| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 1994 Linus Torvalds |
| * |
| * Cyrix stuff, June 1998 by: |
| * - Rafael R. Reilova (moved everything from head.S), |
| * <rreilova@ececs.uc.edu> |
| * - Channing Corn (tests & fixes), |
| * - Andrew D. Balsa (code cleanup). |
| */ |
| #include <linux/init.h> |
| #include <linux/cpu.h> |
| #include <linux/module.h> |
| #include <linux/nospec.h> |
| #include <linux/prctl.h> |
| #include <linux/sched/smt.h> |
| |
| #include <asm/spec-ctrl.h> |
| #include <asm/cmdline.h> |
| #include <asm/bugs.h> |
| #include <asm/processor.h> |
| #include <asm/processor-flags.h> |
| #include <asm/fpu/internal.h> |
| #include <asm/msr.h> |
| #include <asm/vmx.h> |
| #include <asm/paravirt.h> |
| #include <asm/hypervisor.h> |
| #include <asm/pgtable.h> |
| #include <asm/intel-family.h> |
| #include <asm/e820/api.h> |
| #include <linux/bpf.h> |
| |
| #include "cpu.h" |
| |
| static void __init spectre_v1_select_mitigation(void); |
| static void __init spectre_v2_select_mitigation(void); |
| static void __init retbleed_select_mitigation(void); |
| static void __init spectre_v2_user_select_mitigation(void); |
| static void __init ssb_select_mitigation(void); |
| static void __init l1tf_select_mitigation(void); |
| static void __init mds_select_mitigation(void); |
| static void __init md_clear_update_mitigation(void); |
| static void __init md_clear_select_mitigation(void); |
| static void __init taa_select_mitigation(void); |
| static void __init mmio_select_mitigation(void); |
| static void __init srbds_select_mitigation(void); |
| static void __init gds_select_mitigation(void); |
| |
| /* The base value of the SPEC_CTRL MSR without task-specific bits set */ |
| u64 x86_spec_ctrl_base; |
| EXPORT_SYMBOL_GPL(x86_spec_ctrl_base); |
| |
| /* The current value of the SPEC_CTRL MSR with task-specific bits set */ |
| DEFINE_PER_CPU(u64, x86_spec_ctrl_current); |
| EXPORT_SYMBOL_GPL(x86_spec_ctrl_current); |
| |
| static DEFINE_MUTEX(spec_ctrl_mutex); |
| |
| /* Update SPEC_CTRL MSR and its cached copy unconditionally */ |
| static void update_spec_ctrl(u64 val) |
| { |
| this_cpu_write(x86_spec_ctrl_current, val); |
| wrmsrl(MSR_IA32_SPEC_CTRL, val); |
| } |
| |
| /* |
| * Keep track of the SPEC_CTRL MSR value for the current task, which may differ |
| * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update(). |
| */ |
| void update_spec_ctrl_cond(u64 val) |
| { |
| if (this_cpu_read(x86_spec_ctrl_current) == val) |
| return; |
| |
| this_cpu_write(x86_spec_ctrl_current, val); |
| |
| /* |
| * When KERNEL_IBRS this MSR is written on return-to-user, unless |
| * forced the update can be delayed until that time. |
| */ |
| if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS)) |
| wrmsrl(MSR_IA32_SPEC_CTRL, val); |
| } |
| |
| u64 spec_ctrl_current(void) |
| { |
| return this_cpu_read(x86_spec_ctrl_current); |
| } |
| EXPORT_SYMBOL_GPL(spec_ctrl_current); |
| |
| /* |
| * AMD specific MSR info for Speculative Store Bypass control. |
| * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu(). |
| */ |
| u64 __ro_after_init x86_amd_ls_cfg_base; |
| u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask; |
| |
| /* Control conditional STIBP in switch_to() */ |
| DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp); |
| /* Control conditional IBPB in switch_mm() */ |
| DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); |
| /* Control unconditional IBPB in switch_mm() */ |
| DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb); |
| |
| /* Control MDS CPU buffer clear before returning to user space */ |
| DEFINE_STATIC_KEY_FALSE(mds_user_clear); |
| EXPORT_SYMBOL_GPL(mds_user_clear); |
| /* Control MDS CPU buffer clear before idling (halt, mwait) */ |
| DEFINE_STATIC_KEY_FALSE(mds_idle_clear); |
| EXPORT_SYMBOL_GPL(mds_idle_clear); |
| |
| /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */ |
| DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear); |
| EXPORT_SYMBOL_GPL(mmio_stale_data_clear); |
| |
| void __init cpu_select_mitigations(void) |
| { |
| /* |
| * Read the SPEC_CTRL MSR to account for reserved bits which may |
| * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD |
| * init code as it is not enumerated and depends on the family. |
| */ |
| if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) { |
| rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base); |
| |
| /* |
| * Previously running kernel (kexec), may have some controls |
| * turned ON. Clear them and let the mitigations setup below |
| * rediscover them based on configuration. |
| */ |
| x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK; |
| } |
| |
| /* Select the proper CPU mitigations before patching alternatives: */ |
| spectre_v1_select_mitigation(); |
| spectre_v2_select_mitigation(); |
| /* |
| * retbleed_select_mitigation() relies on the state set by |
| * spectre_v2_select_mitigation(); specifically it wants to know about |
| * spectre_v2=ibrs. |
| */ |
| retbleed_select_mitigation(); |
| /* |
| * spectre_v2_user_select_mitigation() relies on the state set by |
| * retbleed_select_mitigation(); specifically the STIBP selection is |
| * forced for UNRET. |
| */ |
| spectre_v2_user_select_mitigation(); |
| ssb_select_mitigation(); |
| l1tf_select_mitigation(); |
| md_clear_select_mitigation(); |
| srbds_select_mitigation(); |
| gds_select_mitigation(); |
| } |
| |
| /* |
| * NOTE: For VMX, this function is not called in the vmexit path. |
| * It uses vmx_spec_ctrl_restore_host() instead. |
| */ |
| void |
| x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest) |
| { |
| u64 msrval, guestval = guest_spec_ctrl, hostval = spec_ctrl_current(); |
| struct thread_info *ti = current_thread_info(); |
| |
| if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) { |
| if (hostval != guestval) { |
| msrval = setguest ? guestval : hostval; |
| wrmsrl(MSR_IA32_SPEC_CTRL, msrval); |
| } |
| } |
| |
| /* |
| * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update |
| * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported. |
| */ |
| if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) && |
| !static_cpu_has(X86_FEATURE_VIRT_SSBD)) |
| return; |
| |
| /* |
| * If the host has SSBD mitigation enabled, force it in the host's |
| * virtual MSR value. If its not permanently enabled, evaluate |
| * current's TIF_SSBD thread flag. |
| */ |
| if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE)) |
| hostval = SPEC_CTRL_SSBD; |
| else |
| hostval = ssbd_tif_to_spec_ctrl(ti->flags); |
| |
| /* Sanitize the guest value */ |
| guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD; |
| |
| if (hostval != guestval) { |
| unsigned long tif; |
| |
| tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) : |
| ssbd_spec_ctrl_to_tif(hostval); |
| |
| speculation_ctrl_update(tif); |
| } |
| } |
| EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl); |
| |
| static void x86_amd_ssb_disable(void) |
| { |
| u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask; |
| |
| if (boot_cpu_has(X86_FEATURE_VIRT_SSBD)) |
| wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD); |
| else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD)) |
| wrmsrl(MSR_AMD64_LS_CFG, msrval); |
| } |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "MDS: " fmt |
| |
| /* Default mitigation for MDS-affected CPUs */ |
| static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL; |
| static bool mds_nosmt __ro_after_init = false; |
| |
| static const char * const mds_strings[] = { |
| [MDS_MITIGATION_OFF] = "Vulnerable", |
| [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers", |
| [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode", |
| }; |
| |
| static void __init mds_select_mitigation(void) |
| { |
| if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) { |
| mds_mitigation = MDS_MITIGATION_OFF; |
| return; |
| } |
| |
| if (mds_mitigation == MDS_MITIGATION_FULL) { |
| if (!boot_cpu_has(X86_FEATURE_MD_CLEAR)) |
| mds_mitigation = MDS_MITIGATION_VMWERV; |
| |
| static_branch_enable(&mds_user_clear); |
| |
| if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) && |
| (mds_nosmt || cpu_mitigations_auto_nosmt())) |
| cpu_smt_disable(false); |
| } |
| } |
| |
| static int __init mds_cmdline(char *str) |
| { |
| if (!boot_cpu_has_bug(X86_BUG_MDS)) |
| return 0; |
| |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "off")) |
| mds_mitigation = MDS_MITIGATION_OFF; |
| else if (!strcmp(str, "full")) |
| mds_mitigation = MDS_MITIGATION_FULL; |
| else if (!strcmp(str, "full,nosmt")) { |
| mds_mitigation = MDS_MITIGATION_FULL; |
| mds_nosmt = true; |
| } |
| |
| return 0; |
| } |
| early_param("mds", mds_cmdline); |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "TAA: " fmt |
| |
| /* Default mitigation for TAA-affected CPUs */ |
| static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW; |
| static bool taa_nosmt __ro_after_init; |
| |
| static const char * const taa_strings[] = { |
| [TAA_MITIGATION_OFF] = "Vulnerable", |
| [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", |
| [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", |
| [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled", |
| }; |
| |
| static void __init taa_select_mitigation(void) |
