| return 0; |
| |
| if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + |
| sizeof(__be16)))) |
| return -ENOMEM; |
| |
| qp = (struct qtag_prefix *) skb->data; |
| key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); |
| __skb_pull(skb, sizeof(struct qtag_prefix)); |
| |
| return 0; |
| } |
| |
| static __be16 parse_ethertype(struct sk_buff *skb) |
| { |
| struct llc_snap_hdr { |
| u8 dsap; /* Always 0xAA */ |
| u8 ssap; /* Always 0xAA */ |
| u8 ctrl; |
| u8 oui[3]; |
| __be16 ethertype; |
| }; |
| struct llc_snap_hdr *llc; |
| __be16 proto; |
| |
| proto = *(__be16 *) skb->data; |
| __skb_pull(skb, sizeof(__be16)); |
| |
| if (ntohs(proto) >= ETH_P_802_3_MIN) |
| return proto; |
| |
| if (skb->len < sizeof(struct llc_snap_hdr)) |
| return htons(ETH_P_802_2); |
| |
| if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) |
| return htons(0); |
| |
| llc = (struct llc_snap_hdr *) skb->data; |
| if (llc->dsap != LLC_SAP_SNAP || |
| llc->ssap != LLC_SAP_SNAP || |
| (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) |
| return htons(ETH_P_802_2); |
| |
| __skb_pull(skb, sizeof(struct llc_snap_hdr)); |
| |
| if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN) |
| return llc->ethertype; |
| |
| return htons(ETH_P_802_2); |
| } |
| |
| static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, |
| int nh_len) |
| { |
| struct icmp6hdr *icmp = icmp6_hdr(skb); |
| |
| /* The ICMPv6 type and code fields use the 16-bit transport port |
| * fields, so we need to store them in 16-bit network byte order. |
| */ |
| key->ipv6.tp.src = htons(icmp->icmp6_type); |
| key->ipv6.tp.dst = htons(icmp->icmp6_code); |
| |
| if (icmp->icmp6_code == 0 && |
| (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || |
| icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { |
| int icmp_len = skb->len - skb_transport_offset(skb); |
| struct nd_msg *nd; |
| int offset; |
| |
| /* In order to process neighbor discovery options, we need the |
| * entire packet. |
| */ |
| if (unlikely(icmp_len < sizeof(*nd))) |
| return 0; |
| |
| if (unlikely(skb_linearize(skb))) |
| return -ENOMEM; |
| |
| nd = (struct nd_msg *)skb_transport_header(skb); |
| key->ipv6.nd.target = nd->target; |
| |
| icmp_len -= sizeof(*nd); |
| offset = 0; |
| while (icmp_len >= 8) { |
| struct nd_opt_hdr *nd_opt = |
| (struct nd_opt_hdr *)(nd->opt + offset); |
| int opt_len = nd_opt->nd_opt_len * 8; |
| |
| if (unlikely(!opt_len || opt_len > icmp_len)) |
| return 0; |
| |
| /* Store the link layer address if the appropriate |
| * option is provided. It is considered an error if |
| * the same link layer option is specified twice. |
| */ |
| if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR |
| && opt_len == 8) { |
| if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) |
| goto invalid; |
| memcpy(key->ipv6.nd.sll, |
| &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); |
| } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR |
| && opt_len == 8) { |
| if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) |
| goto invalid; |
| memcpy(key->ipv6.nd.tll, |
| &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); |
| } |
| |
| icmp_len -= opt_len; |
| offset += opt_len; |
| } |
| } |
| |
| return 0; |
| |
| invalid: |
| memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); |
| memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); |
| memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); |
| |
| return 0; |
| } |
| |
| /** |
| * ovs_flow_extract - extracts a flow key from an Ethernet frame. |
| * @skb: sk_buff that contains the frame, with skb->data pointing to the |
| * Ethernet header |
| * @in_port: port number on which @skb was received. |
| * @key: output flow key |
| * |
| * The caller must ensure that skb->len >= ETH_HLEN. |
| * |
| * Returns 0 if successful, otherwise a negative errno value. |
| * |
| * Initializes @skb header pointers as follows: |
| * |
| * - skb->mac_header: the Ethernet header. |
| * |
| * - skb->network_header: just past the Ethernet header, or just past the |
| * VLAN header, to the first byte of the Ethernet payload. |
| * |
| * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 |
| * on output, then just past the IP header, if one is present and |
| * of a correct length, otherwise the same as skb->network_header. |
| * For other key->eth.type values it is left untouched. |
| */ |
| int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key) |
| { |
| int error; |
| struct ethhdr *eth; |
| |
| memset(key, 0, sizeof(*key)); |
| |
| key->phy.priority = skb->priority; |
| if (OVS_CB(skb)->tun_key) |
| memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key)); |
| key->phy.in_port = in_port; |
| key->phy.skb_mark = skb->mark; |
| |
| skb_reset_mac_header(skb); |
| |
| /* Link layer. We are guaranteed to have at least the 14 byte Ethernet |
| * header in the linear data area. |
| */ |
| eth = eth_hdr(skb); |
| memcpy(key->eth.src, eth->h_source, ETH_ALEN); |
