| /* |
| * Copyright (C) 2015 Broadcom |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| /** |
| * DOC: VC4 plane module |
| * |
| * Each DRM plane is a layer of pixels being scanned out by the HVS. |
| * |
| * At atomic modeset check time, we compute the HVS display element |
| * state that would be necessary for displaying the plane (giving us a |
| * chance to figure out if a plane configuration is invalid), then at |
| * atomic flush time the CRTC will ask us to write our element state |
| * into the region of the HVS that it has allocated for us. |
| */ |
| |
| #include <drm/drm_atomic.h> |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_fb_cma_helper.h> |
| #include <drm/drm_plane_helper.h> |
| |
| #include "vc4_drv.h" |
| #include "vc4_regs.h" |
| |
| enum vc4_scaling_mode { |
| VC4_SCALING_NONE, |
| VC4_SCALING_TPZ, |
| VC4_SCALING_PPF, |
| }; |
| |
| struct vc4_plane_state { |
| struct drm_plane_state base; |
| /* System memory copy of the display list for this element, computed |
| * at atomic_check time. |
| */ |
| u32 *dlist; |
| u32 dlist_size; /* Number of dwords allocated for the display list */ |
| u32 dlist_count; /* Number of used dwords in the display list. */ |
| |
| /* Offset in the dlist to various words, for pageflip or |
| * cursor updates. |
| */ |
| u32 pos0_offset; |
| u32 pos2_offset; |
| u32 ptr0_offset; |
| |
| /* Offset where the plane's dlist was last stored in the |
| * hardware at vc4_crtc_atomic_flush() time. |
| */ |
| u32 __iomem *hw_dlist; |
| |
| /* Clipped coordinates of the plane on the display. */ |
| int crtc_x, crtc_y, crtc_w, crtc_h; |
| /* Clipped area being scanned from in the FB. */ |
| u32 src_x, src_y; |
| |
| u32 src_w[2], src_h[2]; |
| |
| /* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */ |
| enum vc4_scaling_mode x_scaling[2], y_scaling[2]; |
| bool is_unity; |
| bool is_yuv; |
| |
| /* Offset to start scanning out from the start of the plane's |
| * BO. |
| */ |
| u32 offsets[3]; |
| |
| /* Our allocation in LBM for temporary storage during scaling. */ |
| struct drm_mm_node lbm; |
| }; |
| |
| static inline struct vc4_plane_state * |
| to_vc4_plane_state(struct drm_plane_state *state) |
| { |
| return (struct vc4_plane_state *)state; |
| } |
| |
| static const struct hvs_format { |
| u32 drm; /* DRM_FORMAT_* */ |
| u32 hvs; /* HVS_FORMAT_* */ |
| u32 pixel_order; |
| bool has_alpha; |
| bool flip_cbcr; |
| } hvs_formats[] = { |
| { |
| .drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, |
| .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false, |
| }, |
| { |
| .drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, |
| .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true, |
| }, |
| { |
| .drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, |
| .pixel_order = HVS_PIXEL_ORDER_ARGB, .has_alpha = true, |
| }, |
| { |
| .drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, |
| .pixel_order = HVS_PIXEL_ORDER_ARGB, .has_alpha = false, |
| }, |
| { |
| .drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565, |
| .pixel_order = HVS_PIXEL_ORDER_XRGB, .has_alpha = false, |
| }, |
| { |
| .drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565, |
| .pixel_order = HVS_PIXEL_ORDER_XBGR, .has_alpha = false, |
| }, |
| { |
| .drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551, |
| .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true, |
| }, |
| { |
| .drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551, |
| .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false, |
| }, |
| { |
| .drm = DRM_FORMAT_YUV422, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, |
| }, |
| { |
| .drm = DRM_FORMAT_YVU422, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, |
| .flip_cbcr = true, |
| }, |
| { |
| .drm = DRM_FORMAT_YUV420, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, |
| }, |
| { |
| .drm = DRM_FORMAT_YVU420, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, |
| .flip_cbcr = true, |
| }, |
| { |