| { |
| u64 ia32_cap; |
| |
| if (!boot_cpu_has_bug(X86_BUG_TAA)) { |
| taa_mitigation = TAA_MITIGATION_OFF; |
| return; |
| } |
| |
| /* TSX previously disabled by tsx=off */ |
| if (!boot_cpu_has(X86_FEATURE_RTM)) { |
| taa_mitigation = TAA_MITIGATION_TSX_DISABLED; |
| return; |
| } |
| |
| if (cpu_mitigations_off()) { |
| taa_mitigation = TAA_MITIGATION_OFF; |
| return; |
| } |
| |
| /* |
| * TAA mitigation via VERW is turned off if both |
| * tsx_async_abort=off and mds=off are specified. |
| */ |
| if (taa_mitigation == TAA_MITIGATION_OFF && |
| mds_mitigation == MDS_MITIGATION_OFF) |
| return; |
| |
| if (boot_cpu_has(X86_FEATURE_MD_CLEAR)) |
| taa_mitigation = TAA_MITIGATION_VERW; |
| else |
| taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; |
| |
| /* |
| * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1. |
| * A microcode update fixes this behavior to clear CPU buffers. It also |
| * adds support for MSR_IA32_TSX_CTRL which is enumerated by the |
| * ARCH_CAP_TSX_CTRL_MSR bit. |
| * |
| * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode |
| * update is required. |
| */ |
| ia32_cap = x86_read_arch_cap_msr(); |
| if ( (ia32_cap & ARCH_CAP_MDS_NO) && |
| !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR)) |
| taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; |
| |
| /* |
| * TSX is enabled, select alternate mitigation for TAA which is |
| * the same as MDS. Enable MDS static branch to clear CPU buffers. |
| * |
| * For guests that can't determine whether the correct microcode is |
| * present on host, enable the mitigation for UCODE_NEEDED as well. |
| */ |
| static_branch_enable(&mds_user_clear); |
| |
| if (taa_nosmt || cpu_mitigations_auto_nosmt()) |
| cpu_smt_disable(false); |
| } |
| |
| static int __init tsx_async_abort_parse_cmdline(char *str) |
| { |
| if (!boot_cpu_has_bug(X86_BUG_TAA)) |
| return 0; |
| |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "off")) { |
| taa_mitigation = TAA_MITIGATION_OFF; |
| } else if (!strcmp(str, "full")) { |
| taa_mitigation = TAA_MITIGATION_VERW; |
| } else if (!strcmp(str, "full,nosmt")) { |
| taa_mitigation = TAA_MITIGATION_VERW; |
| taa_nosmt = true; |
| } |
| |
| return 0; |
| } |
| early_param("tsx_async_abort", tsx_async_abort_parse_cmdline); |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "MMIO Stale Data: " fmt |
| |
| enum mmio_mitigations { |
| MMIO_MITIGATION_OFF, |
| MMIO_MITIGATION_UCODE_NEEDED, |
| MMIO_MITIGATION_VERW, |
| }; |
| |
| /* Default mitigation for Processor MMIO Stale Data vulnerabilities */ |
| static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW; |
| static bool mmio_nosmt __ro_after_init = false; |
| |
| static const char * const mmio_strings[] = { |
| [MMIO_MITIGATION_OFF] = "Vulnerable", |
| [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", |
| [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", |
| }; |
| |
| static void __init mmio_select_mitigation(void) |
| { |
| u64 ia32_cap; |
| |
| if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) || |
| boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) || |
| cpu_mitigations_off()) { |
| mmio_mitigation = MMIO_MITIGATION_OFF; |
| return; |
| } |
| |
| if (mmio_mitigation == MMIO_MITIGATION_OFF) |
| return; |
| |
| ia32_cap = x86_read_arch_cap_msr(); |
| |
| /* |
| * Enable CPU buffer clear mitigation for host and VMM, if also affected |
| * by MDS or TAA. Otherwise, enable mitigation for VMM only. |
| */ |
| if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) && |
| boot_cpu_has(X86_FEATURE_RTM))) |
| static_branch_enable(&mds_user_clear); |
| else |
| static_branch_enable(&mmio_stale_data_clear); |
| |
| /* |
| * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can |
| * be propagated to uncore buffers, clearing the Fill buffers on idle |
| * is required irrespective of SMT state. |
| */ |
| if (!(ia32_cap & ARCH_CAP_FBSDP_NO)) |
| static_branch_enable(&mds_idle_clear); |
| |
| /* |
| * Check if the system has the right microcode. |
| * |
| * CPU Fill buffer clear mitigation is enumerated by either an explicit |
| * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS |
| * affected systems. |
| */ |
| if ((ia32_cap & ARCH_CAP_FB_CLEAR) || |
| (boot_cpu_has(X86_FEATURE_MD_CLEAR) && |
| boot_cpu_has(X86_FEATURE_FLUSH_L1D) && |
| !(ia32_cap & ARCH_CAP_MDS_NO))) |
| mmio_mitigation = MMIO_MITIGATION_VERW; |
| else |
| mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED; |
| |
| if (mmio_nosmt || cpu_mitigations_auto_nosmt()) |
| cpu_smt_disable(false); |
| } |
| |
| static int __init mmio_stale_data_parse_cmdline(char *str) |
| { |
| if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) |
| return 0; |
| |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "off")) { |
| mmio_mitigation = MMIO_MITIGATION_OFF; |
| } else if (!strcmp(str, "full")) { |
| mmio_mitigation = MMIO_MITIGATION_VERW; |
| } else if (!strcmp(str, "full,nosmt")) { |
| mmio_mitigation = MMIO_MITIGATION_VERW; |
| mmio_nosmt = true; |
| } |
| |
| return 0; |
| } |
| early_param("mmio_stale_data", mmio_stale_data_parse_cmdline); |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "" fmt |
| |
| static void __init md_clear_update_mitigation(void) |
| { |
| if (cpu_mitigations_off()) |
| return; |
| |
| if (!static_key_enabled(&mds_user_clear)) |
| goto out; |
| |
| /* |
| * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data |
| * mitigation, if necessary. |
| */ |
| if (mds_mitigation == MDS_MITIGATION_OFF && |
| boot_cpu_has_bug(X86_BUG_MDS)) { |
| mds_mitigation = MDS_MITIGATION_FULL; |
| mds_select_mitigation(); |
| } |
| if (taa_mitigation == TAA_MITIGATION_OFF && |
| boot_cpu_has_bug(X86_BUG_TAA)) { |
| taa_mitigation = TAA_MITIGATION_VERW; |
| taa_select_mitigation(); |
| } |
| if (mmio_mitigation == MMIO_MITIGATION_OFF && |
| boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) { |
| mmio_mitigation = MMIO_MITIGATION_VERW; |
| mmio_select_mitigation(); |
| } |
| out: |
| if (boot_cpu_has_bug(X86_BUG_MDS)) |
| pr_info("MDS: %s\n", mds_strings[mds_mitigation]); |
| if (boot_cpu_has_bug(X86_BUG_TAA)) |
| pr_info("TAA: %s\n", taa_strings[taa_mitigation]); |
| if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) |
| pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]); |
| else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) |
| pr_info("MMIO Stale Data: Unknown: No mitigations\n"); |
| } |
| |
| static void __init md_clear_select_mitigation(void) |
| { |
| mds_select_mitigation(); |
| taa_select_mitigation(); |
| mmio_select_mitigation(); |
| |
| /* |
| * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update |
| * and print their mitigation after MDS, TAA and MMIO Stale Data |
| * mitigation selection is done. |
| */ |
| md_clear_update_mitigation(); |
| } |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "SRBDS: " fmt |
| |
| enum srbds_mitigations { |
| SRBDS_MITIGATION_OFF, |
| SRBDS_MITIGATION_UCODE_NEEDED, |
| SRBDS_MITIGATION_FULL, |
| SRBDS_MITIGATION_TSX_OFF, |
| SRBDS_MITIGATION_HYPERVISOR, |
| }; |
| |
| static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL; |
| |
| static const char * const srbds_strings[] = { |
| [SRBDS_MITIGATION_OFF] = "Vulnerable", |
| [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", |
| [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode", |
| [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled", |
| [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", |
| }; |
| |
| static bool srbds_off; |
| |
| void update_srbds_msr(void) |
| { |
| u64 mcu_ctrl; |
| |
| if (!boot_cpu_has_bug(X86_BUG_SRBDS)) |
| return; |
| |
| if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) |
| return; |
| |
| if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED) |
| return; |
| |
| rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); |
| |
| switch (srbds_mitigation) { |
| case SRBDS_MITIGATION_OFF: |
| case SRBDS_MITIGATION_TSX_OFF: |
| mcu_ctrl |= RNGDS_MITG_DIS; |
| break; |
| case SRBDS_MITIGATION_FULL: |
| mcu_ctrl &= ~RNGDS_MITG_DIS; |
| break; |
| default: |
| break; |
| } |
| |
| wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); |
| } |
| |
| static void __init srbds_select_mitigation(void) |
| { |
| u64 ia32_cap; |
| |
| if (!boot_cpu_has_bug(X86_BUG_SRBDS)) |
| return; |
| |
| /* |
| * Check to see if this is one of the MDS_NO systems supporting TSX that |
| * are only exposed to SRBDS when TSX is enabled or when CPU is affected |
| * by Processor MMIO Stale Data vulnerability. |
| */ |
| ia32_cap = x86_read_arch_cap_msr(); |
| if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) && |
| !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) |
| srbds_mitigation = SRBDS_MITIGATION_TSX_OFF; |
| else if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) |
| srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR; |
| else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) |
| srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED; |
| else if (cpu_mitigations_off() || srbds_off) |
| srbds_mitigation = SRBDS_MITIGATION_OFF; |
| |
| update_srbds_msr(); |
| pr_info("%s\n", srbds_strings[srbds_mitigation]); |
| } |
| |
| static int __init srbds_parse_cmdline(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (!boot_cpu_has_bug(X86_BUG_SRBDS)) |
