blob: 46c40bbc4bc6bc6c2972d30504d580fcca8bf8b2 [file] [log] [blame]
/*
* drivers/serial/sh-sci.c
*
* SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
*
* Copyright (C) 2002 - 2006 Paul Mundt
*
* based off of the old drivers/char/sh-sci.c by:
*
* Copyright (C) 1999, 2000 Niibe Yutaka
* Copyright (C) 2000 Sugioka Toshinobu
* Modified to support multiple serial ports. Stuart Menefy (May 2000).
* Modified to support SecureEdge. David McCullough (2002)
* Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#undef DEBUG
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/sysrq.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/console.h>
#include <linux/platform_device.h>
#ifdef CONFIG_CPU_FREQ
#include <linux/notifier.h>
#include <linux/cpufreq.h>
#endif
#if defined(CONFIG_SUPERH) && !defined(CONFIG_SUPERH64)
#include <asm/clock.h>
#include <asm/sh_bios.h>
#include <asm/kgdb.h>
#endif
#include <asm/sci.h>
#include "sh-sci.h"
struct sci_port {
struct uart_port port;
/* Port type */
unsigned int type;
/* Port IRQs: ERI, RXI, TXI, BRI (optional) */
unsigned int irqs[SCIx_NR_IRQS];
/* Port pin configuration */
void (*init_pins)(struct uart_port *port,
unsigned int cflag);
/* Port enable callback */
void (*enable)(struct uart_port *port);
/* Port disable callback */
void (*disable)(struct uart_port *port);
/* Break timer */
struct timer_list break_timer;
int break_flag;
};
#ifdef CONFIG_SH_KGDB
static struct sci_port *kgdb_sci_port;
#endif
#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
static struct sci_port *serial_console_port;
#endif
/* Function prototypes */
static void sci_stop_tx(struct uart_port *port);
#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
static struct sci_port sci_ports[SCI_NPORTS];
static struct uart_driver sci_uart_driver;
#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && \
defined(CONFIG_SH_STANDARD_BIOS) || defined(CONFIG_SH_KGDB)
static inline void handle_error(struct uart_port *port)
{
/* Clear error flags */
sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
}
static int get_char(struct uart_port *port)
{
unsigned long flags;
unsigned short status;
int c;
spin_lock_irqsave(&port->lock, flags);
do {
status = sci_in(port, SCxSR);
if (status & SCxSR_ERRORS(port)) {
handle_error(port);
continue;
}
} while (!(status & SCxSR_RDxF(port)));
c = sci_in(port, SCxRDR);
sci_in(port, SCxSR); /* Dummy read */
sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
spin_unlock_irqrestore(&port->lock, flags);
return c;
}
#endif /* CONFIG_SH_STANDARD_BIOS || CONFIG_SH_KGDB */
#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || defined(CONFIG_SH_KGDB)
static void put_char(struct uart_port *port, char c)
{
unsigned long flags;
unsigned short status;
spin_lock_irqsave(&port->lock, flags);
do {
status = sci_in(port, SCxSR);
} while (!(status & SCxSR_TDxE(port)));
sci_out(port, SCxTDR, c);
sci_in(port, SCxSR); /* Dummy read */
sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
spin_unlock_irqrestore(&port->lock, flags);
}
#endif
#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
static void put_string(struct sci_port *sci_port, const char *buffer, int count)
{
struct uart_port *port = &sci_port->port;
const unsigned char *p = buffer;
int i;
#if defined(CONFIG_SH_STANDARD_BIOS) || defined(CONFIG_SH_KGDB)
int checksum;
int usegdb=0;
#ifdef CONFIG_SH_STANDARD_BIOS
/* This call only does a trap the first time it is
* called, and so is safe to do here unconditionally
*/
usegdb |= sh_bios_in_gdb_mode();
#endif
#ifdef CONFIG_SH_KGDB
usegdb |= (kgdb_in_gdb_mode && (port == kgdb_sci_port));
#endif
if (usegdb) {
/* $<packet info>#<checksum>. */
do {
unsigned char c;
put_char(port, '$');
put_char(port, 'O'); /* 'O'utput to console */
checksum = 'O';
for (i=0; i<count; i++) { /* Don't use run length encoding */
int h, l;
c = *p++;
h = highhex(c);
l = lowhex(c);
put_char(port, h);
put_char(port, l);
checksum += h + l;
}
put_char(port, '#');
put_char(port, highhex(checksum));
put_char(port, lowhex(checksum));
} while (get_char(port) != '+');