| .drm = DRM_FORMAT_NV12, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE, |
| }, |
| { |
| .drm = DRM_FORMAT_NV16, |
| .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE, |
| }, |
| }; |
| |
| static const struct hvs_format *vc4_get_hvs_format(u32 drm_format) |
| { |
| unsigned i; |
| |
| for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) { |
| if (hvs_formats[i].drm == drm_format) |
| return &hvs_formats[i]; |
| } |
| |
| return NULL; |
| } |
| |
| static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst) |
| { |
| if (dst > src) |
| return VC4_SCALING_PPF; |
| else if (dst < src) |
| return VC4_SCALING_TPZ; |
| else |
| return VC4_SCALING_NONE; |
| } |
| |
| static bool plane_enabled(struct drm_plane_state *state) |
| { |
| return state->fb && state->crtc; |
| } |
| |
| static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane) |
| { |
| struct vc4_plane_state *vc4_state; |
| |
| if (WARN_ON(!plane->state)) |
| return NULL; |
| |
| vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL); |
| if (!vc4_state) |
| return NULL; |
| |
| memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm)); |
| |
| __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base); |
| |
| if (vc4_state->dlist) { |
| vc4_state->dlist = kmemdup(vc4_state->dlist, |
| vc4_state->dlist_count * 4, |
| GFP_KERNEL); |
| if (!vc4_state->dlist) { |
| kfree(vc4_state); |
| return NULL; |
| } |
| vc4_state->dlist_size = vc4_state->dlist_count; |
| } |
| |
| return &vc4_state->base; |
| } |
| |
| static void vc4_plane_destroy_state(struct drm_plane *plane, |
| struct drm_plane_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(plane->dev); |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| |
| if (vc4_state->lbm.allocated) { |
| unsigned long irqflags; |
| |
| spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); |
| drm_mm_remove_node(&vc4_state->lbm); |
| spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); |
| } |
| |
| kfree(vc4_state->dlist); |
| __drm_atomic_helper_plane_destroy_state(&vc4_state->base); |
| kfree(state); |
| } |
| |
| /* Called during init to allocate the plane's atomic state. */ |
| static void vc4_plane_reset(struct drm_plane *plane) |
| { |
| struct vc4_plane_state *vc4_state; |
| |
| WARN_ON(plane->state); |
| |
| vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); |
| if (!vc4_state) |
| return; |
| |
| plane->state = &vc4_state->base; |
| vc4_state->base.plane = plane; |
| } |
| |
| static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val) |
| { |
| if (vc4_state->dlist_count == vc4_state->dlist_size) { |
| u32 new_size = max(4u, vc4_state->dlist_count * 2); |
| u32 *new_dlist = kmalloc(new_size * 4, GFP_KERNEL); |
| |
| if (!new_dlist) |
| return; |
| memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4); |
| |
| kfree(vc4_state->dlist); |
| vc4_state->dlist = new_dlist; |
| vc4_state->dlist_size = new_size; |
| } |
| |
| vc4_state->dlist[vc4_state->dlist_count++] = val; |
| } |
| |
| /* Returns the scl0/scl1 field based on whether the dimensions need to |
| * be up/down/non-scaled. |
| * |
| * This is a replication of a table from the spec. |
| */ |
| static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| |
| switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) { |
| case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF: |
| return SCALER_CTL0_SCL_H_PPF_V_PPF; |
| case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF: |
| return SCALER_CTL0_SCL_H_TPZ_V_PPF; |
| case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ: |
| return SCALER_CTL0_SCL_H_PPF_V_TPZ; |
| case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ: |
| return SCALER_CTL0_SCL_H_TPZ_V_TPZ; |
| case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE: |
| return SCALER_CTL0_SCL_H_PPF_V_NONE; |
| case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF: |
| return SCALER_CTL0_SCL_H_NONE_V_PPF; |
| case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ: |
| return SCALER_CTL0_SCL_H_NONE_V_TPZ; |
