| /* |
| * Freescale Integrated Flash Controller NAND driver |
| * |
| * Copyright 2011-2012 Freescale Semiconductor, Inc |
| * |
| * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <asm/fsl_ifc.h> |
| |
| #define FSL_IFC_V1_1_0 0x01010000 |
| #define ERR_BYTE 0xFF /* Value returned for read |
| bytes when read failed */ |
| #define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait |
| for IFC NAND Machine */ |
| |
| struct fsl_ifc_ctrl; |
| |
| /* mtd information per set */ |
| struct fsl_ifc_mtd { |
| struct mtd_info mtd; |
| struct nand_chip chip; |
| struct fsl_ifc_ctrl *ctrl; |
| |
| struct device *dev; |
| int bank; /* Chip select bank number */ |
| unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ |
| u8 __iomem *vbase; /* Chip select base virtual address */ |
| }; |
| |
| /* overview of the fsl ifc controller */ |
| struct fsl_ifc_nand_ctrl { |
| struct nand_hw_control controller; |
| struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; |
| |
| u8 __iomem *addr; /* Address of assigned IFC buffer */ |
| unsigned int page; /* Last page written to / read from */ |
| unsigned int read_bytes;/* Number of bytes read during command */ |
| unsigned int column; /* Saved column from SEQIN */ |
| unsigned int index; /* Pointer to next byte to 'read' */ |
| unsigned int oob; /* Non zero if operating on OOB data */ |
| unsigned int eccread; /* Non zero for a full-page ECC read */ |
| unsigned int counter; /* counter for the initializations */ |
| unsigned int max_bitflips; /* Saved during READ0 cmd */ |
| }; |
| |
| static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl; |
| |
| /* 512-byte page with 4-bit ECC, 8-bit */ |
| static struct nand_ecclayout oob_512_8bit_ecc4 = { |
| .eccbytes = 8, |
| .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, |
| .oobfree = { {0, 5}, {6, 2} }, |
| }; |
| |
| /* 512-byte page with 4-bit ECC, 16-bit */ |
| static struct nand_ecclayout oob_512_16bit_ecc4 = { |
| .eccbytes = 8, |
| .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, |
| .oobfree = { {2, 6}, }, |
| }; |
| |
| /* 2048-byte page size with 4-bit ECC */ |
| static struct nand_ecclayout oob_2048_ecc4 = { |
| .eccbytes = 32, |
| .eccpos = { |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| }, |
| .oobfree = { {2, 6}, {40, 24} }, |
| }; |
| |
| /* 4096-byte page size with 4-bit ECC */ |
| static struct nand_ecclayout oob_4096_ecc4 = { |
| .eccbytes = 64, |
| .eccpos = { |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63, |
| 64, 65, 66, 67, 68, 69, 70, 71, |
| }, |
| .oobfree = { {2, 6}, {72, 56} }, |
| }; |
| |
| /* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */ |
| static struct nand_ecclayout oob_4096_ecc8 = { |
| .eccbytes = 128, |
| .eccpos = { |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63, |
| 64, 65, 66, 67, 68, 69, 70, 71, |
| 72, 73, 74, 75, 76, 77, 78, 79, |
| 80, 81, 82, 83, 84, 85, 86, 87, |
| 88, 89, 90, 91, 92, 93, 94, 95, |
| 96, 97, 98, 99, 100, 101, 102, 103, |
| 104, 105, 106, 107, 108, 109, 110, 111, |
| 112, 113, 114, 115, 116, 117, 118, 119, |
| 120, 121, 122, 123, 124, 125, 126, 127, |
| 128, 129, 130, 131, 132, 133, 134, 135, |
| }, |
| .oobfree = { {2, 6}, {136, 82} }, |
| }; |
| |
| /* 8192-byte page size with 4-bit ECC */ |
| static struct nand_ecclayout oob_8192_ecc4 = { |
| .eccbytes = 128, |
| .eccpos = { |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63, |
| 64, 65, 66, 67, 68, 69, 70, 71, |
| 72, 73, 74, 75, 76, 77, 78, 79, |
| 80, 81, 82, 83, 84, 85, 86, 87, |
| 88, 89, 90, 91, 92, 93, 94, 95, |
| 96, 97, 98, 99, 100, 101, 102, 103, |
| 104, 105, 106, 107, 108, 109, 110, 111, |
| 112, 113, 114, 115, 116, 117, 118, 119, |
| 120, 121, 122, 123, 124, 125, 126, 127, |
| 128, 129, 130, 131, 132, 133, 134, 135, |
| }, |
| .oobfree = { {2, 6}, {136, 208} }, |
| }; |
| |
| /* 8192-byte page size with 8-bit ECC -- requires 218-byte OOB */ |
| static struct nand_ecclayout oob_8192_ecc8 = { |