} else
#endif /* CONFIG_SH_STANDARD_BIOS || CONFIG_SH_KGDB */
for (i=0; i<count; i++) {
if (*p == 10)
put_char(port, '\r');
put_char(port, *p++);
}
}
#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
#ifdef CONFIG_SH_KGDB
static int kgdb_sci_getchar(void)
{
int c;
/* Keep trying to read a character, this could be neater */
while ((c = get_char(kgdb_sci_port)) < 0)
cpu_relax();
return c;
}
static inline void kgdb_sci_putchar(int c)
{
put_char(kgdb_sci_port, c);
}
#endif /* CONFIG_SH_KGDB */
#if defined(__H8300S__)
enum { sci_disable, sci_enable };
static void h8300_sci_config(struct uart_port* port, unsigned int ctrl)
{
volatile unsigned char *mstpcrl=(volatile unsigned char *)MSTPCRL;
int ch = (port->mapbase - SMR0) >> 3;
unsigned char mask = 1 << (ch+1);
if (ctrl == sci_disable) {
*mstpcrl |= mask;
} else {
*mstpcrl &= ~mask;
}
}
static inline void h8300_sci_enable(struct uart_port *port)
{
h8300_sci_config(port, sci_enable);
}
static inline void h8300_sci_disable(struct uart_port *port)
{
h8300_sci_config(port, sci_disable);
}
#endif
#if defined(SCI_ONLY) || defined(SCI_AND_SCIF) && \
defined(__H8300H__) || defined(__H8300S__)
static void sci_init_pins_sci(struct uart_port* port, unsigned int cflag)
{
int ch = (port->mapbase - SMR0) >> 3;
/* set DDR regs */
H8300_GPIO_DDR(h8300_sci_pins[ch].port,
h8300_sci_pins[ch].rx,
H8300_GPIO_INPUT);
H8300_GPIO_DDR(h8300_sci_pins[ch].port,
h8300_sci_pins[ch].tx,
H8300_GPIO_OUTPUT);
/* tx mark output*/
H8300_SCI_DR(ch) |= h8300_sci_pins[ch].tx;
}
#else
#define sci_init_pins_sci NULL
#endif
#if defined(CONFIG_CPU_SUBTYPE_SH7707) || defined(CONFIG_CPU_SUBTYPE_SH7709)
static void sci_init_pins_irda(struct uart_port *port, unsigned int cflag)
{
unsigned int fcr_val = 0;
if (cflag & CRTSCTS)
fcr_val |= SCFCR_MCE;
sci_out(port, SCFCR, fcr_val);
}
#else
#define sci_init_pins_irda NULL
#endif
#ifdef SCI_ONLY
#define sci_init_pins_scif NULL
#endif
#if defined(SCIF_ONLY) || defined(SCI_AND_SCIF)
#if defined(CONFIG_CPU_SUBTYPE_SH7300) || defined(CONFIG_CPU_SUBTYPE_SH7710)
/* SH7300 doesn't use RTS/CTS */
static void sci_init_pins_scif(struct uart_port *port, unsigned int cflag)
{
sci_out(port, SCFCR, 0);
}
#elif defined(CONFIG_CPU_SH3)
/* For SH7705, SH7706, SH7707, SH7709, SH7709A, SH7729 */
static void sci_init_pins_scif(struct uart_port *port, unsigned int cflag)
{
unsigned int fcr_val = 0;
unsigned short data;
/* We need to set SCPCR to enable RTS/CTS */
data = ctrl_inw(SCPCR);
/* Clear out SCP7MD1,0, SCP6MD1,0, SCP4MD1,0*/
ctrl_outw(data & 0x0fcf, SCPCR);
if (cflag & CRTSCTS)
fcr_val |= SCFCR_MCE;
else {
/* We need to set SCPCR to enable RTS/CTS */
data = ctrl_inw(SCPCR);
/* Clear out SCP7MD1,0, SCP4MD1,0,
Set SCP6MD1,0 = {01} (output) */
ctrl_outw((data & 0x0fcf) | 0x1000, SCPCR);
data = ctrl_inb(SCPDR);
/* Set /RTS2 (bit6) = 0 */
ctrl_outb(data & 0xbf, SCPDR);
}
sci_out(port, SCFCR, fcr_val);
}
#elif defined(CONFIG_CPU_SUBTYPE_SH7722)
static void sci_init_pins_scif(struct uart_port *port, unsigned int cflag)
{
unsigned int fcr_val = 0;
if (cflag & CRTSCTS) {
fcr_val |= SCFCR_MCE;
ctrl_outw(0x0000, PORT_PSCR);
} else {
unsigned short data;
data = ctrl_inw(PORT_PSCR);
data &= 0x033f;
data |= 0x0400;
ctrl_outw(data, PORT_PSCR);
ctrl_outw(ctrl_inw(SCSPTR0) & 0x17, SCSPTR0);
}
sci_out(port, SCFCR, fcr_val);
}
#else
/* For SH7750 */
static void sci_init_pins_scif(struct uart_port *port, unsigned int cflag)
{
unsigned int fcr_val = 0;
if (cflag & CRTSCTS) {
fcr_val |= SCFCR_MCE;
} else {
#ifdef CONFIG_CPU_SUBTYPE_SH7343
/* Nothing */
#elif defined(CONFIG_CPU_SUBTYPE_SH7780)
ctrl_outw(0x0080, SCSPTR0); /* Set RTS = 1 */
#else
ctrl_outw(0x0080, SCSPTR2); /* Set RTS = 1 */
#endif
}
sci_out(port, SCFCR, fcr_val);
}
#endif
#if defined(CONFIG_CPU_SUBTYPE_SH7760) || defined(CONFIG_CPU_SUBTYPE_SH7780)
static inline int scif_txroom(struct uart_port *port)
{
return SCIF_TXROOM_MAX - (sci_in(port, SCTFDR) & 0x7f);
}
static inline int scif_rxroom(struct uart_port *port)
{
return sci_in(port, SCRFDR) & 0x7f;
}
#else