| case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE: |
| return SCALER_CTL0_SCL_H_TPZ_V_NONE; |
| default: |
| case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE: |
| /* The unity case is independently handled by |
| * SCALER_CTL0_UNITY. |
| */ |
| return 0; |
| } |
| } |
| |
| static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state) |
| { |
| struct drm_plane *plane = state->plane; |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| struct drm_framebuffer *fb = state->fb; |
| struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); |
| u32 subpixel_src_mask = (1 << 16) - 1; |
| u32 format = fb->format->format; |
| int num_planes = fb->format->num_planes; |
| u32 h_subsample = 1; |
| u32 v_subsample = 1; |
| int i; |
| |
| for (i = 0; i < num_planes; i++) |
| vc4_state->offsets[i] = bo->paddr + fb->offsets[i]; |
| |
| /* We don't support subpixel source positioning for scaling. */ |
| if ((state->src_x & subpixel_src_mask) || |
| (state->src_y & subpixel_src_mask) || |
| (state->src_w & subpixel_src_mask) || |
| (state->src_h & subpixel_src_mask)) { |
| return -EINVAL; |
| } |
| |
| vc4_state->src_x = state->src_x >> 16; |
| vc4_state->src_y = state->src_y >> 16; |
| vc4_state->src_w[0] = state->src_w >> 16; |
| vc4_state->src_h[0] = state->src_h >> 16; |
| |
| vc4_state->crtc_x = state->crtc_x; |
| vc4_state->crtc_y = state->crtc_y; |
| vc4_state->crtc_w = state->crtc_w; |
| vc4_state->crtc_h = state->crtc_h; |
| |
| vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0], |
| vc4_state->crtc_w); |
| vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0], |
| vc4_state->crtc_h); |
| |
| vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE && |
| vc4_state->y_scaling[0] == VC4_SCALING_NONE); |
| |
| if (num_planes > 1) { |
| vc4_state->is_yuv = true; |
| |
| h_subsample = drm_format_horz_chroma_subsampling(format); |
| v_subsample = drm_format_vert_chroma_subsampling(format); |
| vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample; |
| vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample; |
| |
| vc4_state->x_scaling[1] = |
| vc4_get_scaling_mode(vc4_state->src_w[1], |
| vc4_state->crtc_w); |
| vc4_state->y_scaling[1] = |
| vc4_get_scaling_mode(vc4_state->src_h[1], |
| vc4_state->crtc_h); |
| |
| /* YUV conversion requires that horizontal scaling be enabled |
| * on the UV plane even if vc4_get_scaling_mode() returned |
| * VC4_SCALING_NONE (which can happen when the down-scaling |
| * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this |
| * case. |
| */ |
| if (vc4_state->x_scaling[1] == VC4_SCALING_NONE) |
| vc4_state->x_scaling[1] = VC4_SCALING_PPF; |
| } else { |
| vc4_state->is_yuv = false; |
| vc4_state->x_scaling[1] = VC4_SCALING_NONE; |
| vc4_state->y_scaling[1] = VC4_SCALING_NONE; |
| } |
| |
| /* No configuring scaling on the cursor plane, since it gets |
| non-vblank-synced updates, and scaling requires requires |
| LBM changes which have to be vblank-synced. |
| */ |
| if (plane->type == DRM_PLANE_TYPE_CURSOR && !vc4_state->is_unity) |
| return -EINVAL; |
| |
| /* Clamp the on-screen start x/y to 0. The hardware doesn't |
| * support negative y, and negative x wastes bandwidth. |
| */ |
| if (vc4_state->crtc_x < 0) { |
| for (i = 0; i < num_planes; i++) { |
| u32 cpp = fb->format->cpp[i]; |
| u32 subs = ((i == 0) ? 1 : h_subsample); |
| |
| vc4_state->offsets[i] += (cpp * |
| (-vc4_state->crtc_x) / subs); |
| } |
| vc4_state->src_w[0] += vc4_state->crtc_x; |
| vc4_state->src_w[1] += vc4_state->crtc_x / h_subsample; |
| vc4_state->crtc_x = 0; |
| } |
| |
| if (vc4_state->crtc_y < 0) { |
| for (i = 0; i < num_planes; i++) { |
| u32 subs = ((i == 0) ? 1 : v_subsample); |
| |
| vc4_state->offsets[i] += (fb->pitches[i] * |
| (-vc4_state->crtc_y) / subs); |
| } |
| vc4_state->src_h[0] += vc4_state->crtc_y; |
| vc4_state->src_h[1] += vc4_state->crtc_y / v_subsample; |
| vc4_state->crtc_y = 0; |
| } |
| |
| return 0; |
| } |
| |
| static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst) |
| { |
| u32 scale, recip; |