| .eccbytes = 256, |
| .eccpos = { |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63, |
| 64, 65, 66, 67, 68, 69, 70, 71, |
| 72, 73, 74, 75, 76, 77, 78, 79, |
| 80, 81, 82, 83, 84, 85, 86, 87, |
| 88, 89, 90, 91, 92, 93, 94, 95, |
| 96, 97, 98, 99, 100, 101, 102, 103, |
| 104, 105, 106, 107, 108, 109, 110, 111, |
| 112, 113, 114, 115, 116, 117, 118, 119, |
| 120, 121, 122, 123, 124, 125, 126, 127, |
| 128, 129, 130, 131, 132, 133, 134, 135, |
| 136, 137, 138, 139, 140, 141, 142, 143, |
| 144, 145, 146, 147, 148, 149, 150, 151, |
| 152, 153, 154, 155, 156, 157, 158, 159, |
| 160, 161, 162, 163, 164, 165, 166, 167, |
| 168, 169, 170, 171, 172, 173, 174, 175, |
| 176, 177, 178, 179, 180, 181, 182, 183, |
| 184, 185, 186, 187, 188, 189, 190, 191, |
| 192, 193, 194, 195, 196, 197, 198, 199, |
| 200, 201, 202, 203, 204, 205, 206, 207, |
| 208, 209, 210, 211, 212, 213, 214, 215, |
| 216, 217, 218, 219, 220, 221, 222, 223, |
| 224, 225, 226, 227, 228, 229, 230, 231, |
| 232, 233, 234, 235, 236, 237, 238, 239, |
| 240, 241, 242, 243, 244, 245, 246, 247, |
| 248, 249, 250, 251, 252, 253, 254, 255, |
| 256, 257, 258, 259, 260, 261, 262, 263, |
| }, |
| .oobfree = { {2, 6}, {264, 80} }, |
| }; |
| |
| /* |
| * Generic flash bbt descriptors |
| */ |
| static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; |
| static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; |
| |
| static struct nand_bbt_descr bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 2, /* 0 on 8-bit small page */ |
| .len = 4, |
| .veroffs = 6, |
| .maxblocks = 4, |
| .pattern = bbt_pattern, |
| }; |
| |
| static struct nand_bbt_descr bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 2, /* 0 on 8-bit small page */ |
| .len = 4, |
| .veroffs = 6, |
| .maxblocks = 4, |
| .pattern = mirror_pattern, |
| }; |
| |
| /* |
| * Set up the IFC hardware block and page address fields, and the ifc nand |
| * structure addr field to point to the correct IFC buffer in memory |
| */ |
| static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_ifc_mtd *priv = chip->priv; |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_regs __iomem *ifc = ctrl->regs; |
| int buf_num; |
| |
| ifc_nand_ctrl->page = page_addr; |
| /* Program ROW0/COL0 */ |
| iowrite32be(page_addr, &ifc->ifc_nand.row0); |
| iowrite32be((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0); |
| |
| buf_num = page_addr & priv->bufnum_mask; |
| |
| ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); |
| ifc_nand_ctrl->index = column; |
| |
| /* for OOB data point to the second half of the buffer */ |
| if (oob) |
| ifc_nand_ctrl->index += mtd->writesize; |
| } |
| |
| static int is_blank(struct mtd_info *mtd, unsigned int bufnum) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_ifc_mtd *priv = chip->priv; |
| u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); |
| u32 __iomem *mainarea = (u32 __iomem *)addr; |
| u8 __iomem *oob = addr + mtd->writesize; |
| int i; |
| |
| for (i = 0; i < mtd->writesize / 4; i++) { |
| if (__raw_readl(&mainarea[i]) != 0xffffffff) |
| return 0; |
| } |
| |
| for (i = 0; i < chip->ecc.layout->eccbytes; i++) { |
| int pos = chip->ecc.layout->eccpos[i]; |
| |
| if (__raw_readb(&oob[pos]) != 0xff) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* returns nonzero if entire page is blank */ |
| static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, |
| u32 *eccstat, unsigned int bufnum) |
| { |
| u32 reg = eccstat[bufnum / 4]; |
| int errors; |
| |
| errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; |
| |
| return errors; |
| } |
| |
| /* |
| * execute IFC NAND command and wait for it to complete |
| */ |
| static void fsl_ifc_run_command(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_ifc_mtd *priv = chip->priv; |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; |
| struct fsl_ifc_regs __iomem *ifc = ctrl->regs; |