static inline int scif_txroom(struct uart_port *port)
{
return SCIF_TXROOM_MAX - (sci_in(port, SCFDR) >> 8);
}
static inline int scif_rxroom(struct uart_port *port)
{
return sci_in(port, SCFDR) & SCIF_RFDC_MASK;
}
#endif
#endif /* SCIF_ONLY || SCI_AND_SCIF */
static inline int sci_txroom(struct uart_port *port)
{
return ((sci_in(port, SCxSR) & SCI_TDRE) != 0);
}
static inline int sci_rxroom(struct uart_port *port)
{
return ((sci_in(port, SCxSR) & SCxSR_RDxF(port)) != 0);
}
/* ********************************************************************** *
* the interrupt related routines *
* ********************************************************************** */
static void sci_transmit_chars(struct uart_port *port)
{
struct circ_buf *xmit = &port->info->xmit;
unsigned int stopped = uart_tx_stopped(port);
unsigned short status;
unsigned short ctrl;
int count;
status = sci_in(port, SCxSR);
if (!(status & SCxSR_TDxE(port))) {
ctrl = sci_in(port, SCSCR);
if (uart_circ_empty(xmit)) {
ctrl &= ~SCI_CTRL_FLAGS_TIE;
} else {
ctrl |= SCI_CTRL_FLAGS_TIE;
}
sci_out(port, SCSCR, ctrl);
return;
}
#ifndef SCI_ONLY
if (port->type == PORT_SCIF)
count = scif_txroom(port);
else
#endif
count = sci_txroom(port);
do {
unsigned char c;
if (port->x_char) {
c = port->x_char;
port->x_char = 0;
} else if (!uart_circ_empty(xmit) && !stopped) {
c = xmit->buf[xmit->tail];
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
} else {
break;
}
sci_out(port, SCxTDR, c);
port->icount.tx++;
} while (--count > 0);
sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
if (uart_circ_empty(xmit)) {
sci_stop_tx(port);
} else {
ctrl = sci_in(port, SCSCR);
#if !defined(SCI_ONLY)
if (port->type == PORT_SCIF) {
sci_in(port, SCxSR); /* Dummy read */
sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
}
#endif
ctrl |= SCI_CTRL_FLAGS_TIE;
sci_out(port, SCSCR, ctrl);
}
}
/* On SH3, SCIF may read end-of-break as a space->mark char */
#define STEPFN(c) ({int __c=(c); (((__c-1)|(__c)) == -1); })
static inline void sci_receive_chars(struct uart_port *port)
{
struct sci_port *sci_port = (struct sci_port *)port;
struct tty_struct *tty = port->info->tty;
int i, count, copied = 0;
unsigned short status;
unsigned char flag;
status = sci_in(port, SCxSR);
if (!(status & SCxSR_RDxF(port)))
return;
while (1) {
#if !defined(SCI_ONLY)
if (port->type == PORT_SCIF)
count = scif_rxroom(port);
else
#endif
count = sci_rxroom(port);
/* Don't copy more bytes than there is room for in the buffer */
count = tty_buffer_request_room(tty, count);
/* If for any reason we can't copy more data, we're done! */
if (count == 0)
break;
if (port->type == PORT_SCI) {
char c = sci_in(port, SCxRDR);
if (uart_handle_sysrq_char(port, c) || sci_port->break_flag)
count = 0;
else {
tty_insert_flip_char(tty, c, TTY_NORMAL);
}
} else {
for (i=0; i<count; i++) {
char c = sci_in(port, SCxRDR);
status = sci_in(port, SCxSR);
#if defined(CONFIG_CPU_SH3)
/* Skip "chars" during break */
if (sci_port->break_flag) {
if ((c == 0) &&
(status & SCxSR_FER(port))) {
count--; i--;
continue;
}
/* Nonzero => end-of-break */
pr_debug("scif: debounce<%02x>\n", c);
sci_port->break_flag = 0;
if (STEPFN(c)) {
count--; i--;
continue;
}
}
#endif /* CONFIG_CPU_SH3 */
if (uart_handle_sysrq_char(port, c)) {
count--; i--;
continue;
}
/* Store data and status */
if (status&SCxSR_FER(port)) {
flag = TTY_FRAME;
pr_debug("sci: frame error\n");
} else if (status&SCxSR_PER(port)) {
flag = TTY_PARITY;
pr_debug("sci: parity error\n");
} else
flag = TTY_NORMAL;
tty_insert_flip_char(tty, c, flag);
}
}
sci_in(port, SCxSR); /* dummy read */
sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
copied += count;
port->icount.rx += count;
}
if (copied) {
/* Tell the rest of the system the news. New characters! */
tty_flip_buffer_push(tty);
} else {
sci_in(port, SCxSR); /* dummy read */
sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
}
}
#define SCI_BREAK_JIFFIES (HZ/20)
/* The sci generates interrupts during the break,
* 1 per millisecond or so during the break period, for 9600 baud.