| |
| scale = (1 << 16) * src / dst; |
| |
| /* The specs note that while the reciprocal would be defined |
| * as (1<<32)/scale, ~0 is close enough. |
| */ |
| recip = ~0 / scale; |
| |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) | |
| VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE)); |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP)); |
| } |
| |
| static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst) |
| { |
| u32 scale = (1 << 16) * src / dst; |
| |
| vc4_dlist_write(vc4_state, |
| SCALER_PPF_AGC | |
| VC4_SET_FIELD(scale, SCALER_PPF_SCALE) | |
| VC4_SET_FIELD(0, SCALER_PPF_IPHASE)); |
| } |
| |
| static u32 vc4_lbm_size(struct drm_plane_state *state) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| /* This is the worst case number. One of the two sizes will |
| * be used depending on the scaling configuration. |
| */ |
| u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w); |
| u32 lbm; |
| |
| if (!vc4_state->is_yuv) { |
| if (vc4_state->is_unity) |
| return 0; |
| else if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ) |
| lbm = pix_per_line * 8; |
| else { |
| /* In special cases, this multiplier might be 12. */ |
| lbm = pix_per_line * 16; |
| } |
| } else { |
| /* There are cases for this going down to a multiplier |
| * of 2, but according to the firmware source, the |
| * table in the docs is somewhat wrong. |
| */ |
| lbm = pix_per_line * 16; |
| } |
| |
| lbm = roundup(lbm, 32); |
| |
| return lbm; |
| } |
| |
| static void vc4_write_scaling_parameters(struct drm_plane_state *state, |
| int channel) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| |
| /* Ch0 H-PPF Word 0: Scaling Parameters */ |
| if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) { |
| vc4_write_ppf(vc4_state, |
| vc4_state->src_w[channel], vc4_state->crtc_w); |
| } |
| |
| /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */ |
| if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) { |
| vc4_write_ppf(vc4_state, |
| vc4_state->src_h[channel], vc4_state->crtc_h); |
| vc4_dlist_write(vc4_state, 0xc0c0c0c0); |
| } |
| |
| /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */ |
| if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) { |
| vc4_write_tpz(vc4_state, |
| vc4_state->src_w[channel], vc4_state->crtc_w); |
| } |
| |
| /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */ |
| if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) { |
| vc4_write_tpz(vc4_state, |
| vc4_state->src_h[channel], vc4_state->crtc_h); |
| vc4_dlist_write(vc4_state, 0xc0c0c0c0); |
| } |
| } |
| |
| /* Writes out a full display list for an active plane to the plane's |
| * private dlist state. |
| */ |
| static int vc4_plane_mode_set(struct drm_plane *plane, |
| struct drm_plane_state *state) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(plane->dev); |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| struct drm_framebuffer *fb = state->fb; |
| u32 ctl0_offset = vc4_state->dlist_count; |
| const struct hvs_format *format = vc4_get_hvs_format(fb->format->format); |
| int num_planes = drm_format_num_planes(format->drm); |
| u32 scl0, scl1, pitch0; |
| u32 lbm_size, tiling; |
| unsigned long irqflags; |
| int ret, i; |
| |
| ret = vc4_plane_setup_clipping_and_scaling(state); |
| if (ret) |
| return ret; |
| |
| /* Allocate the LBM memory that the HVS will use for temporary |
| * storage due to our scaling/format conversion. |
| */ |
| lbm_size = vc4_lbm_size(state); |
| if (lbm_size) { |
| if (!vc4_state->lbm.allocated) { |
| spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); |
| ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm, |
| &vc4_state->lbm, |
| lbm_size, 32, 0, 0); |
| spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); |
| } else { |
| WARN_ON_ONCE(lbm_size != vc4_state->lbm.size); |
| } |
| } |
| |
| if (ret) |
| return ret; |
| |
| /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB |
| * and 4:4:4, scl1 should be set to scl0 so both channels of |