| memcpy(key->eth.dst, eth->h_dest, ETH_ALEN); |
| |
| __skb_pull(skb, 2 * ETH_ALEN); |
| /* We are going to push all headers that we pull, so no need to |
| * update skb->csum here. |
| */ |
| |
| if (vlan_tx_tag_present(skb)) |
| key->eth.tci = htons(skb->vlan_tci); |
| else if (eth->h_proto == htons(ETH_P_8021Q)) |
| if (unlikely(parse_vlan(skb, key))) |
| return -ENOMEM; |
| |
| key->eth.type = parse_ethertype(skb); |
| if (unlikely(key->eth.type == htons(0))) |
| return -ENOMEM; |
| |
| skb_reset_network_header(skb); |
| __skb_push(skb, skb->data - skb_mac_header(skb)); |
| |
| /* Network layer. */ |
| if (key->eth.type == htons(ETH_P_IP)) { |
| struct iphdr *nh; |
| __be16 offset; |
| |
| error = check_iphdr(skb); |
| if (unlikely(error)) { |
| if (error == -EINVAL) { |
| skb->transport_header = skb->network_header; |
| error = 0; |
| } |
| return error; |
| } |
| |
| nh = ip_hdr(skb); |
| key->ipv4.addr.src = nh->saddr; |
| key->ipv4.addr.dst = nh->daddr; |
| |
| key->ip.proto = nh->protocol; |
| key->ip.tos = nh->tos; |
| key->ip.ttl = nh->ttl; |
| |
| offset = nh->frag_off & htons(IP_OFFSET); |
| if (offset) { |
| key->ip.frag = OVS_FRAG_TYPE_LATER; |
| return 0; |
| } |
| if (nh->frag_off & htons(IP_MF) || |
| skb_shinfo(skb)->gso_type & SKB_GSO_UDP) |
| key->ip.frag = OVS_FRAG_TYPE_FIRST; |
| |
| /* Transport layer. */ |
| if (key->ip.proto == IPPROTO_TCP) { |
| if (tcphdr_ok(skb)) { |
| struct tcphdr *tcp = tcp_hdr(skb); |
| key->ipv4.tp.src = tcp->source; |
| key->ipv4.tp.dst = tcp->dest; |
| } |
| } else if (key->ip.proto == IPPROTO_UDP) { |
| if (udphdr_ok(skb)) { |
| struct udphdr *udp = udp_hdr(skb); |
| key->ipv4.tp.src = udp->source; |
| key->ipv4.tp.dst = udp->dest; |
| } |
| } else if (key->ip.proto == IPPROTO_ICMP) { |
| if (icmphdr_ok(skb)) { |
| struct icmphdr *icmp = icmp_hdr(skb); |
| /* The ICMP type and code fields use the 16-bit |
| * transport port fields, so we need to store |
| * them in 16-bit network byte order. */ |
| key->ipv4.tp.src = htons(icmp->type); |
| key->ipv4.tp.dst = htons(icmp->code); |
| } |
| } |
| |
| } else if ((key->eth.type == htons(ETH_P_ARP) || |
| key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) { |
| struct arp_eth_header *arp; |
| |
| arp = (struct arp_eth_header *)skb_network_header(skb); |
| |
| if (arp->ar_hrd == htons(ARPHRD_ETHER) |
| && arp->ar_pro == htons(ETH_P_IP) |
| && arp->ar_hln == ETH_ALEN |
| && arp->ar_pln == 4) { |
| |
| /* We only match on the lower 8 bits of the opcode. */ |
| if (ntohs(arp->ar_op) <= 0xff) |
| key->ip.proto = ntohs(arp->ar_op); |
| memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); |
| memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); |
| memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN); |
| memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN); |
| } |
| } else if (key->eth.type == htons(ETH_P_IPV6)) { |
| int nh_len; /* IPv6 Header + Extensions */ |
| |
| nh_len = parse_ipv6hdr(skb, key); |
| if (unlikely(nh_len < 0)) { |
| if (nh_len == -EINVAL) { |
| skb->transport_header = skb->network_header; |
| error = 0; |
| } else { |
| error = nh_len; |
| } |
| return error; |
| } |
| |
| if (key->ip.frag == OVS_FRAG_TYPE_LATER) |
| return 0; |
| if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) |
| key->ip.frag = OVS_FRAG_TYPE_FIRST; |
| |
| /* Transport layer. */ |
| if (key->ip.proto == NEXTHDR_TCP) { |
| if (tcphdr_ok(skb)) { |
| struct tcphdr *tcp = tcp_hdr(skb); |
| key->ipv6.tp.src = tcp->source; |
| key->ipv6.tp.dst = tcp->dest; |
| } |
| } else if (key->ip.proto == NEXTHDR_UDP) { |
| if (udphdr_ok(skb)) { |
| struct udphdr *udp = udp_hdr(skb); |
| key->ipv6.tp.src = udp->source; |
| key->ipv6.tp.dst = udp->dest; |
| } |
| } else if (key->ip.proto == NEXTHDR_ICMP) { |
| if (icmp6hdr_ok(skb)) { |
| error = parse_icmpv6(skb, key, nh_len); |
| if (error) |
| return error; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static u32 ovs_flow_hash(const struct sw_flow_key *key, int key_start, int key_len) |
| { |
| return jhash2((u32 *)((u8 *)key + key_start), |
| DIV_ROUND_UP(key_len - key_start, sizeof(u32)), 0); |
| } |
| |
| static int flow_key_start(const struct sw_flow_key *key) |
| { |
| if (key->tun_key.ipv4_dst) |
| return 0; |
| else |
| return offsetof(struct sw_flow_key, phy); |
| } |
| |
| static bool __cmp_key(const struct sw_flow_key *key1, |
| const struct sw_flow_key *key2, int key_start, int key_len) |
| { |
| return !memcmp((u8 *)key1 + key_start, |
| (u8 *)key2 + key_start, (key_len - key_start)); |
| } |
| |
| static bool __flow_cmp_key(const struct sw_flow *flow, |
| const struct sw_flow_key *key, int key_start, int key_len) |
| { |
| return __cmp_key(&flow->key, key, key_start, key_len); |
| } |
| |
| static bool __flow_cmp_unmasked_key(const struct sw_flow *flow, |
| const struct sw_flow_key *key, int key_start, int key_len) |
| { |
| return __cmp_key(&flow->unmasked_key, key, key_start, key_len); |
| } |