* So dont bother disabling interrupts.
* But dont want more than 1 break event.
* Use a kernel timer to periodically poll the rx line until
* the break is finished.
*/
static void sci_schedule_break_timer(struct sci_port *port)
{
port->break_timer.expires = jiffies + SCI_BREAK_JIFFIES;
add_timer(&port->break_timer);
}
/* Ensure that two consecutive samples find the break over. */
static void sci_break_timer(unsigned long data)
{
struct sci_port *port = (struct sci_port *)data;
if (sci_rxd_in(&port->port) == 0) {
port->break_flag = 1;
sci_schedule_break_timer(port);
} else if (port->break_flag == 1) {
/* break is over. */
port->break_flag = 2;
sci_schedule_break_timer(port);
} else
port->break_flag = 0;
}
static inline int sci_handle_errors(struct uart_port *port)
{
int copied = 0;
unsigned short status = sci_in(port, SCxSR);
struct tty_struct *tty = port->info->tty;
if (status & SCxSR_ORER(port)) {
/* overrun error */
if (tty_insert_flip_char(tty, 0, TTY_OVERRUN))
copied++;
pr_debug("sci: overrun error\n");
}
if (status & SCxSR_FER(port)) {
if (sci_rxd_in(port) == 0) {
/* Notify of BREAK */
struct sci_port *sci_port = (struct sci_port *)port;
if (!sci_port->break_flag) {
sci_port->break_flag = 1;
sci_schedule_break_timer(sci_port);
/* Do sysrq handling. */
if (uart_handle_break(port))
return 0;
pr_debug("sci: BREAK detected\n");
if (tty_insert_flip_char(tty, 0, TTY_BREAK))
copied++;
}
} else {
/* frame error */
if (tty_insert_flip_char(tty, 0, TTY_FRAME))
copied++;
pr_debug("sci: frame error\n");
}
}
if (status & SCxSR_PER(port)) {
/* parity error */
if (tty_insert_flip_char(tty, 0, TTY_PARITY))
copied++;
pr_debug("sci: parity error\n");
}
if (copied)
tty_flip_buffer_push(tty);
return copied;
}
static inline int sci_handle_breaks(struct uart_port *port)
{
int copied = 0;
unsigned short status = sci_in(port, SCxSR);
struct tty_struct *tty = port->info->tty;
struct sci_port *s = &sci_ports[port->line];
if (uart_handle_break(port))
return 0;
if (!s->break_flag && status & SCxSR_BRK(port)) {
#if defined(CONFIG_CPU_SH3)
/* Debounce break */
s->break_flag = 1;
#endif
/* Notify of BREAK */
if (tty_insert_flip_char(tty, 0, TTY_BREAK))
copied++;
pr_debug("sci: BREAK detected\n");
}
#if defined(SCIF_ORER)
/* XXX: Handle SCIF overrun error */
if (port->type == PORT_SCIF && (sci_in(port, SCLSR) & SCIF_ORER) != 0) {
sci_out(port, SCLSR, 0);
if (tty_insert_flip_char(tty, 0, TTY_OVERRUN)) {
copied++;
pr_debug("sci: overrun error\n");
}
}
#endif
if (copied)
tty_flip_buffer_push(tty);
return copied;
}
static irqreturn_t sci_rx_interrupt(int irq, void *port)
{
/* I think sci_receive_chars has to be called irrespective
* of whether the I_IXOFF is set, otherwise, how is the interrupt
* to be disabled?