| return 0; |
| |
| srbds_off = !strcmp(str, "off"); |
| return 0; |
| } |
| early_param("srbds", srbds_parse_cmdline); |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "GDS: " fmt |
| |
| enum gds_mitigations { |
| GDS_MITIGATION_OFF, |
| GDS_MITIGATION_UCODE_NEEDED, |
| GDS_MITIGATION_FORCE, |
| GDS_MITIGATION_FULL, |
| GDS_MITIGATION_FULL_LOCKED, |
| GDS_MITIGATION_HYPERVISOR, |
| }; |
| |
| #if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION) |
| static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE; |
| #else |
| static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL; |
| #endif |
| |
| static const char * const gds_strings[] = { |
| [GDS_MITIGATION_OFF] = "Vulnerable", |
| [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", |
| [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode", |
| [GDS_MITIGATION_FULL] = "Mitigation: Microcode", |
| [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)", |
| [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", |
| }; |
| |
| bool gds_ucode_mitigated(void) |
| { |
| return (gds_mitigation == GDS_MITIGATION_FULL || |
| gds_mitigation == GDS_MITIGATION_FULL_LOCKED); |
| } |
| EXPORT_SYMBOL_GPL(gds_ucode_mitigated); |
| |
| void update_gds_msr(void) |
| { |
| u64 mcu_ctrl_after; |
| u64 mcu_ctrl; |
| |
| switch (gds_mitigation) { |
| case GDS_MITIGATION_OFF: |
| rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); |
| mcu_ctrl |= GDS_MITG_DIS; |
| break; |
| case GDS_MITIGATION_FULL_LOCKED: |
| /* |
| * The LOCKED state comes from the boot CPU. APs might not have |
| * the same state. Make sure the mitigation is enabled on all |
| * CPUs. |
| */ |
| case GDS_MITIGATION_FULL: |
| rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); |
| mcu_ctrl &= ~GDS_MITG_DIS; |
| break; |
| case GDS_MITIGATION_FORCE: |
| case GDS_MITIGATION_UCODE_NEEDED: |
| case GDS_MITIGATION_HYPERVISOR: |
| return; |
| }; |
| |
| wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); |
| |
| /* |
| * Check to make sure that the WRMSR value was not ignored. Writes to |
| * GDS_MITG_DIS will be ignored if this processor is locked but the boot |
| * processor was not. |
| */ |
| rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after); |
| WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after); |
| } |
| |
| static void __init gds_select_mitigation(void) |
| { |
| u64 mcu_ctrl; |
| |
| if (!boot_cpu_has_bug(X86_BUG_GDS)) |
| return; |
| |
| if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { |
| gds_mitigation = GDS_MITIGATION_HYPERVISOR; |
| goto out; |
| } |
| |
| if (cpu_mitigations_off()) |
| gds_mitigation = GDS_MITIGATION_OFF; |
| /* Will verify below that mitigation _can_ be disabled */ |
| |
| /* No microcode */ |
| if (!(x86_read_arch_cap_msr() & ARCH_CAP_GDS_CTRL)) { |
| if (gds_mitigation == GDS_MITIGATION_FORCE) { |
| /* |
| * This only needs to be done on the boot CPU so do it |
| * here rather than in update_gds_msr() |
| */ |
| setup_clear_cpu_cap(X86_FEATURE_AVX); |
| pr_warn("Microcode update needed! Disabling AVX as mitigation.\n"); |
| } else { |
| gds_mitigation = GDS_MITIGATION_UCODE_NEEDED; |
| } |
| goto out; |
| } |
| |
| /* Microcode has mitigation, use it */ |
| if (gds_mitigation == GDS_MITIGATION_FORCE) |
| gds_mitigation = GDS_MITIGATION_FULL; |
| |
| rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); |
| if (mcu_ctrl & GDS_MITG_LOCKED) { |
| if (gds_mitigation == GDS_MITIGATION_OFF) |
| pr_warn("Mitigation locked. Disable failed.\n"); |
| |
| /* |
| * The mitigation is selected from the boot CPU. All other CPUs |
| * _should_ have the same state. If the boot CPU isn't locked |
| * but others are then update_gds_msr() will WARN() of the state |
| * mismatch. If the boot CPU is locked update_gds_msr() will |
| * ensure the other CPUs have the mitigation enabled. |
| */ |
| gds_mitigation = GDS_MITIGATION_FULL_LOCKED; |
| } |
| |
| update_gds_msr(); |
| out: |
| pr_info("%s\n", gds_strings[gds_mitigation]); |
| } |
| |
| static int __init gds_parse_cmdline(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (!boot_cpu_has_bug(X86_BUG_GDS)) |
| return 0; |
| |
| if (!strcmp(str, "off")) |
| gds_mitigation = GDS_MITIGATION_OFF; |
| else if (!strcmp(str, "force")) |
| gds_mitigation = GDS_MITIGATION_FORCE; |
| |
| return 0; |
| } |
| early_param("gather_data_sampling", gds_parse_cmdline); |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "Spectre V1 : " fmt |
| |
| enum spectre_v1_mitigation { |
| SPECTRE_V1_MITIGATION_NONE, |
| SPECTRE_V1_MITIGATION_AUTO, |
| }; |
| |
| static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init = |
| SPECTRE_V1_MITIGATION_AUTO; |
| |
| static const char * const spectre_v1_strings[] = { |
| [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers", |
| [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization", |
| }; |
| |
| /* |
| * Does SMAP provide full mitigation against speculative kernel access to |
| * userspace? |
| */ |
| static bool smap_works_speculatively(void) |
| { |
| if (!boot_cpu_has(X86_FEATURE_SMAP)) |
| return false; |
| |
| /* |
| * On CPUs which are vulnerable to Meltdown, SMAP does not |
| * prevent speculative access to user data in the L1 cache. |
| * Consider SMAP to be non-functional as a mitigation on these |
| * CPUs. |
| */ |
| if (boot_cpu_has(X86_BUG_CPU_MELTDOWN)) |
| return false; |
| |
| return true; |
| } |
| |
| static void __init spectre_v1_select_mitigation(void) |
| { |
| if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) { |
| spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; |
| return; |
| } |
| |
| if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) { |
| /* |
| * With Spectre v1, a user can speculatively control either |
| * path of a conditional swapgs with a user-controlled GS |
| * value. The mitigation is to add lfences to both code paths. |
| * |
| * If FSGSBASE is enabled, the user can put a kernel address in |
| * GS, in which case SMAP provides no protection. |
| * |
| * [ NOTE: Don't check for X86_FEATURE_FSGSBASE until the |
| * FSGSBASE enablement patches have been merged. ] |
| * |
| * If FSGSBASE is disabled, the user can only put a user space |
| * address in GS. That makes an attack harder, but still |
| * possible if there's no SMAP protection. |
| */ |
| if (!smap_works_speculatively()) { |
| /* |
| * Mitigation can be provided from SWAPGS itself or |
| * PTI as the CR3 write in the Meltdown mitigation |
| * is serializing. |
| * |
| * If neither is there, mitigate with an LFENCE to |
| * stop speculation through swapgs. |
| */ |
| if (boot_cpu_has_bug(X86_BUG_SWAPGS) && |
| !boot_cpu_has(X86_FEATURE_PTI)) |
| setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER); |
| |
| /* |
| * Enable lfences in the kernel entry (non-swapgs) |
| * paths, to prevent user entry from speculatively |
| * skipping swapgs. |
| */ |
| setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL); |
| } |
| } |
| |
| pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]); |
| } |
| |
| static int __init nospectre_v1_cmdline(char *str) |
| { |
| spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; |
| return 0; |
| } |
| early_param("nospectre_v1", nospectre_v1_cmdline); |
| |
| static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = |
| SPECTRE_V2_NONE; |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "RETBleed: " fmt |
| |
| enum retbleed_mitigation { |
| RETBLEED_MITIGATION_NONE, |
| RETBLEED_MITIGATION_IBRS, |
| RETBLEED_MITIGATION_EIBRS, |
| }; |
| |
| enum retbleed_mitigation_cmd { |
| RETBLEED_CMD_OFF, |
| RETBLEED_CMD_AUTO |
| }; |
| |
| const char * const retbleed_strings[] = { |
| [RETBLEED_MITIGATION_NONE] = "Vulnerable", |
| [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS", |
| [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS", |
| }; |
| |
| static enum retbleed_mitigation retbleed_mitigation __ro_after_init = |
| RETBLEED_MITIGATION_NONE; |
| static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init = |
| RETBLEED_CMD_AUTO; |
| |
| static int __init retbleed_parse_cmdline(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "off")) |
| retbleed_cmd = RETBLEED_CMD_OFF; |
| else if (!strcmp(str, "auto")) |
| retbleed_cmd = RETBLEED_CMD_AUTO; |
| else |
| pr_err("Unknown retbleed option (%s). Defaulting to 'auto'\n", str); |
| |
| return 0; |
| } |
| early_param("retbleed", retbleed_parse_cmdline); |
| |
| #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n" |
| |
| static void __init retbleed_select_mitigation(void) |
| { |
| if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off()) |
| return; |
| |
| switch (retbleed_cmd) { |
| case RETBLEED_CMD_OFF: |
| return; |
| |
| case RETBLEED_CMD_AUTO: |
| default: |
| /* |
| * The Intel mitigation (IBRS) was already selected in |
| * spectre_v2_select_mitigation(). |
| */ |
| |
| break; |
| } |
| |
| switch (retbleed_mitigation) { |
| default: |
| break; |
| } |
| |
| /* |
| * Let IBRS trump all on Intel without affecting the effects of the |
| * retbleed= cmdline option. |
| */ |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { |
| switch (spectre_v2_enabled) { |
| case SPECTRE_V2_IBRS: |
| retbleed_mitigation = RETBLEED_MITIGATION_IBRS; |
| break; |
| case SPECTRE_V2_EIBRS: |