| * the scaler do the same thing. For YUV, the Y plane needs |
| * to be put in channel 1 and Cb/Cr in channel 0, so we swap |
| * the scl fields here. |
| */ |
| if (num_planes == 1) { |
| scl0 = vc4_get_scl_field(state, 0); |
| scl1 = scl0; |
| } else { |
| scl0 = vc4_get_scl_field(state, 1); |
| scl1 = vc4_get_scl_field(state, 0); |
| } |
| |
| switch (fb->modifier) { |
| case DRM_FORMAT_MOD_LINEAR: |
| tiling = SCALER_CTL0_TILING_LINEAR; |
| pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH); |
| break; |
| case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: |
| tiling = SCALER_CTL0_TILING_256B_OR_T; |
| |
| pitch0 = (VC4_SET_FIELD(0, SCALER_PITCH0_TILE_Y_OFFSET), |
| VC4_SET_FIELD(0, SCALER_PITCH0_TILE_WIDTH_L), |
| VC4_SET_FIELD((vc4_state->src_w[0] + 31) >> 5, |
| SCALER_PITCH0_TILE_WIDTH_R)); |
| break; |
| default: |
| DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx", |
| (long long)fb->modifier); |
| return -EINVAL; |
| } |
| |
| /* Control word */ |
| vc4_dlist_write(vc4_state, |
| SCALER_CTL0_VALID | |
| (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) | |
| (format->hvs << SCALER_CTL0_PIXEL_FORMAT_SHIFT) | |
| VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) | |
| (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) | |
| VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) | |
| VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1)); |
| |
| /* Position Word 0: Image Positions and Alpha Value */ |
| vc4_state->pos0_offset = vc4_state->dlist_count; |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(0xff, SCALER_POS0_FIXED_ALPHA) | |
| VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) | |
| VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y)); |
| |
| /* Position Word 1: Scaled Image Dimensions. */ |
| if (!vc4_state->is_unity) { |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(vc4_state->crtc_w, |
| SCALER_POS1_SCL_WIDTH) | |
| VC4_SET_FIELD(vc4_state->crtc_h, |
| SCALER_POS1_SCL_HEIGHT)); |
| } |
| |
| /* Position Word 2: Source Image Size, Alpha Mode */ |
| vc4_state->pos2_offset = vc4_state->dlist_count; |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(format->has_alpha ? |
| SCALER_POS2_ALPHA_MODE_PIPELINE : |
| SCALER_POS2_ALPHA_MODE_FIXED, |
| SCALER_POS2_ALPHA_MODE) | |
| VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) | |
| VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT)); |
| |
| /* Position Word 3: Context. Written by the HVS. */ |
| vc4_dlist_write(vc4_state, 0xc0c0c0c0); |
| |
| |
| /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers |
| * |
| * The pointers may be any byte address. |
| */ |
| vc4_state->ptr0_offset = vc4_state->dlist_count; |
| if (!format->flip_cbcr) { |
| for (i = 0; i < num_planes; i++) |
| vc4_dlist_write(vc4_state, vc4_state->offsets[i]); |
| } else { |
| WARN_ON_ONCE(num_planes != 3); |
| vc4_dlist_write(vc4_state, vc4_state->offsets[0]); |
| vc4_dlist_write(vc4_state, vc4_state->offsets[2]); |
| vc4_dlist_write(vc4_state, vc4_state->offsets[1]); |
| } |
| |
| /* Pointer Context Word 0/1/2: Written by the HVS */ |
| for (i = 0; i < num_planes; i++) |
| vc4_dlist_write(vc4_state, 0xc0c0c0c0); |
| |
| /* Pitch word 0 */ |
| vc4_dlist_write(vc4_state, pitch0); |
| |
| /* Pitch word 1/2 */ |
| for (i = 1; i < num_planes; i++) { |
| vc4_dlist_write(vc4_state, |
| VC4_SET_FIELD(fb->pitches[i], SCALER_SRC_PITCH)); |
| } |
| |
| /* Colorspace conversion words */ |
| if (vc4_state->is_yuv) { |
| vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5); |
| vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5); |
| vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5); |
| } |
| |
| if (vc4_state->x_scaling[0] != VC4_SCALING_NONE || |
| vc4_state->x_scaling[1] != VC4_SCALING_NONE || |
| vc4_state->y_scaling[0] != VC4_SCALING_NONE || |
| vc4_state->y_scaling[1] != VC4_SCALING_NONE) { |
| /* LBM Base Address. */ |
| if (vc4_state->y_scaling[0] != VC4_SCALING_NONE || |
| vc4_state->y_scaling[1] != VC4_SCALING_NONE) { |