| u32 eccstat[4]; |
| int i; |
| |
| /* set the chip select for NAND Transaction */ |
| iowrite32be(priv->bank << IFC_NAND_CSEL_SHIFT, |
| &ifc->ifc_nand.nand_csel); |
| |
| dev_vdbg(priv->dev, |
| "%s: fir0=%08x fcr0=%08x\n", |
| __func__, |
| ioread32be(&ifc->ifc_nand.nand_fir0), |
| ioread32be(&ifc->ifc_nand.nand_fcr0)); |
| |
| ctrl->nand_stat = 0; |
| |
| /* start read/write seq */ |
| iowrite32be(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); |
| |
| /* wait for command complete flag or timeout */ |
| wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, |
| IFC_TIMEOUT_MSECS * HZ/1000); |
| |
| /* ctrl->nand_stat will be updated from IRQ context */ |
| if (!ctrl->nand_stat) |
| dev_err(priv->dev, "Controller is not responding\n"); |
| if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER) |
| dev_err(priv->dev, "NAND Flash Timeout Error\n"); |
| if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER) |
| dev_err(priv->dev, "NAND Flash Write Protect Error\n"); |
| |
| nctrl->max_bitflips = 0; |
| |
| if (nctrl->eccread) { |
| int errors; |
| int bufnum = nctrl->page & priv->bufnum_mask; |
| int sector = bufnum * chip->ecc.steps; |
| int sector_end = sector + chip->ecc.steps - 1; |
| |
| for (i = sector / 4; i <= sector_end / 4; i++) |
| eccstat[i] = ioread32be(&ifc->ifc_nand.nand_eccstat[i]); |
| |
| for (i = sector; i <= sector_end; i++) { |
| errors = check_read_ecc(mtd, ctrl, eccstat, i); |
| |
| if (errors == 15) { |
| /* |
| * Uncorrectable error. |
| * OK only if the whole page is blank. |
| * |
| * We disable ECCER reporting due to... |
| * erratum IFC-A002770 -- so report it now if we |
| * see an uncorrectable error in ECCSTAT. |
| */ |
| if (!is_blank(mtd, bufnum)) |
| ctrl->nand_stat |= |
| IFC_NAND_EVTER_STAT_ECCER; |
| break; |
| } |
| |
| mtd->ecc_stats.corrected += errors; |
| nctrl->max_bitflips = max_t(unsigned int, |
| nctrl->max_bitflips, |
| errors); |
| } |
| |
| nctrl->eccread = 0; |
| } |
| } |
| |
| static void fsl_ifc_do_read(struct nand_chip *chip, |
| int oob, |
| struct mtd_info *mtd) |
| { |
| struct fsl_ifc_mtd *priv = chip->priv; |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_regs __iomem *ifc = ctrl->regs; |
| |
| /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ |
| if (mtd->writesize > 512) { |
| iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
| (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | |
| (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| iowrite32be(0x0, &ifc->ifc_nand.nand_fir1); |
| |
| iowrite32be((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | |
| (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT), |
| &ifc->ifc_nand.nand_fcr0); |
| } else { |
| iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
| (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| iowrite32be(0x0, &ifc->ifc_nand.nand_fir1); |
| |
| if (oob) |
| iowrite32be(NAND_CMD_READOOB << |
| IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| else |
| iowrite32be(NAND_CMD_READ0 << |
| IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| } |
| } |
| |
| /* cmdfunc send commands to the IFC NAND Machine */ |
| static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, |
| int column, int page_addr) { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_ifc_mtd *priv = chip->priv; |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_regs __iomem *ifc = ctrl->regs; |
| |
| /* clear the read buffer */ |
| ifc_nand_ctrl->read_bytes = 0; |
| if (command != NAND_CMD_PAGEPROG) |
| ifc_nand_ctrl->index = 0; |
| |
| switch (command) { |
| /* READ0 read the entire buffer to use hardware ECC. */ |
| case NAND_CMD_READ0: |
| iowrite32be(0, &ifc->ifc_nand.nand_fbcr); |
| set_addr(mtd, 0, page_addr, 0); |
| |
| ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; |
| ifc_nand_ctrl->index += column; |
| |
| if (chip->ecc.mode == NAND_ECC_HW) |
| ifc_nand_ctrl->eccread = 1; |
| |