| |
| bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow, |
| const struct sw_flow_key *key, int key_len) |
| { |
| int key_start; |
| key_start = flow_key_start(key); |
| |
| return __flow_cmp_unmasked_key(flow, key, key_start, key_len); |
| |
| } |
| |
| struct sw_flow *ovs_flow_lookup_unmasked_key(struct flow_table *table, |
| struct sw_flow_match *match) |
| { |
| struct sw_flow_key *unmasked = match->key; |
| int key_len = match->range.end; |
| struct sw_flow *flow; |
| |
| flow = ovs_flow_lookup(table, unmasked); |
| if (flow && (!ovs_flow_cmp_unmasked_key(flow, unmasked, key_len))) |
| flow = NULL; |
| |
| return flow; |
| } |
| |
| static struct sw_flow *ovs_masked_flow_lookup(struct flow_table *table, |
| const struct sw_flow_key *flow_key, |
| struct sw_flow_mask *mask) |
| { |
| struct sw_flow *flow; |
| struct hlist_head *head; |
| int key_start = mask->range.start; |
| int key_len = mask->range.end; |
| u32 hash; |
| struct sw_flow_key masked_key; |
| |
| ovs_flow_key_mask(&masked_key, flow_key, mask); |
| hash = ovs_flow_hash(&masked_key, key_start, key_len); |
| head = find_bucket(table, hash); |
| hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) { |
| if (flow->mask == mask && |
| __flow_cmp_key(flow, &masked_key, key_start, key_len)) |
| return flow; |
| } |
| return NULL; |
| } |
| |
| struct sw_flow *ovs_flow_lookup(struct flow_table *tbl, |
| const struct sw_flow_key *key) |
| { |
| struct sw_flow *flow = NULL; |
| struct sw_flow_mask *mask; |
| |
| list_for_each_entry_rcu(mask, tbl->mask_list, list) { |
| flow = ovs_masked_flow_lookup(tbl, key, mask); |
| if (flow) /* Found */ |
| break; |
| } |
| |
| return flow; |
| } |
| |
| |
| void ovs_flow_insert(struct flow_table *table, struct sw_flow *flow) |
| { |
| flow->hash = ovs_flow_hash(&flow->key, flow->mask->range.start, |
| flow->mask->range.end); |
| __tbl_insert(table, flow); |
| } |
| |
| void ovs_flow_remove(struct flow_table *table, struct sw_flow *flow) |
| { |
| BUG_ON(table->count == 0); |
| hlist_del_rcu(&flow->hash_node[table->node_ver]); |
| table->count--; |
| } |
| |
| /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ |
| const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { |
| [OVS_KEY_ATTR_ENCAP] = -1, |
| [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), |
| [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), |
| [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32), |
| [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), |
| [OVS_KEY_ATTR_VLAN] = sizeof(__be16), |
| [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), |
| [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), |
| [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), |
| [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), |
| [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), |
| [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), |
| [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), |
| [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), |
| [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), |
| [OVS_KEY_ATTR_TUNNEL] = -1, |
| }; |
| |
| static bool is_all_zero(const u8 *fp, size_t size) |
| { |
| int i; |
| |
| if (!fp) |
| return false; |
| |
| for (i = 0; i < size; i++) |
| if (fp[i]) |
| return false; |
| |
| return true; |
| } |
| |
| static int __parse_flow_nlattrs(const struct nlattr *attr, |
| const struct nlattr *a[], |
| u64 *attrsp, bool nz) |
| { |
| const struct nlattr *nla; |
| u32 attrs; |
| int rem; |
| |
| attrs = *attrsp; |
| nla_for_each_nested(nla, attr, rem) { |
| u16 type = nla_type(nla); |
| int expected_len; |
| |
| if (type > OVS_KEY_ATTR_MAX) { |
| OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n", |
| type, OVS_KEY_ATTR_MAX); |
| } |
| |
| if (attrs & (1 << type)) { |
| OVS_NLERR("Duplicate key attribute (type %d).\n", type); |
| return -EINVAL; |
| } |
| |
| expected_len = ovs_key_lens[type]; |
| if (nla_len(nla) != expected_len && expected_len != -1) { |
| OVS_NLERR("Key attribute has unexpected length (type=%d" |
| ", length=%d, expected=%d).\n", type, |
| nla_len(nla), expected_len); |
| return -EINVAL; |
| } |
| |
| if (!nz || !is_all_zero(nla_data(nla), expected_len)) { |
| attrs |= 1 << type; |
| a[type] = nla; |
| } |
| } |
| if (rem) { |
| OVS_NLERR("Message has %d unknown bytes.\n", rem); |
| return -EINVAL; |
| } |
| |
| *attrsp = attrs; |
| return 0; |
| } |
| |
| static int parse_flow_mask_nlattrs(const struct nlattr *attr, |
| const struct nlattr *a[], u64 *attrsp) |
| { |
| return __parse_flow_nlattrs(attr, a, attrsp, true); |
| } |
| |
| static int parse_flow_nlattrs(const struct nlattr *attr, |
| const struct nlattr *a[], u64 *attrsp) |
| { |
| return __parse_flow_nlattrs(attr, a, attrsp, false); |
| } |
| |
| int ovs_ipv4_tun_from_nlattr(const struct nlattr *attr, |
| struct sw_flow_match *match, bool is_mask) |
| { |
| struct nlattr *a; |
| int rem; |
| bool ttl = false; |