| case SPECTRE_V2_EIBRS_RETPOLINE: |
| case SPECTRE_V2_EIBRS_LFENCE: |
| retbleed_mitigation = RETBLEED_MITIGATION_EIBRS; |
| break; |
| default: |
| pr_err(RETBLEED_INTEL_MSG); |
| } |
| } |
| |
| pr_info("%s\n", retbleed_strings[retbleed_mitigation]); |
| } |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "Spectre V2 : " fmt |
| |
| static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init = |
| SPECTRE_V2_USER_NONE; |
| static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init = |
| SPECTRE_V2_USER_NONE; |
| |
| #ifdef CONFIG_RETPOLINE |
| static bool spectre_v2_bad_module; |
| |
| bool retpoline_module_ok(bool has_retpoline) |
| { |
| if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline) |
| return true; |
| |
| pr_err("System may be vulnerable to spectre v2\n"); |
| spectre_v2_bad_module = true; |
| return false; |
| } |
| |
| static inline const char *spectre_v2_module_string(void) |
| { |
| return spectre_v2_bad_module ? " - vulnerable module loaded" : ""; |
| } |
| #else |
| static inline const char *spectre_v2_module_string(void) { return ""; } |
| #endif |
| |
| #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n" |
| #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n" |
| #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n" |
| #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n" |
| |
| #ifdef CONFIG_BPF_SYSCALL |
| void unpriv_ebpf_notify(int new_state) |
| { |
| if (new_state) |
| return; |
| |
| /* Unprivileged eBPF is enabled */ |
| |
| switch (spectre_v2_enabled) { |
| case SPECTRE_V2_EIBRS: |
| pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); |
| break; |
| case SPECTRE_V2_EIBRS_LFENCE: |
| if (sched_smt_active()) |
| pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); |
| break; |
| default: |
| break; |
| } |
| } |
| #endif |
| |
| static inline bool match_option(const char *arg, int arglen, const char *opt) |
| { |
| int len = strlen(opt); |
| |
| return len == arglen && !strncmp(arg, opt, len); |
| } |
| |
| /* The kernel command line selection for spectre v2 */ |
| enum spectre_v2_mitigation_cmd { |
| SPECTRE_V2_CMD_NONE, |
| SPECTRE_V2_CMD_AUTO, |
| SPECTRE_V2_CMD_FORCE, |
| SPECTRE_V2_CMD_RETPOLINE, |
| SPECTRE_V2_CMD_RETPOLINE_GENERIC, |
| SPECTRE_V2_CMD_RETPOLINE_LFENCE, |
| SPECTRE_V2_CMD_EIBRS, |
| SPECTRE_V2_CMD_EIBRS_RETPOLINE, |
| SPECTRE_V2_CMD_EIBRS_LFENCE, |
| SPECTRE_V2_CMD_IBRS, |
| }; |
| |
| enum spectre_v2_user_cmd { |
| SPECTRE_V2_USER_CMD_NONE, |
| SPECTRE_V2_USER_CMD_AUTO, |
| SPECTRE_V2_USER_CMD_FORCE, |
| SPECTRE_V2_USER_CMD_PRCTL, |
| SPECTRE_V2_USER_CMD_PRCTL_IBPB, |
| SPECTRE_V2_USER_CMD_SECCOMP, |
| SPECTRE_V2_USER_CMD_SECCOMP_IBPB, |
| }; |
| |
| static const char * const spectre_v2_user_strings[] = { |
| [SPECTRE_V2_USER_NONE] = "User space: Vulnerable", |
| [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection", |
| [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection", |
| [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl", |
| [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl", |
| }; |
| |
| static const struct { |
| const char *option; |
| enum spectre_v2_user_cmd cmd; |
| bool secure; |
| } v2_user_options[] __initconst = { |
| { "auto", SPECTRE_V2_USER_CMD_AUTO, false }, |
| { "off", SPECTRE_V2_USER_CMD_NONE, false }, |
| { "on", SPECTRE_V2_USER_CMD_FORCE, true }, |
| { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false }, |
| { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false }, |
| { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false }, |
| { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false }, |
| }; |
| |
| static void __init spec_v2_user_print_cond(const char *reason, bool secure) |
| { |
| if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) |
| pr_info("spectre_v2_user=%s forced on command line.\n", reason); |
| } |
| |
| static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd; |
| |
| static enum spectre_v2_user_cmd __init |
| spectre_v2_parse_user_cmdline(void) |
| { |
| char arg[20]; |
| int ret, i; |
| |
| switch (spectre_v2_cmd) { |
| case SPECTRE_V2_CMD_NONE: |
| return SPECTRE_V2_USER_CMD_NONE; |
| case SPECTRE_V2_CMD_FORCE: |
| return SPECTRE_V2_USER_CMD_FORCE; |
| default: |
| break; |
| } |
| |
| ret = cmdline_find_option(boot_command_line, "spectre_v2_user", |
| arg, sizeof(arg)); |
| if (ret < 0) |
| return SPECTRE_V2_USER_CMD_AUTO; |
| |
| for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) { |
| if (match_option(arg, ret, v2_user_options[i].option)) { |
| spec_v2_user_print_cond(v2_user_options[i].option, |
| v2_user_options[i].secure); |
| return v2_user_options[i].cmd; |
| } |
| } |
| |
| pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg); |
| return SPECTRE_V2_USER_CMD_AUTO; |
| } |
| |
| static inline bool spectre_v2_in_eibrs_mode(enum spectre_v2_mitigation mode) |
| { |
| return mode == SPECTRE_V2_EIBRS || |
| mode == SPECTRE_V2_EIBRS_RETPOLINE || |
| mode == SPECTRE_V2_EIBRS_LFENCE; |
| } |
| |
| static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode) |
| { |
| return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS; |
| } |
| |
| static void __init |
| spectre_v2_user_select_mitigation(void) |
| { |
| enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE; |
| bool smt_possible = IS_ENABLED(CONFIG_SMP); |
| enum spectre_v2_user_cmd cmd; |
| |
| if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP)) |
| return; |
| |
| if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || |
| cpu_smt_control == CPU_SMT_NOT_SUPPORTED) |
| smt_possible = false; |
| |
| cmd = spectre_v2_parse_user_cmdline(); |
| switch (cmd) { |
| case SPECTRE_V2_USER_CMD_NONE: |
| goto set_mode; |
| case SPECTRE_V2_USER_CMD_FORCE: |
| mode = SPECTRE_V2_USER_STRICT; |
| break; |
| case SPECTRE_V2_USER_CMD_PRCTL: |
| case SPECTRE_V2_USER_CMD_PRCTL_IBPB: |
| mode = SPECTRE_V2_USER_PRCTL; |
| break; |
| case SPECTRE_V2_USER_CMD_AUTO: |
| case SPECTRE_V2_USER_CMD_SECCOMP: |
| case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: |
| if (IS_ENABLED(CONFIG_SECCOMP)) |
| mode = SPECTRE_V2_USER_SECCOMP; |
| else |
| mode = SPECTRE_V2_USER_PRCTL; |
| break; |
| } |
| |
| /* Initialize Indirect Branch Prediction Barrier */ |
| if (boot_cpu_has(X86_FEATURE_IBPB)) { |
| setup_force_cpu_cap(X86_FEATURE_USE_IBPB); |
| |
| spectre_v2_user_ibpb = mode; |
| switch (cmd) { |
| case SPECTRE_V2_USER_CMD_FORCE: |
| case SPECTRE_V2_USER_CMD_PRCTL_IBPB: |
| case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: |
| static_branch_enable(&switch_mm_always_ibpb); |
| spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT; |
| break; |
| case SPECTRE_V2_USER_CMD_PRCTL: |
| case SPECTRE_V2_USER_CMD_AUTO: |
| case SPECTRE_V2_USER_CMD_SECCOMP: |
| static_branch_enable(&switch_mm_cond_ibpb); |
| break; |
| default: |
| break; |
| } |
| |
| pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n", |
| static_key_enabled(&switch_mm_always_ibpb) ? |
| "always-on" : "conditional"); |
| } |
| |
| /* |
| * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP |
| * is not required. |
| * |
| * Intel's Enhanced IBRS also protects against cross-thread branch target |
| * injection in user-mode as the IBRS bit remains always set which |
| * implicitly enables cross-thread protections. However, in legacy IBRS |
| * mode, the IBRS bit is set only on kernel entry and cleared on return |
| * to userspace. AMD Automatic IBRS also does not protect userspace. |
| * These modes therefore disable the implicit cross-thread protection, |
| * so allow for STIBP to be selected in those cases. |
| */ |
| if (!boot_cpu_has(X86_FEATURE_STIBP) || |
| !smt_possible || |
| (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && |
| !boot_cpu_has(X86_FEATURE_AUTOIBRS))) |
| return; |
| |
| /* |
| * At this point, an STIBP mode other than "off" has been set. |
| * If STIBP support is not being forced, check if STIBP always-on |
| * is preferred. |
| */ |
| if (mode != SPECTRE_V2_USER_STRICT && |
| boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON)) |
| mode = SPECTRE_V2_USER_STRICT_PREFERRED; |
| |
| spectre_v2_user_stibp = mode; |
| |
| set_mode: |
| pr_info("%s\n", spectre_v2_user_strings[mode]); |
| } |
| |
| static const char * const spectre_v2_strings[] = { |
| [SPECTRE_V2_NONE] = "Vulnerable", |
| [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines", |
| [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE", |
| [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS", |
| [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE", |
| [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines", |
| [SPECTRE_V2_IBRS] = "Mitigation: IBRS", |
| }; |
| |
| static const struct { |
| const char *option; |
| enum spectre_v2_mitigation_cmd cmd; |
| bool secure; |
| } mitigation_options[] __initconst = { |
| { "off", SPECTRE_V2_CMD_NONE, false }, |
| { "on", SPECTRE_V2_CMD_FORCE, true }, |
| { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false }, |
| { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, |
| { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, |
| { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false }, |
| { "eibrs", SPECTRE_V2_CMD_EIBRS, false }, |
| { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false }, |
| { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false }, |
| { "auto", SPECTRE_V2_CMD_AUTO, false }, |
| { "ibrs", SPECTRE_V2_CMD_IBRS, false }, |
| }; |
| |
| static void __init spec_v2_print_cond(const char *reason, bool secure) |
| { |
| if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) |
| pr_info("%s selected on command line.\n", reason); |
| } |
| |
| static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void) |
| { |
| enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO; |
| char arg[20]; |
| int ret, i; |
| |
| if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") || |
| cpu_mitigations_off()) |
| return SPECTRE_V2_CMD_NONE; |
| |
| ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg)); |
| if (ret < 0) |
| return SPECTRE_V2_CMD_AUTO; |
| |
| for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) { |
| if (!match_option(arg, ret, mitigation_options[i].option)) |
| continue; |
| cmd = mitigation_options[i].cmd; |
| break; |
| } |
| |
| if (i >= ARRAY_SIZE(mitigation_options)) { |
| pr_err("unknown option (%s). Switching to AUTO select\n", arg); |
| return SPECTRE_V2_CMD_AUTO; |
| } |
| |
| if ((cmd == SPECTRE_V2_CMD_RETPOLINE || |
| cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || |
| cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC || |
| cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || |
| cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && |
| !IS_ENABLED(CONFIG_RETPOLINE)) { |
| pr_err("%s selected but not compiled in. Switching to AUTO select\n", |
| mitigation_options[i].option); |
| return SPECTRE_V2_CMD_AUTO; |
| } |
| |
| if ((cmd == SPECTRE_V2_CMD_EIBRS || |
| cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || |
| cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && |
| !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { |
| pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n", |
| mitigation_options[i].option); |
| return SPECTRE_V2_CMD_AUTO; |
| } |
| |
| if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || |
| cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) && |
| !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) { |
| pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n", |
| mitigation_options[i].option); |
| return SPECTRE_V2_CMD_AUTO; |
| } |
| |
| if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { |
| pr_err("%s selected but not Intel CPU. Switching to AUTO select\n", |
| mitigation_options[i].option); |
| return SPECTRE_V2_CMD_AUTO; |
| } |
| |
| if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) { |
| pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n", |
| mitigation_options[i].option); |
| return SPECTRE_V2_CMD_AUTO; |
| } |
| |
| if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_has(X86_FEATURE_XENPV)) { |
| pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n", |
| mitigation_options[i].option); |
| return SPECTRE_V2_CMD_AUTO; |
| } |
| |
| spec_v2_print_cond(mitigation_options[i].option, |
| mitigation_options[i].secure); |
| return cmd; |
| } |
| |
| static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void) |
| { |
| if (!IS_ENABLED(CONFIG_RETPOLINE)) { |
| pr_err("Kernel not compiled with retpoline; no mitigation available!"); |
| return SPECTRE_V2_NONE; |
| } |
| |
| return SPECTRE_V2_RETPOLINE; |
| } |
| |
| /* Disable in-kernel use of non-RSB RET predictors */ |
| static void __init spec_ctrl_disable_kernel_rrsba(void) |
| { |
| u64 ia32_cap; |
| |
| if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL)) |
| return; |
| |
| ia32_cap = x86_read_arch_cap_msr(); |
| |
| if (ia32_cap & ARCH_CAP_RRSBA) { |
| x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S; |
| update_spec_ctrl(x86_spec_ctrl_base); |
| } |
| } |
| |
| static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode) |
| { |
| /* |
| * Similar to context switches, there are two types of RSB attacks |
| * after VM exit: |
| * |
| * 1) RSB underflow |
| * |
| * 2) Poisoned RSB entry |
| * |
| * When retpoline is enabled, both are mitigated by filling/clearing |
| * the RSB. |
| * |
| * When IBRS is enabled, while #1 would be mitigated by the IBRS branch |
| * prediction isolation protections, RSB still needs to be cleared |
| * because of #2. Note that SMEP provides no protection here, unlike |
| * user-space-poisoned RSB entries. |
| * |
| * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB |
| * bug is present then a LITE version of RSB protection is required, |
| * just a single call needs to retire before a RET is executed. |
| */ |
| switch (mode) { |
| case SPECTRE_V2_NONE: |
| return; |
| |
| case SPECTRE_V2_EIBRS_LFENCE: |
| case SPECTRE_V2_EIBRS: |
| if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB) && |
| (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)) { |
| setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE); |
| pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n"); |
| } |
| return; |
| |
| case SPECTRE_V2_EIBRS_RETPOLINE: |
| case SPECTRE_V2_RETPOLINE: |
| case SPECTRE_V2_LFENCE: |
| case SPECTRE_V2_IBRS: |
| setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT); |
| pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n"); |
| return; |
| } |
| |
| pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit"); |
| dump_stack(); |
| } |
| |
| static void __init spectre_v2_select_mitigation(void) |
| { |
| enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline(); |
| enum spectre_v2_mitigation mode = SPECTRE_V2_NONE; |
| |
| /* |
| * If the CPU is not affected and the command line mode is NONE or AUTO |
| * then nothing to do. |
| */ |
| if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) && |
| (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO)) |
| return; |
| |
| switch (cmd) { |
| case SPECTRE_V2_CMD_NONE: |
| return; |
| |
| case SPECTRE_V2_CMD_FORCE: |
| case SPECTRE_V2_CMD_AUTO: |
| if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { |
| mode = SPECTRE_V2_EIBRS; |
| break; |
| } |
| |
| if (boot_cpu_has_bug(X86_BUG_RETBLEED) && |
| retbleed_cmd != RETBLEED_CMD_OFF && |
| boot_cpu_has(X86_FEATURE_IBRS) && |
| boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { |
| mode = SPECTRE_V2_IBRS; |
| break; |
| } |
| |
| mode = spectre_v2_select_retpoline(); |
| break; |
| |
| case SPECTRE_V2_CMD_RETPOLINE_LFENCE: |
| pr_err(SPECTRE_V2_LFENCE_MSG); |
| mode = SPECTRE_V2_LFENCE; |
| break; |
| |
| case SPECTRE_V2_CMD_RETPOLINE_GENERIC: |
| mode = SPECTRE_V2_RETPOLINE; |
| break; |
| |
| case SPECTRE_V2_CMD_RETPOLINE: |
| mode = spectre_v2_select_retpoline(); |
| break; |
| |
| case SPECTRE_V2_CMD_IBRS: |
| mode = SPECTRE_V2_IBRS; |
| break; |
| |
| case SPECTRE_V2_CMD_EIBRS: |
| mode = SPECTRE_V2_EIBRS; |
| break; |
| |
| case SPECTRE_V2_CMD_EIBRS_LFENCE: |
| mode = SPECTRE_V2_EIBRS_LFENCE; |
| break; |
| |
| case SPECTRE_V2_CMD_EIBRS_RETPOLINE: |
| mode = SPECTRE_V2_EIBRS_RETPOLINE; |
| break; |
| } |
| |
| if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) |
| pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); |
| |
| if (spectre_v2_in_ibrs_mode(mode)) { |
| if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) { |
| msr_set_bit(MSR_EFER, _EFER_AUTOIBRS); |
| } else { |
| x86_spec_ctrl_base |= SPEC_CTRL_IBRS; |
| update_spec_ctrl(x86_spec_ctrl_base); |
| } |
| } |
| |
| switch (mode) { |
| case SPECTRE_V2_NONE: |
| case SPECTRE_V2_EIBRS: |
| break; |
| |
| case SPECTRE_V2_IBRS: |
| setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS); |
| if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) |
| pr_warn(SPECTRE_V2_IBRS_PERF_MSG); |
| break; |
| |
| case SPECTRE_V2_LFENCE: |
| case SPECTRE_V2_EIBRS_LFENCE: |
| setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE); |
| /* fallthrough */ |
| |
| case SPECTRE_V2_RETPOLINE: |
| case SPECTRE_V2_EIBRS_RETPOLINE: |
| setup_force_cpu_cap(X86_FEATURE_RETPOLINE); |
| break; |
| } |
| |
| /* |
| * Disable alternate RSB predictions in kernel when indirect CALLs and |
| * JMPs gets protection against BHI and Intramode-BTI, but RET |
| * prediction from a non-RSB predictor is still a risk. |
| */ |
| if (mode == SPECTRE_V2_EIBRS_LFENCE || |
| mode == SPECTRE_V2_EIBRS_RETPOLINE || |
| mode == SPECTRE_V2_RETPOLINE) |
| spec_ctrl_disable_kernel_rrsba(); |
| |
| spectre_v2_enabled = mode; |
| pr_info("%s\n", spectre_v2_strings[mode]); |
| |
| /* |
| * If Spectre v2 protection has been enabled, fill the RSB during a |
| * context switch. In general there are two types of RSB attacks |
| * across context switches, for which the CALLs/RETs may be unbalanced. |
| * |
| * 1) RSB underflow |
| * |
| * Some Intel parts have "bottomless RSB". When the RSB is empty, |
| * speculated return targets may come from the branch predictor, |
| * which could have a user-poisoned BTB or BHB entry. |
| * |
| * AMD has it even worse: *all* returns are speculated from the BTB, |
| * regardless of the state of the RSB. |
| * |
| * When IBRS or eIBRS is enabled, the "user -> kernel" attack |
| * scenario is mitigated by the IBRS branch prediction isolation |
| * properties, so the RSB buffer filling wouldn't be necessary to |
| * protect against this type of attack. |
| * |
| * The "user -> user" attack scenario is mitigated by RSB filling. |
| * |
| * 2) Poisoned RSB entry |
| * |