| vc4_dlist_write(vc4_state, vc4_state->lbm.start); |
| } |
| |
| if (num_planes > 1) { |
| /* Emit Cb/Cr as channel 0 and Y as channel |
| * 1. This matches how we set up scl0/scl1 |
| * above. |
| */ |
| vc4_write_scaling_parameters(state, 1); |
| } |
| vc4_write_scaling_parameters(state, 0); |
| |
| /* If any PPF setup was done, then all the kernel |
| * pointers get uploaded. |
| */ |
| if (vc4_state->x_scaling[0] == VC4_SCALING_PPF || |
| vc4_state->y_scaling[0] == VC4_SCALING_PPF || |
| vc4_state->x_scaling[1] == VC4_SCALING_PPF || |
| vc4_state->y_scaling[1] == VC4_SCALING_PPF) { |
| u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start, |
| SCALER_PPF_KERNEL_OFFSET); |
| |
| /* HPPF plane 0 */ |
| vc4_dlist_write(vc4_state, kernel); |
| /* VPPF plane 0 */ |
| vc4_dlist_write(vc4_state, kernel); |
| /* HPPF plane 1 */ |
| vc4_dlist_write(vc4_state, kernel); |
| /* VPPF plane 1 */ |
| vc4_dlist_write(vc4_state, kernel); |
| } |
| } |
| |
| vc4_state->dlist[ctl0_offset] |= |
| VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE); |
| |
| return 0; |
| } |
| |
| /* If a modeset involves changing the setup of a plane, the atomic |
| * infrastructure will call this to validate a proposed plane setup. |
| * However, if a plane isn't getting updated, this (and the |
| * corresponding vc4_plane_atomic_update) won't get called. Thus, we |
| * compute the dlist here and have all active plane dlists get updated |
| * in the CRTC's flush. |
| */ |
| static int vc4_plane_atomic_check(struct drm_plane *plane, |
| struct drm_plane_state *state) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); |
| |
| vc4_state->dlist_count = 0; |
| |
| if (plane_enabled(state)) |
| return vc4_plane_mode_set(plane, state); |
| else |
| return 0; |
| } |
| |
| static void vc4_plane_atomic_update(struct drm_plane *plane, |
| struct drm_plane_state *old_state) |
| { |
| /* No contents here. Since we don't know where in the CRTC's |
| * dlist we should be stored, our dlist is uploaded to the |
| * hardware with vc4_plane_write_dlist() at CRTC atomic_flush |
| * time. |
| */ |
| } |
| |
| u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); |
| int i; |
| |
| vc4_state->hw_dlist = dlist; |
| |
| /* Can't memcpy_toio() because it needs to be 32-bit writes. */ |
| for (i = 0; i < vc4_state->dlist_count; i++) |
| writel(vc4_state->dlist[i], &dlist[i]); |
| |
| return vc4_state->dlist_count; |
| } |
| |
| u32 vc4_plane_dlist_size(const struct drm_plane_state *state) |
| { |
| const struct vc4_plane_state *vc4_state = |
| container_of(state, typeof(*vc4_state), base); |
| |
| return vc4_state->dlist_count; |
| } |
| |
| /* Updates the plane to immediately (well, once the FIFO needs |
| * refilling) scan out from at a new framebuffer. |
| */ |
| void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb) |
| { |
| struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); |
| struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); |
| uint32_t addr; |
| |
| /* We're skipping the address adjustment for negative origin, |
| * because this is only called on the primary plane. |
| */ |
| WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0); |
| addr = bo->paddr + fb->offsets[0]; |
| |
| /* Write the new address into the hardware immediately. The |
| * scanout will start from this address as soon as the FIFO |
| * needs to refill with pixels. |
| */ |
| writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]); |
| |
| /* Also update the CPU-side dlist copy, so that any later |
| * atomic updates that don't do a new modeset on our plane |
| * also use our updated address. |
| */ |
| vc4_state->dlist[vc4_state->ptr0_offset] = addr; |
| } |
| |
| static int vc4_prepare_fb(struct drm_plane *plane, |
| struct drm_plane_state *state) |
| { |
| struct vc4_bo *bo; |
| struct dma_fence *fence; |
| |
| if ((plane->state->fb == state->fb) || !state->fb) |
| return 0; |
| |
| bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base); |
| fence = reservation_object_get_excl_rcu(bo->resv); |