| fsl_ifc_do_read(chip, 0, mtd); |
| fsl_ifc_run_command(mtd); |
| return; |
| |
| /* READOOB reads only the OOB because no ECC is performed. */ |
| case NAND_CMD_READOOB: |
| iowrite32be(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr); |
| set_addr(mtd, column, page_addr, 1); |
| |
| ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; |
| |
| fsl_ifc_do_read(chip, 1, mtd); |
| fsl_ifc_run_command(mtd); |
| |
| return; |
| |
| case NAND_CMD_READID: |
| case NAND_CMD_PARAM: { |
| int timing = IFC_FIR_OP_RB; |
| if (command == NAND_CMD_PARAM) |
| timing = IFC_FIR_OP_RBCD; |
| |
| iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | |
| (timing << IFC_NAND_FIR0_OP2_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| iowrite32be(command << IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| iowrite32be(column, &ifc->ifc_nand.row3); |
| |
| /* |
| * although currently it's 8 bytes for READID, we always read |
| * the maximum 256 bytes(for PARAM) |
| */ |
| iowrite32be(256, &ifc->ifc_nand.nand_fbcr); |
| ifc_nand_ctrl->read_bytes = 256; |
| |
| set_addr(mtd, 0, 0, 0); |
| fsl_ifc_run_command(mtd); |
| return; |
| } |
| |
| /* ERASE1 stores the block and page address */ |
| case NAND_CMD_ERASE1: |
| set_addr(mtd, 0, page_addr, 0); |
| return; |
| |
| /* ERASE2 uses the block and page address from ERASE1 */ |
| case NAND_CMD_ERASE2: |
| iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| |
| iowrite32be((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | |
| (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT), |
| &ifc->ifc_nand.nand_fcr0); |
| |
| iowrite32be(0, &ifc->ifc_nand.nand_fbcr); |
| ifc_nand_ctrl->read_bytes = 0; |
| fsl_ifc_run_command(mtd); |
| return; |
| |
| /* SEQIN sets up the addr buffer and all registers except the length */ |
| case NAND_CMD_SEQIN: { |
| u32 nand_fcr0; |
| ifc_nand_ctrl->column = column; |
| ifc_nand_ctrl->oob = 0; |
| |
| if (mtd->writesize > 512) { |
| nand_fcr0 = |
| (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | |
| (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT); |
| |
| iowrite32be( |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
| (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | |
| (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| } else { |
| nand_fcr0 = ((NAND_CMD_PAGEPROG << |
| IFC_NAND_FCR0_CMD1_SHIFT) | |
| (NAND_CMD_SEQIN << |
| IFC_NAND_FCR0_CMD2_SHIFT)); |
| |
| iowrite32be( |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | |
| (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| iowrite32be(IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT, |
| &ifc->ifc_nand.nand_fir1); |
| |
| if (column >= mtd->writesize) |
| nand_fcr0 |= |
| NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; |
| else |
| nand_fcr0 |= |
| NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; |
| } |
| |
| if (column >= mtd->writesize) { |
| /* OOB area --> READOOB */ |
| column -= mtd->writesize; |
| ifc_nand_ctrl->oob = 1; |
| } |
| iowrite32be(nand_fcr0, &ifc->ifc_nand.nand_fcr0); |
| set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); |
| return; |
| } |
| |
| /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ |
| case NAND_CMD_PAGEPROG: { |
| if (ifc_nand_ctrl->oob) { |
| iowrite32be(ifc_nand_ctrl->index - |
| ifc_nand_ctrl->column, |
| &ifc->ifc_nand.nand_fbcr); |
| } else { |
| iowrite32be(0, &ifc->ifc_nand.nand_fbcr); |
| } |
| |
| fsl_ifc_run_command(mtd); |
| return; |
| } |
| |
| case NAND_CMD_STATUS: |
| iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| iowrite32be(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| iowrite32be(1, &ifc->ifc_nand.nand_fbcr); |
| set_addr(mtd, 0, 0, 0); |
| ifc_nand_ctrl->read_bytes = 1; |
| |
| fsl_ifc_run_command(mtd); |
| |
| /* |
| * The chip always seems to report that it is |
| * write-protected, even when it is not. |
| */ |
| setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP); |