*/
sci_receive_chars(port);
return IRQ_HANDLED;
}
static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
{
struct uart_port *port = ptr;
spin_lock_irq(&port->lock);
sci_transmit_chars(port);
spin_unlock_irq(&port->lock);
return IRQ_HANDLED;
}
static irqreturn_t sci_er_interrupt(int irq, void *ptr)
{
struct uart_port *port = ptr;
/* Handle errors */
if (port->type == PORT_SCI) {
if (sci_handle_errors(port)) {
/* discard character in rx buffer */
sci_in(port, SCxSR);
sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
}
} else {
#if defined(SCIF_ORER)
if((sci_in(port, SCLSR) & SCIF_ORER) != 0) {
struct tty_struct *tty = port->info->tty;
sci_out(port, SCLSR, 0);
tty_insert_flip_char(tty, 0, TTY_OVERRUN);
tty_flip_buffer_push(tty);
pr_debug("scif: overrun error\n");
}
#endif
sci_rx_interrupt(irq, ptr);
}
sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
/* Kick the transmission */
sci_tx_interrupt(irq, ptr);
return IRQ_HANDLED;
}
static irqreturn_t sci_br_interrupt(int irq, void *ptr)
{
struct uart_port *port = ptr;
/* Handle BREAKs */
sci_handle_breaks(port);
#ifdef CONFIG_SH_KGDB
/* Break into the debugger if a break is detected */
BREAKPOINT();
#endif
sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
return IRQ_HANDLED;
}
static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
{
unsigned short ssr_status, scr_status;
struct uart_port *port = ptr;
ssr_status = sci_in(port,SCxSR);
scr_status = sci_in(port,SCSCR);
/* Tx Interrupt */
if ((ssr_status & 0x0020) && (scr_status & 0x0080))
sci_tx_interrupt(irq, ptr);
/* Rx Interrupt */
if ((ssr_status & 0x0002) && (scr_status & 0x0040))
sci_rx_interrupt(irq, ptr);
/* Error Interrupt */
if ((ssr_status & 0x0080) && (scr_status & 0x0400))
sci_er_interrupt(irq, ptr);
/* Break Interrupt */
if ((ssr_status & 0x0010) && (scr_status & 0x0200))
sci_br_interrupt(irq, ptr);
return IRQ_HANDLED;
}
#ifdef CONFIG_CPU_FREQ
/*
* Here we define a transistion notifier so that we can update all of our
* ports' baud rate when the peripheral clock changes.
*/
static int sci_notifier(struct notifier_block *self,
unsigned long phase, void *p)
{
struct cpufreq_freqs *freqs = p;
int i;
if ((phase == CPUFREQ_POSTCHANGE) ||
(phase == CPUFREQ_RESUMECHANGE)){
for (i = 0; i < SCI_NPORTS; i++) {
struct uart_port *port = &sci_ports[i].port;
struct clk *clk;
/*
* Update the uartclk per-port if frequency has
* changed, since it will no longer necessarily be
* consistent with the old frequency.
*
* Really we want to be able to do something like
* uart_change_speed() or something along those lines
* here to implicitly reset the per-port baud rate..
*
* Clean this up later..
*/
clk = clk_get(NULL, "module_clk");
port->uartclk = clk_get_rate(clk) * 16;
clk_put(clk);
}
printk(KERN_INFO "%s: got a postchange notification "
"for cpu %d (old %d, new %d)\n",
__FUNCTION__, freqs->cpu, freqs->old, freqs->new);
}
return NOTIFY_OK;
}
static struct notifier_block sci_nb = { &sci_notifier, NULL, 0 };
#endif /* CONFIG_CPU_FREQ */
static int sci_request_irq(struct sci_port *port)
{
int i;
irqreturn_t (*handlers[4])(int irq, void *ptr) = {
sci_er_interrupt, sci_rx_interrupt, sci_tx_interrupt,
sci_br_interrupt,
};
const char *desc[] = { "SCI Receive Error", "SCI Receive Data Full",
"SCI Transmit Data Empty", "SCI Break" };
if (port->irqs[0] == port->irqs[1]) {
if (!port->irqs[0]) {
printk(KERN_ERR "sci: Cannot allocate irq.(IRQ=0)\n");
return -ENODEV;
}
if (request_irq(port->irqs[0], sci_mpxed_interrupt,
IRQF_DISABLED, "sci", port)) {
printk(KERN_ERR "sci: Cannot allocate irq.\n");
return -ENODEV;
}
} else {
for (i = 0; i < ARRAY_SIZE(handlers); i++) {
if (!port->irqs[i])
continue;
if (request_irq(port->irqs[i], handlers[i],
IRQF_DISABLED, desc[i], port)) {
printk(KERN_ERR "sci: Cannot allocate irq.\n");
return -ENODEV;
}
}
}
return 0;
}
static void sci_free_irq(struct sci_port *port)
{
int i;
if (port->irqs[0] == port->irqs[1]) {
if (!port->irqs[0])
printk("sci: sci_free_irq error\n");
else
free_irq(port->irqs[0], port);
} else {
for (i = 0; i < ARRAY_SIZE(port->irqs); i++) {
if (!port->irqs[i])
continue;
free_irq(port->irqs[i], port);
}
}
}
static unsigned int sci_tx_empty(struct uart_port *port)
{
/* Can't detect */
return TIOCSER_TEMT;
}
static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
/* This routine is used for seting signals of: DTR, DCD, CTS/RTS */
/* We use SCIF's hardware for CTS/RTS, so don't need any for that. */