| __be16 tun_flags = 0; |
| |
| nla_for_each_nested(a, attr, rem) { |
| int type = nla_type(a); |
| static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { |
| [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64), |
| [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32), |
| [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32), |
| [OVS_TUNNEL_KEY_ATTR_TOS] = 1, |
| [OVS_TUNNEL_KEY_ATTR_TTL] = 1, |
| [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0, |
| [OVS_TUNNEL_KEY_ATTR_CSUM] = 0, |
| }; |
| |
| if (type > OVS_TUNNEL_KEY_ATTR_MAX) { |
| OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n", |
| type, OVS_TUNNEL_KEY_ATTR_MAX); |
| return -EINVAL; |
| } |
| |
| if (ovs_tunnel_key_lens[type] != nla_len(a)) { |
| OVS_NLERR("IPv4 tunnel attribute type has unexpected " |
| " length (type=%d, length=%d, expected=%d).\n", |
| type, nla_len(a), ovs_tunnel_key_lens[type]); |
| return -EINVAL; |
| } |
| |
| switch (type) { |
| case OVS_TUNNEL_KEY_ATTR_ID: |
| SW_FLOW_KEY_PUT(match, tun_key.tun_id, |
| nla_get_be64(a), is_mask); |
| tun_flags |= TUNNEL_KEY; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: |
| SW_FLOW_KEY_PUT(match, tun_key.ipv4_src, |
| nla_get_be32(a), is_mask); |
| break; |
| case OVS_TUNNEL_KEY_ATTR_IPV4_DST: |
| SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst, |
| nla_get_be32(a), is_mask); |
| break; |
| case OVS_TUNNEL_KEY_ATTR_TOS: |
| SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos, |
| nla_get_u8(a), is_mask); |
| break; |
| case OVS_TUNNEL_KEY_ATTR_TTL: |
| SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl, |
| nla_get_u8(a), is_mask); |
| ttl = true; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: |
| tun_flags |= TUNNEL_DONT_FRAGMENT; |
| break; |
| case OVS_TUNNEL_KEY_ATTR_CSUM: |
| tun_flags |= TUNNEL_CSUM; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); |
| |
| if (rem > 0) { |
| OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem); |
| return -EINVAL; |
| } |
| |
| if (!is_mask) { |
| if (!match->key->tun_key.ipv4_dst) { |
| OVS_NLERR("IPv4 tunnel destination address is zero.\n"); |
| return -EINVAL; |
| } |
| |
| if (!ttl) { |
| OVS_NLERR("IPv4 tunnel TTL not specified.\n"); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int ovs_ipv4_tun_to_nlattr(struct sk_buff *skb, |
| const struct ovs_key_ipv4_tunnel *tun_key, |
| const struct ovs_key_ipv4_tunnel *output) |
| { |
| struct nlattr *nla; |
| |
| nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); |
| if (!nla) |
| return -EMSGSIZE; |
| |
| if (output->tun_flags & TUNNEL_KEY && |
| nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id)) |
| return -EMSGSIZE; |
| if (output->ipv4_src && |
| nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src)) |
| return -EMSGSIZE; |
| if (output->ipv4_dst && |
| nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst)) |
| return -EMSGSIZE; |
| if (output->ipv4_tos && |
| nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos)) |
| return -EMSGSIZE; |
| if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl)) |
| return -EMSGSIZE; |
| if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && |
| nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) |
| return -EMSGSIZE; |
| if ((output->tun_flags & TUNNEL_CSUM) && |
| nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) |
| return -EMSGSIZE; |
| |
| nla_nest_end(skb, nla); |
| return 0; |
| } |
| |
| static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs, |
| const struct nlattr **a, bool is_mask) |
| { |
| if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { |
| SW_FLOW_KEY_PUT(match, phy.priority, |
| nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); |
| } |
| |
| if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { |
| u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); |
| |
| if (is_mask) |
| in_port = 0xffffffff; /* Always exact match in_port. */ |
| else if (in_port >= DP_MAX_PORTS) |
| return -EINVAL; |
| |
| SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); |
| } else if (!is_mask) { |
| SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); |
| } |
| |
| if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { |
| uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); |
| |
| SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); |
| *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); |
| } |
| if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { |
| if (ovs_ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, |
| is_mask)) |
| return -EINVAL; |
| *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); |
| } |
| return 0; |
| } |
| |
| static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs, |
| const struct nlattr **a, bool is_mask) |
| { |
| int err; |
| u64 orig_attrs = attrs; |
| |
| err = metadata_from_nlattrs(match, &attrs, a, is_mask); |
| if (err) |
| return err; |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { |
| const struct ovs_key_ethernet *eth_key; |