| * If the 'next' in-kernel return stack is shorter than 'prev', |
| * 'next' could be tricked into speculating with a user-poisoned RSB |
| * entry. |
| * |
| * The "user -> kernel" attack scenario is mitigated by SMEP and |
| * eIBRS. |
| * |
| * The "user -> user" scenario, also known as SpectreBHB, requires |
| * RSB clearing. |
| * |
| * So to mitigate all cases, unconditionally fill RSB on context |
| * switches. |
| * |
| * FIXME: Is this pointless for retbleed-affected AMD? |
| */ |
| setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW); |
| pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n"); |
| |
| spectre_v2_determine_rsb_fill_type_at_vmexit(mode); |
| |
| /* |
| * Retpoline protects the kernel, but doesn't protect firmware. IBRS |
| * and Enhanced IBRS protect firmware too, so enable IBRS around |
| * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't |
| * otherwise enabled. |
| * |
| * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because |
| * the user might select retpoline on the kernel command line and if |
| * the CPU supports Enhanced IBRS, kernel might un-intentionally not |
| * enable IBRS around firmware calls. |
| */ |
| if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) { |
| setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW); |
| pr_info("Enabling Restricted Speculation for firmware calls\n"); |
| } |
| |
| /* Set up IBPB and STIBP depending on the general spectre V2 command */ |
| spectre_v2_cmd = cmd; |
| } |
| |
| static void update_stibp_msr(void * __unused) |
| { |
| u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP); |
| update_spec_ctrl(val); |
| } |
| |
| /* Update x86_spec_ctrl_base in case SMT state changed. */ |
| static void update_stibp_strict(void) |
| { |
| u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP; |
| |
| if (sched_smt_active()) |
| mask |= SPEC_CTRL_STIBP; |
| |
| if (mask == x86_spec_ctrl_base) |
| return; |
| |
| pr_info("Update user space SMT mitigation: STIBP %s\n", |
| mask & SPEC_CTRL_STIBP ? "always-on" : "off"); |
| x86_spec_ctrl_base = mask; |
| on_each_cpu(update_stibp_msr, NULL, 1); |
| } |
| |
| /* Update the static key controlling the evaluation of TIF_SPEC_IB */ |
| static void update_indir_branch_cond(void) |
| { |
| if (sched_smt_active()) |
| static_branch_enable(&switch_to_cond_stibp); |
| else |
| static_branch_disable(&switch_to_cond_stibp); |
| } |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) fmt |
| |
| /* Update the static key controlling the MDS CPU buffer clear in idle */ |
| static void update_mds_branch_idle(void) |
| { |
| u64 ia32_cap = x86_read_arch_cap_msr(); |
| |
| /* |
| * Enable the idle clearing if SMT is active on CPUs which are |
| * affected only by MSBDS and not any other MDS variant. |
| * |
| * The other variants cannot be mitigated when SMT is enabled, so |
| * clearing the buffers on idle just to prevent the Store Buffer |
| * repartitioning leak would be a window dressing exercise. |
| */ |
| if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY)) |
| return; |
| |
| if (sched_smt_active()) { |
| static_branch_enable(&mds_idle_clear); |
| } else if (mmio_mitigation == MMIO_MITIGATION_OFF || |
| (ia32_cap & ARCH_CAP_FBSDP_NO)) { |
| static_branch_disable(&mds_idle_clear); |
| } |
| } |
| |
| #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n" |
| #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n" |
| #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n" |
| |
| void arch_smt_update(void) |
| { |
| mutex_lock(&spec_ctrl_mutex); |
| |
| if (sched_smt_active() && unprivileged_ebpf_enabled() && |
| spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) |
| pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); |
| |
| switch (spectre_v2_user_stibp) { |
| case SPECTRE_V2_USER_NONE: |
| break; |
| case SPECTRE_V2_USER_STRICT: |
| case SPECTRE_V2_USER_STRICT_PREFERRED: |
| update_stibp_strict(); |
| break; |
| case SPECTRE_V2_USER_PRCTL: |
| case SPECTRE_V2_USER_SECCOMP: |
| update_indir_branch_cond(); |
| break; |
| } |
| |
| switch (mds_mitigation) { |
| case MDS_MITIGATION_FULL: |
| case MDS_MITIGATION_VMWERV: |
| if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY)) |
| pr_warn_once(MDS_MSG_SMT); |
| update_mds_branch_idle(); |
| break; |
| case MDS_MITIGATION_OFF: |
| break; |
| } |
| |
| switch (taa_mitigation) { |
| case TAA_MITIGATION_VERW: |
| case TAA_MITIGATION_UCODE_NEEDED: |
| if (sched_smt_active()) |
| pr_warn_once(TAA_MSG_SMT); |
| break; |
| case TAA_MITIGATION_TSX_DISABLED: |
| case TAA_MITIGATION_OFF: |
| break; |
| } |
| |
| switch (mmio_mitigation) { |
| case MMIO_MITIGATION_VERW: |
| case MMIO_MITIGATION_UCODE_NEEDED: |
| if (sched_smt_active()) |
| pr_warn_once(MMIO_MSG_SMT); |
| break; |
| case MMIO_MITIGATION_OFF: |
| break; |
| } |
| |
| mutex_unlock(&spec_ctrl_mutex); |
| } |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "Speculative Store Bypass: " fmt |
| |
| static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE; |
| |
| /* The kernel command line selection */ |
| enum ssb_mitigation_cmd { |
| SPEC_STORE_BYPASS_CMD_NONE, |
| SPEC_STORE_BYPASS_CMD_AUTO, |
| SPEC_STORE_BYPASS_CMD_ON, |
| SPEC_STORE_BYPASS_CMD_PRCTL, |
| SPEC_STORE_BYPASS_CMD_SECCOMP, |
| }; |
| |
| static const char * const ssb_strings[] = { |
| [SPEC_STORE_BYPASS_NONE] = "Vulnerable", |
| [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled", |
| [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl", |
| [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp", |
| }; |
| |
| static const struct { |
| const char *option; |
| enum ssb_mitigation_cmd cmd; |
| } ssb_mitigation_options[] __initconst = { |
| { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */ |
| { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */ |
| { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */ |
| { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */ |
| { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */ |
| }; |
| |
| static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void) |
| { |
| enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO; |
| char arg[20]; |
| int ret, i; |
| |
| if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") || |
| cpu_mitigations_off()) { |
| return SPEC_STORE_BYPASS_CMD_NONE; |
| } else { |
| ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable", |
| arg, sizeof(arg)); |
| if (ret < 0) |
| return SPEC_STORE_BYPASS_CMD_AUTO; |
| |
| for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) { |
| if (!match_option(arg, ret, ssb_mitigation_options[i].option)) |
| continue; |
| |
| cmd = ssb_mitigation_options[i].cmd; |
| break; |
| } |
| |
| if (i >= ARRAY_SIZE(ssb_mitigation_options)) { |
| pr_err("unknown option (%s). Switching to AUTO select\n", arg); |
| return SPEC_STORE_BYPASS_CMD_AUTO; |
| } |
| } |
| |
| return cmd; |
| } |
| |
| static enum ssb_mitigation __init __ssb_select_mitigation(void) |
| { |
| enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE; |
| enum ssb_mitigation_cmd cmd; |
| |
| if (!boot_cpu_has(X86_FEATURE_SSBD)) |
| return mode; |
| |
| cmd = ssb_parse_cmdline(); |
| if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) && |
| (cmd == SPEC_STORE_BYPASS_CMD_NONE || |
| cmd == SPEC_STORE_BYPASS_CMD_AUTO)) |
| return mode; |
| |
| switch (cmd) { |
| case SPEC_STORE_BYPASS_CMD_AUTO: |
| case SPEC_STORE_BYPASS_CMD_SECCOMP: |
| /* |
| * Choose prctl+seccomp as the default mode if seccomp is |
| * enabled. |
| */ |
| if (IS_ENABLED(CONFIG_SECCOMP)) |
| mode = SPEC_STORE_BYPASS_SECCOMP; |
| else |
| mode = SPEC_STORE_BYPASS_PRCTL; |
| break; |
| case SPEC_STORE_BYPASS_CMD_ON: |
| mode = SPEC_STORE_BYPASS_DISABLE; |
| break; |
| case SPEC_STORE_BYPASS_CMD_PRCTL: |
| mode = SPEC_STORE_BYPASS_PRCTL; |
| break; |
| case SPEC_STORE_BYPASS_CMD_NONE: |
| break; |
| } |
| |
| /* |
| * We have three CPU feature flags that are in play here: |
| * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible. |
| * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass |
| * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation |
| */ |
| if (mode == SPEC_STORE_BYPASS_DISABLE) { |
| setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE); |
| /* |
| * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may |
| * use a completely different MSR and bit dependent on family. |
| */ |
| if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && |
| !static_cpu_has(X86_FEATURE_AMD_SSBD)) { |
| x86_amd_ssb_disable(); |
| } else { |
| x86_spec_ctrl_base |= SPEC_CTRL_SSBD; |
| update_spec_ctrl(x86_spec_ctrl_base); |
| } |
| } |
| |
| return mode; |
| } |
| |
| static void ssb_select_mitigation(void) |
| { |
| ssb_mode = __ssb_select_mitigation(); |
| |
| if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) |
| pr_info("%s\n", ssb_strings[ssb_mode]); |
| } |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "Speculation prctl: " fmt |
| |
| static void task_update_spec_tif(struct task_struct *tsk) |
| { |
| /* Force the update of the real TIF bits */ |
| set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE); |
| |
| /* |
| * Immediately update the speculation control MSRs for the current |
| * task, but for a non-current task delay setting the CPU |
| * mitigation until it is scheduled next. |