| drm_atomic_set_fence_for_plane(state, fence); |
| |
| return 0; |
| } |
| |
| static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = { |
| .atomic_check = vc4_plane_atomic_check, |
| .atomic_update = vc4_plane_atomic_update, |
| .prepare_fb = vc4_prepare_fb, |
| }; |
| |
| static void vc4_plane_destroy(struct drm_plane *plane) |
| { |
| drm_plane_helper_disable(plane); |
| drm_plane_cleanup(plane); |
| } |
| |
| /* Implements immediate (non-vblank-synced) updates of the cursor |
| * position, or falls back to the atomic helper otherwise. |
| */ |
| static int |
| vc4_update_plane(struct drm_plane *plane, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| int crtc_x, int crtc_y, |
| unsigned int crtc_w, unsigned int crtc_h, |
| uint32_t src_x, uint32_t src_y, |
| uint32_t src_w, uint32_t src_h, |
| struct drm_modeset_acquire_ctx *ctx) |
| { |
| struct drm_plane_state *plane_state; |
| struct vc4_plane_state *vc4_state; |
| |
| if (plane != crtc->cursor) |
| goto out; |
| |
| plane_state = plane->state; |
| vc4_state = to_vc4_plane_state(plane_state); |
| |
| if (!plane_state) |
| goto out; |
| |
| /* No configuring new scaling in the fast path. */ |
| if (crtc_w != plane_state->crtc_w || |
| crtc_h != plane_state->crtc_h || |
| src_w != plane_state->src_w || |
| src_h != plane_state->src_h) { |
| goto out; |
| } |
| |
| if (fb != plane_state->fb) { |
| drm_atomic_set_fb_for_plane(plane->state, fb); |
| vc4_plane_async_set_fb(plane, fb); |
| } |
| |
| /* Set the cursor's position on the screen. This is the |
| * expected change from the drm_mode_cursor_universal() |
| * helper. |
| */ |
| plane_state->crtc_x = crtc_x; |
| plane_state->crtc_y = crtc_y; |
| |
| /* Allow changing the start position within the cursor BO, if |
| * that matters. |
| */ |
| plane_state->src_x = src_x; |
| plane_state->src_y = src_y; |
| |
| /* Update the display list based on the new crtc_x/y. */ |
| vc4_plane_atomic_check(plane, plane_state); |
| |
| /* Note that we can't just call vc4_plane_write_dlist() |
| * because that would smash the context data that the HVS is |
| * currently using. |
| */ |
| writel(vc4_state->dlist[vc4_state->pos0_offset], |
| &vc4_state->hw_dlist[vc4_state->pos0_offset]); |
| writel(vc4_state->dlist[vc4_state->pos2_offset], |
| &vc4_state->hw_dlist[vc4_state->pos2_offset]); |
| writel(vc4_state->dlist[vc4_state->ptr0_offset], |
| &vc4_state->hw_dlist[vc4_state->ptr0_offset]); |
| |
| return 0; |
| |
| out: |
| return drm_atomic_helper_update_plane(plane, crtc, fb, |
| crtc_x, crtc_y, |
| crtc_w, crtc_h, |
| src_x, src_y, |
| src_w, src_h, |
| ctx); |
| } |
| |
| static const struct drm_plane_funcs vc4_plane_funcs = { |
| .update_plane = vc4_update_plane, |
| .disable_plane = drm_atomic_helper_disable_plane, |
| .destroy = vc4_plane_destroy, |
| .set_property = NULL, |
| .reset = vc4_plane_reset, |
| .atomic_duplicate_state = vc4_plane_duplicate_state, |
| .atomic_destroy_state = vc4_plane_destroy_state, |
| }; |
| |
| struct drm_plane *vc4_plane_init(struct drm_device *dev, |
| enum drm_plane_type type) |
| { |
| struct drm_plane *plane = NULL; |
| struct vc4_plane *vc4_plane; |
| u32 formats[ARRAY_SIZE(hvs_formats)]; |
| u32 num_formats = 0; |
| int ret = 0; |
| unsigned i; |
| |
| vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane), |
| GFP_KERNEL); |
| if (!vc4_plane) |
| return ERR_PTR(-ENOMEM); |
| |
| for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) { |
| /* Don't allow YUV in cursor planes, since that means |
| * tuning on the scaler, which we don't allow for the |
| * cursor. |
| */ |
| if (type != DRM_PLANE_TYPE_CURSOR || |
| hvs_formats[i].hvs < HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE) { |
| formats[num_formats++] = hvs_formats[i].drm; |
| } |
| } |
| plane = &vc4_plane->base; |
| ret = drm_universal_plane_init(dev, plane, 0, |
| &vc4_plane_funcs, |
| formats, num_formats, |
| NULL, type, NULL); |
| |
| drm_plane_helper_add(plane, &vc4_plane_helper_funcs); |
| |
| return plane; |
| } |