| |
| eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); |
| SW_FLOW_KEY_MEMCPY(match, eth.src, |
| eth_key->eth_src, ETH_ALEN, is_mask); |
| SW_FLOW_KEY_MEMCPY(match, eth.dst, |
| eth_key->eth_dst, ETH_ALEN, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { |
| __be16 tci; |
| |
| tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); |
| if (!(tci & htons(VLAN_TAG_PRESENT))) { |
| if (is_mask) |
| OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n"); |
| else |
| OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n"); |
| |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_VLAN); |
| } else if (!is_mask) |
| SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true); |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { |
| __be16 eth_type; |
| |
| eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); |
| if (is_mask) { |
| /* Always exact match EtherType. */ |
| eth_type = htons(0xffff); |
| } else if (ntohs(eth_type) < ETH_P_802_3_MIN) { |
| OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n", |
| ntohs(eth_type), ETH_P_802_3_MIN); |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); |
| } else if (!is_mask) { |
| SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { |
| const struct ovs_key_ipv4 *ipv4_key; |
| |
| ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); |
| if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { |
| OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n", |
| ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); |
| return -EINVAL; |
| } |
| SW_FLOW_KEY_PUT(match, ip.proto, |
| ipv4_key->ipv4_proto, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.tos, |
| ipv4_key->ipv4_tos, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.ttl, |
| ipv4_key->ipv4_ttl, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.frag, |
| ipv4_key->ipv4_frag, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.addr.src, |
| ipv4_key->ipv4_src, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.addr.dst, |
| ipv4_key->ipv4_dst, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_IPV4); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { |
| const struct ovs_key_ipv6 *ipv6_key; |
| |
| ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); |
| if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { |
| OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n", |
| ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); |
| return -EINVAL; |
| } |
| SW_FLOW_KEY_PUT(match, ipv6.label, |
| ipv6_key->ipv6_label, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.proto, |
| ipv6_key->ipv6_proto, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.tos, |
| ipv6_key->ipv6_tclass, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.ttl, |
| ipv6_key->ipv6_hlimit, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.frag, |
| ipv6_key->ipv6_frag, is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, |
| ipv6_key->ipv6_src, |
| sizeof(match->key->ipv6.addr.src), |
| is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, |
| ipv6_key->ipv6_dst, |
| sizeof(match->key->ipv6.addr.dst), |
| is_mask); |
| |
| attrs &= ~(1 << OVS_KEY_ATTR_IPV6); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ARP)) { |
| const struct ovs_key_arp *arp_key; |
| |
| arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); |
| if (!is_mask && (arp_key->arp_op & htons(0xff00))) { |
| OVS_NLERR("Unknown ARP opcode (opcode=%d).\n", |
| arp_key->arp_op); |
| return -EINVAL; |
| } |
| |
| SW_FLOW_KEY_PUT(match, ipv4.addr.src, |
| arp_key->arp_sip, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.addr.dst, |
| arp_key->arp_tip, is_mask); |
| SW_FLOW_KEY_PUT(match, ip.proto, |
| ntohs(arp_key->arp_op), is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, |
| arp_key->arp_sha, ETH_ALEN, is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, |
| arp_key->arp_tha, ETH_ALEN, is_mask); |
| |
| attrs &= ~(1 << OVS_KEY_ATTR_ARP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_TCP)) { |
| const struct ovs_key_tcp *tcp_key; |
| |
| tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); |
| if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) { |
| SW_FLOW_KEY_PUT(match, ipv4.tp.src, |
| tcp_key->tcp_src, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.tp.dst, |
| tcp_key->tcp_dst, is_mask); |
| } else { |
| SW_FLOW_KEY_PUT(match, ipv6.tp.src, |
| tcp_key->tcp_src, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv6.tp.dst, |
| tcp_key->tcp_dst, is_mask); |
| } |
| attrs &= ~(1 << OVS_KEY_ATTR_TCP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_UDP)) { |
| const struct ovs_key_udp *udp_key; |
| |
| udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); |
| if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) { |
| SW_FLOW_KEY_PUT(match, ipv4.tp.src, |
| udp_key->udp_src, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.tp.dst, |
| udp_key->udp_dst, is_mask); |
| } else { |
| SW_FLOW_KEY_PUT(match, ipv6.tp.src, |