| return; |
| |
| case NAND_CMD_RESET: |
| iowrite32be(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT, |
| &ifc->ifc_nand.nand_fir0); |
| iowrite32be(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| fsl_ifc_run_command(mtd); |
| return; |
| |
| default: |
| dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n", |
| __func__, command); |
| } |
| } |
| |
| static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) |
| { |
| /* The hardware does not seem to support multiple |
| * chips per bank. |
| */ |
| } |
| |
| /* |
| * Write buf to the IFC NAND Controller Data Buffer |
| */ |
| static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_ifc_mtd *priv = chip->priv; |
| unsigned int bufsize = mtd->writesize + mtd->oobsize; |
| |
| if (len <= 0) { |
| dev_err(priv->dev, "%s: len %d bytes", __func__, len); |
| return; |
| } |
| |
| if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) { |
| dev_err(priv->dev, |
| "%s: beyond end of buffer (%d requested, %u available)\n", |
| __func__, len, bufsize - ifc_nand_ctrl->index); |
| len = bufsize - ifc_nand_ctrl->index; |
| } |
| |
| memcpy_toio(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index], buf, len); |
| ifc_nand_ctrl->index += len; |
| } |
| |
| /* |
| * Read a byte from either the IFC hardware buffer |
| * read function for 8-bit buswidth |
| */ |
| static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_ifc_mtd *priv = chip->priv; |
| |
| /* |
| * If there are still bytes in the IFC buffer, then use the |
| * next byte. |
| */ |
| if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) |
| return in_8(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index++]); |
| |
| dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); |
| return ERR_BYTE; |
| } |
| |
| /* |
| * Read two bytes from the IFC hardware buffer |
| * read function for 16-bit buswith |
| */ |
| static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_ifc_mtd *priv = chip->priv; |
| uint16_t data; |
| |
| /* |
| * If there are still bytes in the IFC buffer, then use the |
| * next byte. |
| */ |
| if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { |
| data = in_be16((uint16_t __iomem *)&ifc_nand_ctrl-> |
| addr[ifc_nand_ctrl->index]); |
| ifc_nand_ctrl->index += 2; |
| return (uint8_t) data; |
| } |
| |
| dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); |
| return ERR_BYTE; |
| } |
| |
| /* |
| * Read from the IFC Controller Data Buffer |
| */ |
| static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_ifc_mtd *priv = chip->priv; |
| int avail; |
| |
| if (len < 0) { |
| dev_err(priv->dev, "%s: len %d bytes", __func__, len); |
| return; |
| } |
| |
| avail = min((unsigned int)len, |
| ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); |
| memcpy_fromio(buf, &ifc_nand_ctrl->addr[ifc_nand_ctrl->index], avail); |
| ifc_nand_ctrl->index += avail; |
| |
| if (len > avail) |
| dev_err(priv->dev, |
| "%s: beyond end of buffer (%d requested, %d available)\n", |
| __func__, len, avail); |
| } |
| |
| /* |
| * This function is called after Program and Erase Operations to |
| * check for success or failure. |
| */ |
| static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) |
| { |
| struct fsl_ifc_mtd *priv = chip->priv; |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_regs __iomem *ifc = ctrl->regs; |
| u32 nand_fsr; |
| |
| /* Use READ_STATUS command, but wait for the device to be ready */ |
| iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| iowrite32be(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| iowrite32be(1, &ifc->ifc_nand.nand_fbcr); |
| set_addr(mtd, 0, 0, 0); |
| ifc_nand_ctrl->read_bytes = 1; |
| |
| fsl_ifc_run_command(mtd); |
| |
| nand_fsr = ioread32be(&ifc->ifc_nand.nand_fsr); |
| |
| /* |
| * The chip always seems to report that it is |
| * write-protected, even when it is not. |
| */ |
| return nand_fsr | NAND_STATUS_WP; |