/* If you have signals for DTR and DCD, please implement here. */
}
static unsigned int sci_get_mctrl(struct uart_port *port)
{
/* This routine is used for geting signals of: DTR, DCD, DSR, RI,
and CTS/RTS */
return TIOCM_DTR | TIOCM_RTS | TIOCM_DSR;
}
static void sci_start_tx(struct uart_port *port)
{
unsigned short ctrl;
/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
ctrl = sci_in(port, SCSCR);
ctrl |= SCI_CTRL_FLAGS_TIE;
sci_out(port, SCSCR, ctrl);
}
static void sci_stop_tx(struct uart_port *port)
{
unsigned short ctrl;
/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
ctrl = sci_in(port, SCSCR);
ctrl &= ~SCI_CTRL_FLAGS_TIE;
sci_out(port, SCSCR, ctrl);
}
static void sci_start_rx(struct uart_port *port, unsigned int tty_start)
{
unsigned short ctrl;
/* Set RIE (Receive Interrupt Enable) bit in SCSCR */
ctrl = sci_in(port, SCSCR);
ctrl |= SCI_CTRL_FLAGS_RIE | SCI_CTRL_FLAGS_REIE;
sci_out(port, SCSCR, ctrl);
}
static void sci_stop_rx(struct uart_port *port)
{
unsigned short ctrl;
/* Clear RIE (Receive Interrupt Enable) bit in SCSCR */
ctrl = sci_in(port, SCSCR);
ctrl &= ~(SCI_CTRL_FLAGS_RIE | SCI_CTRL_FLAGS_REIE);
sci_out(port, SCSCR, ctrl);
}
static void sci_enable_ms(struct uart_port *port)
{
/* Nothing here yet .. */
}
static void sci_break_ctl(struct uart_port *port, int break_state)
{
/* Nothing here yet .. */
}
static int sci_startup(struct uart_port *port)
{
struct sci_port *s = &sci_ports[port->line];
if (s->enable)
s->enable(port);
sci_request_irq(s);
sci_start_tx(port);
sci_start_rx(port, 1);
return 0;
}
static void sci_shutdown(struct uart_port *port)
{
struct sci_port *s = &sci_ports[port->line];
sci_stop_rx(port);
sci_stop_tx(port);
sci_free_irq(s);
if (s->disable)
s->disable(port);
}
static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
struct ktermios *old)
{
struct sci_port *s = &sci_ports[port->line];
unsigned int status, baud, smr_val;
unsigned long flags;
int t;
baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk/16);
switch (baud) {
case 0:
t = -1;
break;
default:
{
#if defined(CONFIG_SUPERH) && !defined(CONFIG_SUPERH64)
struct clk *clk = clk_get(NULL, "module_clk");
t = SCBRR_VALUE(baud, clk_get_rate(clk));
clk_put(clk);
#else
t = SCBRR_VALUE(baud);
#endif
}
break;
}
spin_lock_irqsave(&port->lock, flags);
do {
status = sci_in(port, SCxSR);
} while (!(status & SCxSR_TEND(port)));
sci_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */
#if !defined(SCI_ONLY)
if (port->type == PORT_SCIF)
sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
#endif
smr_val = sci_in(port, SCSMR) & 3;
if ((termios->c_cflag & CSIZE) == CS7)
smr_val |= 0x40;
if (termios->c_cflag & PARENB)
smr_val |= 0x20;
if (termios->c_cflag & PARODD)
smr_val |= 0x30;
if (termios->c_cflag & CSTOPB)
smr_val |= 0x08;
uart_update_timeout(port, termios->c_cflag, baud);
sci_out(port, SCSMR, smr_val);
if (t > 0) {
if(t >= 256) {
sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1);
t >>= 2;
} else {
sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3);
}
sci_out(port, SCBRR, t);
udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
}
if (likely(s->init_pins))
s->init_pins(port, termios->c_cflag);
sci_out(port, SCSCR, SCSCR_INIT(port));
if ((termios->c_cflag & CREAD) != 0)
sci_start_rx(port,0);
spin_unlock_irqrestore(&port->lock, flags);
}
static const char *sci_type(struct uart_port *port)
{
switch (port->type) {
case PORT_SCI: return "sci";
case PORT_SCIF: return "scif";
case PORT_IRDA: return "irda";
}
return 0;
}
static void sci_release_port(struct uart_port *port)
{
/* Nothing here yet .. */
}
static int sci_request_port(struct uart_port *port)
{
/* Nothing here yet .. */
return 0;
}
static void sci_config_port(struct uart_port *port, int flags)
{
struct sci_port *s = &sci_ports[port->line];
port->type = s->type;
switch (port->type) {
case PORT_SCI:
s->init_pins = sci_init_pins_sci;
break;
case PORT_SCIF:
s->init_pins = sci_init_pins_scif;
break;
case PORT_IRDA:
s->init_pins = sci_init_pins_irda;
break;
}
#if defined(CONFIG_CPU_SUBTYPE_SH5_101) || defined(CONFIG_CPU_SUBTYPE_SH5_103)
if (port->mapbase == 0)
port->mapbase = onchip_remap(SCIF_ADDR_SH5, 1024, "SCIF");
port->membase = (void __iomem *)port->mapbase;
#endif
}
static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
{
struct sci_port *s = &sci_ports[port->line];
if (ser->irq != s->irqs[SCIx_TXI_IRQ] || ser->irq > NR_IRQS)