| * |
| * This can only happen for SECCOMP mitigation. For PRCTL it's |
| * always the current task. |
| */ |
| if (tsk == current) |
| speculation_ctrl_update_current(); |
| } |
| |
| static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl) |
| { |
| if (ssb_mode != SPEC_STORE_BYPASS_PRCTL && |
| ssb_mode != SPEC_STORE_BYPASS_SECCOMP) |
| return -ENXIO; |
| |
| switch (ctrl) { |
| case PR_SPEC_ENABLE: |
| /* If speculation is force disabled, enable is not allowed */ |
| if (task_spec_ssb_force_disable(task)) |
| return -EPERM; |
| task_clear_spec_ssb_disable(task); |
| task_update_spec_tif(task); |
| break; |
| case PR_SPEC_DISABLE: |
| task_set_spec_ssb_disable(task); |
| task_update_spec_tif(task); |
| break; |
| case PR_SPEC_FORCE_DISABLE: |
| task_set_spec_ssb_disable(task); |
| task_set_spec_ssb_force_disable(task); |
| task_update_spec_tif(task); |
| break; |
| default: |
| return -ERANGE; |
| } |
| return 0; |
| } |
| |
| static bool is_spec_ib_user_controlled(void) |
| { |
| return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL || |
| spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || |
| spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL || |
| spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP; |
| } |
| |
| static int ib_prctl_set(struct task_struct *task, unsigned long ctrl) |
| { |
| switch (ctrl) { |
| case PR_SPEC_ENABLE: |
| if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && |
| spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) |
| return 0; |
| /* |
| * With strict mode for both IBPB and STIBP, the instruction |
| * code paths avoid checking this task flag and instead, |
| * unconditionally run the instruction. However, STIBP and IBPB |
| * are independent and either can be set to conditionally |
| * enabled regardless of the mode of the other. |
| * |
| * If either is set to conditional, allow the task flag to be |
| * updated, unless it was force-disabled by a previous prctl |
| * call. Currently, this is possible on an AMD CPU which has the |
| * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the |
| * kernel is booted with 'spectre_v2_user=seccomp', then |
| * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and |
| * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED. |
| */ |
| if (!is_spec_ib_user_controlled() || |
| task_spec_ib_force_disable(task)) |
| return -EPERM; |
| |
| task_clear_spec_ib_disable(task); |
| task_update_spec_tif(task); |
| break; |
| case PR_SPEC_DISABLE: |
| case PR_SPEC_FORCE_DISABLE: |
| /* |
| * Indirect branch speculation is always allowed when |
| * mitigation is force disabled. |
| */ |
| if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && |
| spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) |
| return -EPERM; |
| |
| if (!is_spec_ib_user_controlled()) |
| return 0; |
| |
| task_set_spec_ib_disable(task); |
| if (ctrl == PR_SPEC_FORCE_DISABLE) |
| task_set_spec_ib_force_disable(task); |
| task_update_spec_tif(task); |
| if (task == current) |
| indirect_branch_prediction_barrier(); |
| break; |
| default: |
| return -ERANGE; |
| } |
| return 0; |
| } |
| |
| int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which, |
| unsigned long ctrl) |
| { |
| switch (which) { |
| case PR_SPEC_STORE_BYPASS: |
| return ssb_prctl_set(task, ctrl); |
| case PR_SPEC_INDIRECT_BRANCH: |
| return ib_prctl_set(task, ctrl); |
| default: |
| return -ENODEV; |
| } |
| } |
| |
| #ifdef CONFIG_SECCOMP |
| void arch_seccomp_spec_mitigate(struct task_struct *task) |
| { |
| if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP) |
| ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE); |
| if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || |
| spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) |
| ib_prctl_set(task, PR_SPEC_FORCE_DISABLE); |
| } |
| #endif |
| |
| static int ssb_prctl_get(struct task_struct *task) |
| { |
| switch (ssb_mode) { |
| case SPEC_STORE_BYPASS_DISABLE: |
| return PR_SPEC_DISABLE; |
| case SPEC_STORE_BYPASS_SECCOMP: |
| case SPEC_STORE_BYPASS_PRCTL: |
| if (task_spec_ssb_force_disable(task)) |
| return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; |
| if (task_spec_ssb_disable(task)) |
| return PR_SPEC_PRCTL | PR_SPEC_DISABLE; |
| return PR_SPEC_PRCTL | PR_SPEC_ENABLE; |
| default: |
| if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) |
| return PR_SPEC_ENABLE; |
| return PR_SPEC_NOT_AFFECTED; |
| } |
| } |
| |
| static int ib_prctl_get(struct task_struct *task) |
| { |
| if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) |
| return PR_SPEC_NOT_AFFECTED; |
| |
| if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && |
| spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) |
| return PR_SPEC_ENABLE; |
| else if (is_spec_ib_user_controlled()) { |
| if (task_spec_ib_force_disable(task)) |
| return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; |
| if (task_spec_ib_disable(task)) |
| return PR_SPEC_PRCTL | PR_SPEC_DISABLE; |
| return PR_SPEC_PRCTL | PR_SPEC_ENABLE; |
| } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT || |
| spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || |
| spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED) |
| return PR_SPEC_DISABLE; |
| else |
| return PR_SPEC_NOT_AFFECTED; |
| } |
| |
| int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which) |
| { |
| switch (which) { |
| case PR_SPEC_STORE_BYPASS: |
| return ssb_prctl_get(task); |
| case PR_SPEC_INDIRECT_BRANCH: |
| return ib_prctl_get(task); |
| default: |
| return -ENODEV; |
| } |
| } |
| |
| void x86_spec_ctrl_setup_ap(void) |
| { |
| if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) |
| update_spec_ctrl(x86_spec_ctrl_base); |
| |
| if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) |
| x86_amd_ssb_disable(); |
| } |
| |
| bool itlb_multihit_kvm_mitigation; |
| EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation); |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "L1TF: " fmt |
| |
| /* Default mitigation for L1TF-affected CPUs */ |
| enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH; |
| #if IS_ENABLED(CONFIG_KVM_INTEL) |
| EXPORT_SYMBOL_GPL(l1tf_mitigation); |
| #endif |
| enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; |
| EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation); |
| |
| /* |
| * These CPUs all support 44bits physical address space internally in the |
| * cache but CPUID can report a smaller number of physical address bits. |
| * |
| * The L1TF mitigation uses the top most address bit for the inversion of |
| * non present PTEs. When the installed memory reaches into the top most |
| * address bit due to memory holes, which has been observed on machines |
| * which report 36bits physical address bits and have 32G RAM installed, |
| * then the mitigation range check in l1tf_select_mitigation() triggers. |
| * This is a false positive because the mitigation is still possible due to |
| * the fact that the cache uses 44bit internally. Use the cache bits |
| * instead of the reported physical bits and adjust them on the affected |
| * machines to 44bit if the reported bits are less than 44. |
| */ |
| static void override_cache_bits(struct cpuinfo_x86 *c) |
| { |
| if (c->x86 != 6) |
| return; |
| |
| switch (c->x86_model) { |
| case INTEL_FAM6_NEHALEM: |
| case INTEL_FAM6_WESTMERE: |
| case INTEL_FAM6_SANDYBRIDGE: |
| case INTEL_FAM6_IVYBRIDGE: |
| case INTEL_FAM6_HASWELL_CORE: |
| case INTEL_FAM6_HASWELL_ULT: |
| case INTEL_FAM6_HASWELL_GT3E: |
| case INTEL_FAM6_BROADWELL_CORE: |
| case INTEL_FAM6_BROADWELL_GT3E: |
| case INTEL_FAM6_SKYLAKE_MOBILE: |
| case INTEL_FAM6_SKYLAKE_DESKTOP: |
| case INTEL_FAM6_KABYLAKE_MOBILE: |
| case INTEL_FAM6_KABYLAKE_DESKTOP: |
| if (c->x86_cache_bits < 44) |
| c->x86_cache_bits = 44; |
| break; |
| } |
| } |
| |
| static void __init l1tf_select_mitigation(void) |
| { |
| u64 half_pa; |
| |
| if (!boot_cpu_has_bug(X86_BUG_L1TF)) |
| return; |
| |
| if (cpu_mitigations_off()) |
| l1tf_mitigation = L1TF_MITIGATION_OFF; |
| else if (cpu_mitigations_auto_nosmt()) |
| l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; |
| |
| override_cache_bits(&boot_cpu_data); |
| |
| switch (l1tf_mitigation) { |
| case L1TF_MITIGATION_OFF: |
| case L1TF_MITIGATION_FLUSH_NOWARN: |
| case L1TF_MITIGATION_FLUSH: |
| break; |
| case L1TF_MITIGATION_FLUSH_NOSMT: |
| case L1TF_MITIGATION_FULL: |
| cpu_smt_disable(false); |
| break; |
| case L1TF_MITIGATION_FULL_FORCE: |
| cpu_smt_disable(true); |
| break; |
| } |
| |
| #if CONFIG_PGTABLE_LEVELS == 2 |
| pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n"); |
| return; |
| #endif |
| |
| half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT; |
| if (l1tf_mitigation != L1TF_MITIGATION_OFF && |
| e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) { |
| pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n"); |
| pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n", |
| half_pa); |
| pr_info("However, doing so will make a part of your RAM unusable.\n"); |
| pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n"); |
| return; |
| } |
| |
| setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV); |
| } |
| |
| static int __init l1tf_cmdline(char *str) |
| { |