| udp_key->udp_src, is_mask); |
| SW_FLOW_KEY_PUT(match, ipv6.tp.dst, |
| udp_key->udp_dst, is_mask); |
| } |
| attrs &= ~(1 << OVS_KEY_ATTR_UDP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { |
| const struct ovs_key_icmp *icmp_key; |
| |
| icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); |
| SW_FLOW_KEY_PUT(match, ipv4.tp.src, |
| htons(icmp_key->icmp_type), is_mask); |
| SW_FLOW_KEY_PUT(match, ipv4.tp.dst, |
| htons(icmp_key->icmp_code), is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ICMP); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { |
| const struct ovs_key_icmpv6 *icmpv6_key; |
| |
| icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); |
| SW_FLOW_KEY_PUT(match, ipv6.tp.src, |
| htons(icmpv6_key->icmpv6_type), is_mask); |
| SW_FLOW_KEY_PUT(match, ipv6.tp.dst, |
| htons(icmpv6_key->icmpv6_code), is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); |
| } |
| |
| if (attrs & (1 << OVS_KEY_ATTR_ND)) { |
| const struct ovs_key_nd *nd_key; |
| |
| nd_key = nla_data(a[OVS_KEY_ATTR_ND]); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, |
| nd_key->nd_target, |
| sizeof(match->key->ipv6.nd.target), |
| is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, |
| nd_key->nd_sll, ETH_ALEN, is_mask); |
| SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, |
| nd_key->nd_tll, ETH_ALEN, is_mask); |
| attrs &= ~(1 << OVS_KEY_ATTR_ND); |
| } |
| |
| if (attrs != 0) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /** |
| * ovs_match_from_nlattrs - parses Netlink attributes into a flow key and |
| * mask. In case the 'mask' is NULL, the flow is treated as exact match |
| * flow. Otherwise, it is treated as a wildcarded flow, except the mask |
| * does not include any don't care bit. |
| * @match: receives the extracted flow match information. |
| * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute |
| * sequence. The fields should of the packet that triggered the creation |
| * of this flow. |
| * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink |
| * attribute specifies the mask field of the wildcarded flow. |
| */ |
| int ovs_match_from_nlattrs(struct sw_flow_match *match, |
| const struct nlattr *key, |
| const struct nlattr *mask) |
| { |
| const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; |
| const struct nlattr *encap; |
| u64 key_attrs = 0; |
| u64 mask_attrs = 0; |
| bool encap_valid = false; |
| int err; |
| |
| err = parse_flow_nlattrs(key, a, &key_attrs); |
| if (err) |
| return err; |
| |
| if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && |
| (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && |
| (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) { |
| __be16 tci; |
| |
| if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && |
| (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { |
| OVS_NLERR("Invalid Vlan frame.\n"); |
| return -EINVAL; |
| } |
| |
| key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); |
| tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); |
| encap = a[OVS_KEY_ATTR_ENCAP]; |
| key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); |
| encap_valid = true; |
| |
| if (tci & htons(VLAN_TAG_PRESENT)) { |
| err = parse_flow_nlattrs(encap, a, &key_attrs); |
| if (err) |
| return err; |
| } else if (!tci) { |
| /* Corner case for truncated 802.1Q header. */ |
| if (nla_len(encap)) { |
| OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n"); |
| return -EINVAL; |
| } |
| } else { |
| OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n"); |
| return -EINVAL; |
| } |
| } |
| |
| err = ovs_key_from_nlattrs(match, key_attrs, a, false); |
| if (err) |
| return err; |
| |
| if (mask) { |
| err = parse_flow_mask_nlattrs(mask, a, &mask_attrs); |
| if (err) |
| return err; |
| |
| if (mask_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) { |
| __be16 eth_type = 0; |
| __be16 tci = 0; |
| |
| if (!encap_valid) { |
| OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n"); |
| return -EINVAL; |
| } |
| |
| mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); |
| if (a[OVS_KEY_ATTR_ETHERTYPE]) |
| eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); |
| |
| if (eth_type == htons(0xffff)) { |
| mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); |
| encap = a[OVS_KEY_ATTR_ENCAP]; |
| err = parse_flow_mask_nlattrs(encap, a, &mask_attrs); |
| } else { |
| OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n", |
| ntohs(eth_type)); |
| return -EINVAL; |
| } |
| |
| if (a[OVS_KEY_ATTR_VLAN]) |
| tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); |
| |
| if (!(tci & htons(VLAN_TAG_PRESENT))) { |
| OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci)); |
| return -EINVAL; |
| } |
| } |
| |
| err = ovs_key_from_nlattrs(match, mask_attrs, a, true); |
| if (err) |
| return err; |
| } else { |
| /* Populate exact match flow's key mask. */ |
| if (match->mask) |
| ovs_sw_flow_mask_set(match->mask, &match->range, 0xff); |