| } |
| |
| static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| struct fsl_ifc_mtd *priv = chip->priv; |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; |
| |
| fsl_ifc_read_buf(mtd, buf, mtd->writesize); |
| if (oob_required) |
| fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) |
| dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n"); |
| |
| if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) |
| mtd->ecc_stats.failed++; |
| |
| return nctrl->max_bitflips; |
| } |
| |
| /* ECC will be calculated automatically, and errors will be detected in |
| * waitfunc. |
| */ |
| static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, int oob_required) |
| { |
| fsl_ifc_write_buf(mtd, buf, mtd->writesize); |
| fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| return 0; |
| } |
| |
| static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_ifc_mtd *priv = chip->priv; |
| |
| dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__, |
| chip->numchips); |
| dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__, |
| chip->chipsize); |
| dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__, |
| chip->pagemask); |
| dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__, |
| chip->chip_delay); |
| dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__, |
| chip->badblockpos); |
| dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__, |
| chip->chip_shift); |
| dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__, |
| chip->page_shift); |
| dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, |
| chip->phys_erase_shift); |
| dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__, |
| chip->ecc.mode); |
| dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, |
| chip->ecc.steps); |
| dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__, |
| chip->ecc.bytes); |
| dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__, |
| chip->ecc.total); |
| dev_dbg(priv->dev, "%s: nand->ecc.layout = %p\n", __func__, |
| chip->ecc.layout); |
| dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags); |
| dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size); |
| dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__, |
| mtd->erasesize); |
| dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__, |
| mtd->writesize); |
| dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__, |
| mtd->oobsize); |
| |
| return 0; |
| } |
| |
| static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv) |
| { |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_regs __iomem *ifc = ctrl->regs; |
| uint32_t csor = 0, csor_8k = 0, csor_ext = 0; |
| uint32_t cs = priv->bank; |
| |
| /* Save CSOR and CSOR_ext */ |
| csor = ioread32be(&ifc->csor_cs[cs].csor); |
| csor_ext = ioread32be(&ifc->csor_cs[cs].csor_ext); |
| |
| /* chage PageSize 8K and SpareSize 1K*/ |
| csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; |
| iowrite32be(csor_8k, &ifc->csor_cs[cs].csor); |
| iowrite32be(0x0000400, &ifc->csor_cs[cs].csor_ext); |
| |
| /* READID */ |
| iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT), |
| &ifc->ifc_nand.nand_fir0); |
| iowrite32be(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT, |
| &ifc->ifc_nand.nand_fcr0); |
| iowrite32be(0x0, &ifc->ifc_nand.row3); |
| |
| iowrite32be(0x0, &ifc->ifc_nand.nand_fbcr); |
| |
| /* Program ROW0/COL0 */ |
| iowrite32be(0x0, &ifc->ifc_nand.row0); |
| iowrite32be(0x0, &ifc->ifc_nand.col0); |
| |
| /* set the chip select for NAND Transaction */ |
| iowrite32be(cs << IFC_NAND_CSEL_SHIFT, &ifc->ifc_nand.nand_csel); |
| |
| /* start read seq */ |
| iowrite32be(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); |
| |
| /* wait for command complete flag or timeout */ |
| wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, |
| IFC_TIMEOUT_MSECS * HZ/1000); |
| |
| if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) |
| printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n"); |