return -EINVAL;
if (ser->baud_base < 2400)
/* No paper tape reader for Mitch.. */
return -EINVAL;
return 0;
}
static struct uart_ops sci_uart_ops = {
.tx_empty = sci_tx_empty,
.set_mctrl = sci_set_mctrl,
.get_mctrl = sci_get_mctrl,
.start_tx = sci_start_tx,
.stop_tx = sci_stop_tx,
.stop_rx = sci_stop_rx,
.enable_ms = sci_enable_ms,
.break_ctl = sci_break_ctl,
.startup = sci_startup,
.shutdown = sci_shutdown,
.set_termios = sci_set_termios,
.type = sci_type,
.release_port = sci_release_port,
.request_port = sci_request_port,
.config_port = sci_config_port,
.verify_port = sci_verify_port,
};
static void __init sci_init_ports(void)
{
static int first = 1;
int i;
if (!first)
return;
first = 0;
for (i = 0; i < SCI_NPORTS; i++) {
sci_ports[i].port.ops = &sci_uart_ops;
sci_ports[i].port.iotype = UPIO_MEM;
sci_ports[i].port.line = i;
sci_ports[i].port.fifosize = 1;
#if defined(__H8300H__) || defined(__H8300S__)
#ifdef __H8300S__
sci_ports[i].enable = h8300_sci_enable;
sci_ports[i].disable = h8300_sci_disable;
#endif
sci_ports[i].port.uartclk = CONFIG_CPU_CLOCK;
#elif defined(CONFIG_SUPERH64)
sci_ports[i].port.uartclk = current_cpu_data.module_clock * 16;
#else
/*
* XXX: We should use a proper SCI/SCIF clock
*/
{
struct clk *clk = clk_get(NULL, "module_clk");
sci_ports[i].port.uartclk = clk_get_rate(clk) * 16;
clk_put(clk);
}
#endif
sci_ports[i].break_timer.data = (unsigned long)&sci_ports[i];
sci_ports[i].break_timer.function = sci_break_timer;
init_timer(&sci_ports[i].break_timer);
}
}
int __init early_sci_setup(struct uart_port *port)
{
if (unlikely(port->line > SCI_NPORTS))
return -ENODEV;
sci_init_ports();
sci_ports[port->line].port.membase = port->membase;
sci_ports[port->line].port.mapbase = port->mapbase;
sci_ports[port->line].port.type = port->type;
return 0;
}
#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
/*
* Print a string to the serial port trying not to disturb
* any possible real use of the port...
*/
static void serial_console_write(struct console *co, const char *s,
unsigned count)
{
put_string(serial_console_port, s, count);
}
static int __init serial_console_setup(struct console *co, char *options)
{
struct uart_port *port;
int baud = 115200;
int bits = 8;
int parity = 'n';
int flow = 'n';
int ret;
/*
* Check whether an invalid uart number has been specified, and
* if so, search for the first available port that does have
* console support.
*/
if (co->index >= SCI_NPORTS)
co->index = 0;
serial_console_port = &sci_ports[co->index];
port = &serial_console_port->port;
/*
* Also need to check port->type, we don't actually have any
* UPIO_PORT ports, but uart_report_port() handily misreports
* it anyways if we don't have a port available by the time this is
* called.
*/
if (!port->type)
return -ENODEV;
if (!port->membase || !port->mapbase)
return -ENODEV;
spin_lock_init(&port->lock);
port->type = serial_console_port->type;
if (port->flags & UPF_IOREMAP)
sci_config_port(port, 0);
if (serial_console_port->enable)
serial_console_port->enable(port);
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
ret = uart_set_options(port, co, baud, parity, bits, flow);
#if defined(__H8300H__) || defined(__H8300S__)
/* disable rx interrupt */
if (ret == 0)
sci_stop_rx(port);
#endif
return ret;
}
static struct console serial_console = {
.name = "ttySC",
.device = uart_console_device,
.write = serial_console_write,
.setup = serial_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &sci_uart_driver,
};
static int __init sci_console_init(void)
{
sci_init_ports();
register_console(&serial_console);
return 0;
}
console_initcall(sci_console_init);
#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
#ifdef CONFIG_SH_KGDB
/*
* FIXME: Most of this can go away.. at the moment, we rely on
* arch/sh/kernel/setup.c to do the command line parsing for kgdb, though
* most of that can easily be done here instead.
*
* For the time being, just accept the values that were parsed earlier..
*/
static void __init kgdb_console_get_options(struct uart_port *port, int *baud,
int *parity, int *bits)
{
*baud = kgdb_baud;
*parity = tolower(kgdb_parity);
*bits = kgdb_bits - '0';
}
/*
* The naming here is somewhat misleading, since kgdb_console_setup() takes
* care of the early-on initialization for kgdb, regardless of whether we
* actually use kgdb as a console or not.
*
* On the plus side, this lets us kill off the old kgdb_sci_setup() nonsense.