| if (!boot_cpu_has_bug(X86_BUG_L1TF)) |
| return 0; |
| |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "off")) |
| l1tf_mitigation = L1TF_MITIGATION_OFF; |
| else if (!strcmp(str, "flush,nowarn")) |
| l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN; |
| else if (!strcmp(str, "flush")) |
| l1tf_mitigation = L1TF_MITIGATION_FLUSH; |
| else if (!strcmp(str, "flush,nosmt")) |
| l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; |
| else if (!strcmp(str, "full")) |
| l1tf_mitigation = L1TF_MITIGATION_FULL; |
| else if (!strcmp(str, "full,force")) |
| l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE; |
| |
| return 0; |
| } |
| early_param("l1tf", l1tf_cmdline); |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) fmt |
| |
| #ifdef CONFIG_SYSFS |
| |
| #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion" |
| |
| #if IS_ENABLED(CONFIG_KVM_INTEL) |
| static const char * const l1tf_vmx_states[] = { |
| [VMENTER_L1D_FLUSH_AUTO] = "auto", |
| [VMENTER_L1D_FLUSH_NEVER] = "vulnerable", |
| [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes", |
| [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes", |
| [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled", |
| [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary" |
| }; |
| |
| static ssize_t l1tf_show_state(char *buf) |
| { |
| if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) |
| return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); |
| |
| if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED || |
| (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER && |
| sched_smt_active())) { |
| return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG, |
| l1tf_vmx_states[l1tf_vmx_mitigation]); |
| } |
| |
| return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG, |
| l1tf_vmx_states[l1tf_vmx_mitigation], |
| sched_smt_active() ? "vulnerable" : "disabled"); |
| } |
| |
| static ssize_t itlb_multihit_show_state(char *buf) |
| { |
| if (itlb_multihit_kvm_mitigation) |
| return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n"); |
| else |
| return sysfs_emit(buf, "KVM: Vulnerable\n"); |
| } |
| #else |
| static ssize_t l1tf_show_state(char *buf) |
| { |
| return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); |
| } |
| |
| static ssize_t itlb_multihit_show_state(char *buf) |
| { |
| return sysfs_emit(buf, "Processor vulnerable\n"); |
| } |
| #endif |
| |
| static ssize_t mds_show_state(char *buf) |
| { |
| if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { |
| return sysfs_emit(buf, "%s; SMT Host state unknown\n", |
| mds_strings[mds_mitigation]); |
| } |
| |
| if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) { |
| return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], |
| (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" : |
| sched_smt_active() ? "mitigated" : "disabled")); |
| } |
| |
| return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], |
| sched_smt_active() ? "vulnerable" : "disabled"); |
| } |
| |
| static ssize_t tsx_async_abort_show_state(char *buf) |
| { |
| if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) || |
| (taa_mitigation == TAA_MITIGATION_OFF)) |
| return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]); |
| |
| if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { |
| return sysfs_emit(buf, "%s; SMT Host state unknown\n", |
| taa_strings[taa_mitigation]); |
| } |
| |
| return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation], |
| sched_smt_active() ? "vulnerable" : "disabled"); |
| } |
| |
| static ssize_t mmio_stale_data_show_state(char *buf) |
| { |
| if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) |
| return sysfs_emit(buf, "Unknown: No mitigations\n"); |
| |
| if (mmio_mitigation == MMIO_MITIGATION_OFF) |
| return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]); |
| |
| if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { |
| return sysfs_emit(buf, "%s; SMT Host state unknown\n", |
| mmio_strings[mmio_mitigation]); |
| } |
| |
| return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation], |
| sched_smt_active() ? "vulnerable" : "disabled"); |
| } |
| |
| static char *stibp_state(void) |
| { |
| if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && |
| !boot_cpu_has(X86_FEATURE_AUTOIBRS)) |
| return ""; |
| |
| switch (spectre_v2_user_stibp) { |
| case SPECTRE_V2_USER_NONE: |
| return ", STIBP: disabled"; |
| case SPECTRE_V2_USER_STRICT: |
| return ", STIBP: forced"; |
| case SPECTRE_V2_USER_STRICT_PREFERRED: |
| return ", STIBP: always-on"; |
| case SPECTRE_V2_USER_PRCTL: |
| case SPECTRE_V2_USER_SECCOMP: |
| if (static_key_enabled(&switch_to_cond_stibp)) |
| return ", STIBP: conditional"; |
| } |
| return ""; |
| } |
| |
| static char *ibpb_state(void) |
| { |
| if (boot_cpu_has(X86_FEATURE_IBPB)) { |
| if (static_key_enabled(&switch_mm_always_ibpb)) |
| return ", IBPB: always-on"; |
| if (static_key_enabled(&switch_mm_cond_ibpb)) |
| return ", IBPB: conditional"; |
| return ", IBPB: disabled"; |
| } |
| return ""; |
| } |
| |
| static char *pbrsb_eibrs_state(void) |
| { |
| if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { |
| if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) || |
| boot_cpu_has(X86_FEATURE_RSB_VMEXIT)) |
| return ", PBRSB-eIBRS: SW sequence"; |
| else |
| return ", PBRSB-eIBRS: Vulnerable"; |
| } else { |
| return ", PBRSB-eIBRS: Not affected"; |
| } |
| } |
| |
| static ssize_t spectre_v2_show_state(char *buf) |
| { |
| if (spectre_v2_enabled == SPECTRE_V2_LFENCE) |
| return sysfs_emit(buf, "Vulnerable: LFENCE\n"); |
| |
| if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) |
| return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n"); |
| |
| if (sched_smt_active() && unprivileged_ebpf_enabled() && |
| spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) |
| return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n"); |
| |
| return sysfs_emit(buf, "%s%s%s%s%s%s%s\n", |
| spectre_v2_strings[spectre_v2_enabled], |
| ibpb_state(), |
| boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "", |
| stibp_state(), |
| boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "", |
| pbrsb_eibrs_state(), |
| spectre_v2_module_string()); |
| } |
| |
| static ssize_t srbds_show_state(char *buf) |
| { |
| return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]); |
| } |
| |
| static ssize_t retbleed_show_state(char *buf) |
| { |
| return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]); |
| } |
| |
| static ssize_t gds_show_state(char *buf) |
| { |
| return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]); |
| } |
| |
| static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr, |
| char *buf, unsigned int bug) |
| { |
| if (!boot_cpu_has_bug(bug)) |
| return sysfs_emit(buf, "Not affected\n"); |
| |
| switch (bug) { |
| case X86_BUG_CPU_MELTDOWN: |
| if (boot_cpu_has(X86_FEATURE_PTI)) |
| return sysfs_emit(buf, "Mitigation: PTI\n"); |
| |
| if (hypervisor_is_type(X86_HYPER_XEN_PV)) |
| return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n"); |
| |
| break; |
| |
| case X86_BUG_SPECTRE_V1: |
| return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]); |
| |
| case X86_BUG_SPECTRE_V2: |
| return spectre_v2_show_state(buf); |
| |
| case X86_BUG_SPEC_STORE_BYPASS: |
| return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]); |
| |
| case X86_BUG_L1TF: |
| if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV)) |
| return l1tf_show_state(buf); |
| break; |
| |
| case X86_BUG_MDS: |
| return mds_show_state(buf); |
| |
| case X86_BUG_TAA: |
| return tsx_async_abort_show_state(buf); |
| |
| case X86_BUG_ITLB_MULTIHIT: |
| return itlb_multihit_show_state(buf); |
| |
| case X86_BUG_SRBDS: |
| return srbds_show_state(buf); |
| |
| case X86_BUG_MMIO_STALE_DATA: |
| case X86_BUG_MMIO_UNKNOWN: |
| return mmio_stale_data_show_state(buf); |
| |
| case X86_BUG_RETBLEED: |
| return retbleed_show_state(buf); |
| |
| case X86_BUG_GDS: |
| return gds_show_state(buf); |
| |
| default: |
| break; |
| } |
| |
| return sysfs_emit(buf, "Vulnerable\n"); |
| } |
| |
| ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN); |
| } |
| |
| ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1); |
| } |
| |
| ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2); |
| } |
| |
| ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS); |
| } |
| |
| ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| return cpu_show_common(dev, attr, buf, X86_BUG_L1TF); |
| } |
| |
| ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| return cpu_show_common(dev, attr, buf, X86_BUG_MDS); |
| } |
| |
| ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| return cpu_show_common(dev, attr, buf, X86_BUG_TAA); |
| } |
| |
| ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT); |
| } |
| |
| ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS); |
| } |
| |
| ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) |
| return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN); |
| else |
| return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA); |
| } |
| |
| ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED); |
| } |
| |
| ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| return cpu_show_common(dev, attr, buf, X86_BUG_GDS); |
| } |
| #endif |