| |
| /* Restore CSOR and CSOR_ext */ |
| iowrite32be(csor, &ifc->csor_cs[cs].csor); |
| iowrite32be(csor_ext, &ifc->csor_cs[cs].csor_ext); |
| } |
| |
| static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) |
| { |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_regs __iomem *ifc = ctrl->regs; |
| struct nand_chip *chip = &priv->chip; |
| struct nand_ecclayout *layout; |
| u32 csor, ver; |
| |
| /* Fill in fsl_ifc_mtd structure */ |
| priv->mtd.priv = chip; |
| priv->mtd.owner = THIS_MODULE; |
| |
| /* fill in nand_chip structure */ |
| /* set up function call table */ |
| if ((ioread32be(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16) |
| chip->read_byte = fsl_ifc_read_byte16; |
| else |
| chip->read_byte = fsl_ifc_read_byte; |
| |
| chip->write_buf = fsl_ifc_write_buf; |
| chip->read_buf = fsl_ifc_read_buf; |
| chip->select_chip = fsl_ifc_select_chip; |
| chip->cmdfunc = fsl_ifc_cmdfunc; |
| chip->waitfunc = fsl_ifc_wait; |
| |
| chip->bbt_td = &bbt_main_descr; |
| chip->bbt_md = &bbt_mirror_descr; |
| |
| iowrite32be(0x0, &ifc->ifc_nand.ncfgr); |
| |
| /* set up nand options */ |
| chip->bbt_options = NAND_BBT_USE_FLASH; |
| chip->options = NAND_NO_SUBPAGE_WRITE; |
| |
| if (ioread32be(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) { |
| chip->read_byte = fsl_ifc_read_byte16; |
| chip->options |= NAND_BUSWIDTH_16; |
| } else { |
| chip->read_byte = fsl_ifc_read_byte; |
| } |
| |
| chip->controller = &ifc_nand_ctrl->controller; |
| chip->priv = priv; |
| |
| chip->ecc.read_page = fsl_ifc_read_page; |
| chip->ecc.write_page = fsl_ifc_write_page; |
| |
| csor = ioread32be(&ifc->csor_cs[priv->bank].csor); |
| |
| /* Hardware generates ECC per 512 Bytes */ |
| chip->ecc.size = 512; |
| chip->ecc.bytes = 8; |
| chip->ecc.strength = 4; |
| |
| switch (csor & CSOR_NAND_PGS_MASK) { |
| case CSOR_NAND_PGS_512: |
| if (chip->options & NAND_BUSWIDTH_16) { |
| layout = &oob_512_16bit_ecc4; |
| } else { |
| layout = &oob_512_8bit_ecc4; |
| |
| /* Avoid conflict with bad block marker */ |
| bbt_main_descr.offs = 0; |
| bbt_mirror_descr.offs = 0; |
| } |
| |
| priv->bufnum_mask = 15; |
| break; |
| |
| case CSOR_NAND_PGS_2K: |
| layout = &oob_2048_ecc4; |
| priv->bufnum_mask = 3; |
| break; |
| |
| case CSOR_NAND_PGS_4K: |
| if ((csor & CSOR_NAND_ECC_MODE_MASK) == |
| CSOR_NAND_ECC_MODE_4) { |
| layout = &oob_4096_ecc4; |
| } else { |
| layout = &oob_4096_ecc8; |
| chip->ecc.bytes = 16; |
| chip->ecc.strength = 8; |
| } |
| |
| priv->bufnum_mask = 1; |
| break; |
| |
| case CSOR_NAND_PGS_8K: |
| if ((csor & CSOR_NAND_ECC_MODE_MASK) == |
| CSOR_NAND_ECC_MODE_4) { |
| layout = &oob_8192_ecc4; |
| } else { |
| layout = &oob_8192_ecc8; |
| chip->ecc.bytes = 16; |
| chip->ecc.strength = 8; |
| } |
| |
| priv->bufnum_mask = 0; |
| break; |
| |
| default: |
| dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); |
| return -ENODEV; |
| } |
| |
| /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ |
| if (csor & CSOR_NAND_ECC_DEC_EN) { |
| chip->ecc.mode = NAND_ECC_HW; |
| chip->ecc.layout = layout; |
| } else { |
| chip->ecc.mode = NAND_ECC_SOFT; |
| } |
| |
| ver = ioread32be(&ifc->ifc_rev); |
| if (ver == FSL_IFC_V1_1_0) |
| fsl_ifc_sram_init(priv); |
| |
| return 0; |
| } |
| |
| static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) |
| { |
| nand_release(&priv->mtd); |
| |
| kfree(priv->mtd.name); |
| |
| if (priv->vbase) |
| iounmap(priv->vbase); |
| |
| ifc_nand_ctrl->chips[priv->bank] = NULL; |
| |
| return 0; |
| } |
| |
| static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank, |
| phys_addr_t addr) |
| { |
| u32 cspr = ioread32be(&ifc->cspr_cs[bank].cspr); |
| |
| if (!(cspr & CSPR_V)) |
| return 0; |
| if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND) |
| return 0; |
| |
| return (cspr & CSPR_BA) == convert_ifc_address(addr); |
| } |
| |
| static DEFINE_MUTEX(fsl_ifc_nand_mutex); |