*/
int __init kgdb_console_setup(struct console *co, char *options)
{
struct uart_port *port = &sci_ports[kgdb_portnum].port;
int baud = 38400;
int bits = 8;
int parity = 'n';
int flow = 'n';
spin_lock_init(&port->lock);
if (co->index != kgdb_portnum)
co->index = kgdb_portnum;
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
else
kgdb_console_get_options(port, &baud, &parity, &bits);
kgdb_getchar = kgdb_sci_getchar;
kgdb_putchar = kgdb_sci_putchar;
return uart_set_options(port, co, baud, parity, bits, flow);
}
#endif /* CONFIG_SH_KGDB */
#ifdef CONFIG_SH_KGDB_CONSOLE
static struct console kgdb_console = {
.name = "ttySC",
.write = kgdb_console_write,
.setup = kgdb_console_setup,
.flags = CON_PRINTBUFFER | CON_ENABLED,
.index = -1,
.data = &sci_uart_driver,
};
/* Register the KGDB console so we get messages (d'oh!) */
static int __init kgdb_console_init(void)
{
sci_init_ports();
register_console(&kgdb_console);
return 0;
}
console_initcall(kgdb_console_init);
#endif /* CONFIG_SH_KGDB_CONSOLE */
#if defined(CONFIG_SH_KGDB_CONSOLE)
#define SCI_CONSOLE &kgdb_console
#elif defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
#define SCI_CONSOLE &serial_console
#else
#define SCI_CONSOLE 0
#endif
static char banner[] __initdata =
KERN_INFO "SuperH SCI(F) driver initialized\n";
static struct uart_driver sci_uart_driver = {
.owner = THIS_MODULE,
.driver_name = "sci",
.dev_name = "ttySC",
.major = SCI_MAJOR,
.minor = SCI_MINOR_START,
.nr = SCI_NPORTS,
.cons = SCI_CONSOLE,
};
/*
* Register a set of serial devices attached to a platform device. The
* list is terminated with a zero flags entry, which means we expect
* all entries to have at least UPF_BOOT_AUTOCONF set. Platforms that need
* remapping (such as sh64) should also set UPF_IOREMAP.
*/
static int __devinit sci_probe(struct platform_device *dev)
{
struct plat_sci_port *p = dev->dev.platform_data;
int i;
for (i = 0; p && p->flags != 0 && i < SCI_NPORTS; p++, i++) {
struct sci_port *sciport = &sci_ports[i];
sciport->port.mapbase = p->mapbase;
/*
* For the simple (and majority of) cases where we don't need
* to do any remapping, just cast the cookie directly.
*/
if (p->mapbase && !p->membase && !(p->flags & UPF_IOREMAP))
p->membase = (void __iomem *)p->mapbase;
sciport->port.membase = p->membase;
sciport->port.irq = p->irqs[SCIx_TXI_IRQ];
sciport->port.flags = p->flags;
sciport->port.dev = &dev->dev;
sciport->type = sciport->port.type = p->type;
memcpy(&sciport->irqs, &p->irqs, sizeof(p->irqs));
uart_add_one_port(&sci_uart_driver, &sciport->port);
}
#ifdef CONFIG_CPU_FREQ
cpufreq_register_notifier(&sci_nb, CPUFREQ_TRANSITION_NOTIFIER);
dev_info(&dev->dev, "sci: CPU frequency notifier registered\n");
#endif
#ifdef CONFIG_SH_STANDARD_BIOS
sh_bios_gdb_detach();
#endif
return 0;
}
static int __devexit sci_remove(struct platform_device *dev)
{
int i;
for (i = 0; i < SCI_NPORTS; i++)
uart_remove_one_port(&sci_uart_driver, &sci_ports[i].port);
return 0;
}
static int sci_suspend(struct platform_device *dev, pm_message_t state)
{
int i;
for (i = 0; i < SCI_NPORTS; i++) {
struct sci_port *p = &sci_ports[i];
if (p->type != PORT_UNKNOWN && p->port.dev == &dev->dev)
uart_suspend_port(&sci_uart_driver, &p->port);
}
return 0;
}
static int sci_resume(struct platform_device *dev)
{
int i;
for (i = 0; i < SCI_NPORTS; i++) {
struct sci_port *p = &sci_ports[i];
if (p->type != PORT_UNKNOWN && p->port.dev == &dev->dev)
uart_resume_port(&sci_uart_driver, &p->port);
}
return 0;
}
static struct platform_driver sci_driver = {
.probe = sci_probe,
.remove = __devexit_p(sci_remove),
.suspend = sci_suspend,
.resume = sci_resume,
.driver = {
.name = "sh-sci",
.owner = THIS_MODULE,
},
};
static int __init sci_init(void)
{
int ret;
printk(banner);
sci_init_ports();
ret = uart_register_driver(&sci_uart_driver);
if (likely(ret == 0)) {
ret = platform_driver_register(&sci_driver);
if (unlikely(ret))
uart_unregister_driver(&sci_uart_driver);
}
return ret;
}
static void __exit sci_exit(void)
{
platform_driver_unregister(&sci_driver);
uart_unregister_driver(&sci_uart_driver);
}
module_init(sci_init);
module_exit(sci_exit);
MODULE_LICENSE("GPL");