| } |
| |
| if (!ovs_match_validate(match, key_attrs, mask_attrs)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /** |
| * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key. |
| * @flow: Receives extracted in_port, priority, tun_key and skb_mark. |
| * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute |
| * sequence. |
| * |
| * This parses a series of Netlink attributes that form a flow key, which must |
| * take the same form accepted by flow_from_nlattrs(), but only enough of it to |
| * get the metadata, that is, the parts of the flow key that cannot be |
| * extracted from the packet itself. |
| */ |
| |
| int ovs_flow_metadata_from_nlattrs(struct sw_flow *flow, |
| const struct nlattr *attr) |
| { |
| struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key; |
| const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; |
| u64 attrs = 0; |
| int err; |
| struct sw_flow_match match; |
| |
| flow->key.phy.in_port = DP_MAX_PORTS; |
| flow->key.phy.priority = 0; |
| flow->key.phy.skb_mark = 0; |
| memset(tun_key, 0, sizeof(flow->key.tun_key)); |
| |
| err = parse_flow_nlattrs(attr, a, &attrs); |
| if (err) |
| return -EINVAL; |
| |
| memset(&match, 0, sizeof(match)); |
| match.key = &flow->key; |
| |
| err = metadata_from_nlattrs(&match, &attrs, a, false); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, |
| const struct sw_flow_key *output, struct sk_buff *skb) |
| { |
| struct ovs_key_ethernet *eth_key; |
| struct nlattr *nla, *encap; |
| bool is_mask = (swkey != output); |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) |
| goto nla_put_failure; |
| |
| if ((swkey->tun_key.ipv4_dst || is_mask) && |
| ovs_ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key)) |
| goto nla_put_failure; |
| |
| if (swkey->phy.in_port == DP_MAX_PORTS) { |
| if (is_mask && (output->phy.in_port == 0xffff)) |
| if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) |
| goto nla_put_failure; |
| } else { |
| u16 upper_u16; |
| upper_u16 = !is_mask ? 0 : 0xffff; |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, |
| (upper_u16 << 16) | output->phy.in_port)) |
| goto nla_put_failure; |
| } |
| |
| if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) |
| goto nla_put_failure; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); |
| if (!nla) |
| goto nla_put_failure; |
| |
| eth_key = nla_data(nla); |
| memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN); |
| memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN); |
| |
| if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { |
| __be16 eth_type; |
| eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff); |
| if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || |
| nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci)) |
| goto nla_put_failure; |
| encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); |
| if (!swkey->eth.tci) |
| goto unencap; |
| } else |
| encap = NULL; |
| |
| if (swkey->eth.type == htons(ETH_P_802_2)) { |
| /* |
| * Ethertype 802.2 is represented in the netlink with omitted |
| * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and |
| * 0xffff in the mask attribute. Ethertype can also |
| * be wildcarded. |
| */ |
| if (is_mask && output->eth.type) |
| if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, |
| output->eth.type)) |
| goto nla_put_failure; |
| goto unencap; |
| } |
| |
| if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) |
| goto nla_put_failure; |
| |
| if (swkey->eth.type == htons(ETH_P_IP)) { |
| struct ovs_key_ipv4 *ipv4_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); |
| if (!nla) |
| goto nla_put_failure; |
| ipv4_key = nla_data(nla); |
| ipv4_key->ipv4_src = output->ipv4.addr.src; |
| ipv4_key->ipv4_dst = output->ipv4.addr.dst; |
| ipv4_key->ipv4_proto = output->ip.proto; |
| ipv4_key->ipv4_tos = output->ip.tos; |
| ipv4_key->ipv4_ttl = output->ip.ttl; |
| ipv4_key->ipv4_frag = output->ip.frag; |
| } else if (swkey->eth.type == htons(ETH_P_IPV6)) { |
| struct ovs_key_ipv6 *ipv6_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); |
| if (!nla) |
| goto nla_put_failure; |
| ipv6_key = nla_data(nla); |
| memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, |
| sizeof(ipv6_key->ipv6_src)); |
| memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, |
| sizeof(ipv6_key->ipv6_dst)); |
| ipv6_key->ipv6_label = output->ipv6.label; |
| ipv6_key->ipv6_proto = output->ip.proto; |
| ipv6_key->ipv6_tclass = output->ip.tos; |
| ipv6_key->ipv6_hlimit = output->ip.ttl; |
| ipv6_key->ipv6_frag = output->ip.frag; |
| } else if (swkey->eth.type == htons(ETH_P_ARP) || |
| swkey->eth.type == htons(ETH_P_RARP)) { |
| struct ovs_key_arp *arp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| arp_key = nla_data(nla); |
| memset(arp_key, 0, sizeof(struct ovs_key_arp)); |
| arp_key->arp_sip = output->ipv4.addr.src; |
| arp_key->arp_tip = output->ipv4.addr.dst; |
| arp_key->arp_op = htons(output->ip.proto); |
| memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN); |
| memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN); |
| } |
| |
| if ((swkey->eth.type == htons(ETH_P_IP) || |
| swkey->eth.type == htons(ETH_P_IPV6)) && |
| swkey->ip.frag != OVS_FRAG_TYPE_LATER) { |
| |
| if (swkey->ip.proto == IPPROTO_TCP) { |
| struct ovs_key_tcp *tcp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| tcp_key = nla_data(nla); |
| if (swkey->eth.type == htons(ETH_P_IP)) { |
| tcp_key->tcp_src = output->ipv4.tp.src; |
| tcp_key->tcp_dst = output->ipv4.tp.dst; |
| } else if (swkey->eth.type == htons(ETH_P_IPV6)) { |
| tcp_key->tcp_src = output->ipv6.tp.src; |
| tcp_key->tcp_dst = output->ipv6.tp.dst; |
| } |
| } else if (swkey->ip.proto == IPPROTO_UDP) { |
| struct ovs_key_udp *udp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| udp_key = nla_data(nla); |
| if (swkey->eth.type == htons(ETH_P_IP)) { |
| udp_key->udp_src = output->ipv4.tp.src; |
| udp_key->udp_dst = output->ipv4.tp.dst; |
| } else if (swkey->eth.type == htons(ETH_P_IPV6)) { |
| udp_key->udp_src = output->ipv6.tp.src; |
| udp_key->udp_dst = output->ipv6.tp.dst; |
| } |
| } else if (swkey->eth.type == htons(ETH_P_IP) && |
| swkey->ip.proto == IPPROTO_ICMP) { |
| struct ovs_key_icmp *icmp_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); |
| if (!nla) |
| goto nla_put_failure; |
| icmp_key = nla_data(nla); |
| icmp_key->icmp_type = ntohs(output->ipv4.tp.src); |
| icmp_key->icmp_code = ntohs(output->ipv4.tp.dst); |
| } else if (swkey->eth.type == htons(ETH_P_IPV6) && |
| swkey->ip.proto == IPPROTO_ICMPV6) { |
| struct ovs_key_icmpv6 *icmpv6_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, |
| sizeof(*icmpv6_key)); |
| if (!nla) |
| goto nla_put_failure; |
| icmpv6_key = nla_data(nla); |
| icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src); |
| icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst); |
| |
| if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || |
| icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { |
| struct ovs_key_nd *nd_key; |
| |
| nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); |
| if (!nla) |
| goto nla_put_failure; |
| nd_key = nla_data(nla); |
| memcpy(nd_key->nd_target, &output->ipv6.nd.target, |
| sizeof(nd_key->nd_target)); |
| memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN); |
| memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN); |
| } |
| } |
| } |
| |
| unencap: |
| if (encap) |
| nla_nest_end(skb, encap); |
| |
| return 0; |
| |
| nla_put_failure: |
| return -EMSGSIZE; |
| } |
| |
| /* Initializes the flow module. |
| * Returns zero if successful or a negative error code. */ |
| int ovs_flow_init(void) |
| { |
| flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, |
| 0, NULL); |
| if (flow_cache == NULL) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /* Uninitializes the flow module. */ |
| void ovs_flow_exit(void) |
| { |
| kmem_cache_destroy(flow_cache); |
| } |
| |
| struct sw_flow_mask *ovs_sw_flow_mask_alloc(void) |
| { |
| struct sw_flow_mask *mask; |
| |
| mask = kmalloc(sizeof(*mask), GFP_KERNEL); |
| if (mask) |
| mask->ref_count = 0; |
| |
| return mask; |
| } |
| |
| void ovs_sw_flow_mask_add_ref(struct sw_flow_mask *mask) |
| { |
| mask->ref_count++; |
| } |
| |
| void ovs_sw_flow_mask_del_ref(struct sw_flow_mask *mask, bool deferred) |
| { |
| if (!mask) |
| return; |
| |
| BUG_ON(!mask->ref_count); |
| mask->ref_count--; |
| |
| if (!mask->ref_count) { |
| list_del_rcu(&mask->list); |
| if (deferred) |
| kfree_rcu(mask, rcu); |
| else |
| kfree(mask); |
| } |
| } |
| |
| static bool ovs_sw_flow_mask_equal(const struct sw_flow_mask *a, |
| const struct sw_flow_mask *b) |
| { |
| u8 *a_ = (u8 *)&a->key + a->range.start; |
| u8 *b_ = (u8 *)&b->key + b->range.start; |
| |
| return (a->range.end == b->range.end) |
| && (a->range.start == b->range.start) |
| && (memcmp(a_, b_, ovs_sw_flow_mask_actual_size(a)) == 0); |
| } |
| |
| struct sw_flow_mask *ovs_sw_flow_mask_find(const struct flow_table *tbl, |
| const struct sw_flow_mask *mask) |
| { |
| struct list_head *ml; |
| |
| list_for_each(ml, tbl->mask_list) { |
| struct sw_flow_mask *m; |
| m = container_of(ml, struct sw_flow_mask, list); |
| if (ovs_sw_flow_mask_equal(mask, m)) |
| return m; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * add a new mask into the mask list. |
| * The caller needs to make sure that 'mask' is not the same |
| * as any masks that are already on the list. |
| */ |
| void ovs_sw_flow_mask_insert(struct flow_table *tbl, struct sw_flow_mask *mask) |
| { |
| list_add_rcu(&mask->list, tbl->mask_list); |
| } |
| |
| /** |
| * Set 'range' fields in the mask to the value of 'val'. |
| */ |
| static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask, |
| struct sw_flow_key_range *range, u8 val) |
| { |
| u8 *m = (u8 *)&mask->key + range->start; |
| |
| mask->range = *range; |
| memset(m, val, ovs_sw_flow_mask_size_roundup(mask)); |
| } |