| |
| static int fsl_ifc_nand_probe(struct platform_device *dev) |
| { |
| struct fsl_ifc_regs __iomem *ifc; |
| struct fsl_ifc_mtd *priv; |
| struct resource res; |
| static const char *part_probe_types[] |
| = { "cmdlinepart", "RedBoot", "ofpart", NULL }; |
| int ret; |
| int bank; |
| struct device_node *node = dev->dev.of_node; |
| struct mtd_part_parser_data ppdata; |
| |
| ppdata.of_node = dev->dev.of_node; |
| if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs) |
| return -ENODEV; |
| ifc = fsl_ifc_ctrl_dev->regs; |
| |
| /* get, allocate and map the memory resource */ |
| ret = of_address_to_resource(node, 0, &res); |
| if (ret) { |
| dev_err(&dev->dev, "%s: failed to get resource\n", __func__); |
| return ret; |
| } |
| |
| /* find which chip select it is connected to */ |
| for (bank = 0; bank < FSL_IFC_BANK_COUNT; bank++) { |
| if (match_bank(ifc, bank, res.start)) |
| break; |
| } |
| |
| if (bank >= FSL_IFC_BANK_COUNT) { |
| dev_err(&dev->dev, "%s: address did not match any chip selects\n", |
| __func__); |
| return -ENODEV; |
| } |
| |
| priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| mutex_lock(&fsl_ifc_nand_mutex); |
| if (!fsl_ifc_ctrl_dev->nand) { |
| ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); |
| if (!ifc_nand_ctrl) { |
| dev_err(&dev->dev, "failed to allocate memory\n"); |
| mutex_unlock(&fsl_ifc_nand_mutex); |
| return -ENOMEM; |
| } |
| |
| ifc_nand_ctrl->read_bytes = 0; |
| ifc_nand_ctrl->index = 0; |
| ifc_nand_ctrl->addr = NULL; |
| fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl; |
| |
| spin_lock_init(&ifc_nand_ctrl->controller.lock); |
| init_waitqueue_head(&ifc_nand_ctrl->controller.wq); |
| } else { |
| ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand; |
| } |
| mutex_unlock(&fsl_ifc_nand_mutex); |
| |
| ifc_nand_ctrl->chips[bank] = priv; |
| priv->bank = bank; |
| priv->ctrl = fsl_ifc_ctrl_dev; |
| priv->dev = &dev->dev; |
| |
| priv->vbase = ioremap(res.start, resource_size(&res)); |
| if (!priv->vbase) { |
| dev_err(priv->dev, "%s: failed to map chip region\n", __func__); |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| dev_set_drvdata(priv->dev, priv); |
| |
| iowrite32be(IFC_NAND_EVTER_EN_OPC_EN | |
| IFC_NAND_EVTER_EN_FTOER_EN | |
| IFC_NAND_EVTER_EN_WPER_EN, |
| &ifc->ifc_nand.nand_evter_en); |
| |
| /* enable NAND Machine Interrupts */ |
| iowrite32be(IFC_NAND_EVTER_INTR_OPCIR_EN | |
| IFC_NAND_EVTER_INTR_FTOERIR_EN | |
| IFC_NAND_EVTER_INTR_WPERIR_EN, |
| &ifc->ifc_nand.nand_evter_intr_en); |
| priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start); |
| if (!priv->mtd.name) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| ret = fsl_ifc_chip_init(priv); |
| if (ret) |
| goto err; |
| |
| ret = nand_scan_ident(&priv->mtd, 1, NULL); |
| if (ret) |
| goto err; |
| |
| ret = fsl_ifc_chip_init_tail(&priv->mtd); |
| if (ret) |
| goto err; |
| |
| ret = nand_scan_tail(&priv->mtd); |
| if (ret) |
| goto err; |
| |
| /* First look for RedBoot table or partitions on the command |
| * line, these take precedence over device tree information */ |
| mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata, |
| NULL, 0); |
| |
| dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n", |
| (unsigned long long)res.start, priv->bank); |
| return 0; |
| |
| err: |
| fsl_ifc_chip_remove(priv); |
| return ret; |
| } |
| |
| static int fsl_ifc_nand_remove(struct platform_device *dev) |
| { |
| struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev); |
| |
| fsl_ifc_chip_remove(priv); |
| |
| mutex_lock(&fsl_ifc_nand_mutex); |
| ifc_nand_ctrl->counter--; |
| if (!ifc_nand_ctrl->counter) { |
| fsl_ifc_ctrl_dev->nand = NULL; |
| kfree(ifc_nand_ctrl); |
| } |
| mutex_unlock(&fsl_ifc_nand_mutex); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id fsl_ifc_nand_match[] = { |
| { |
| .compatible = "fsl,ifc-nand", |
| }, |
| {} |
| }; |
| |
| static struct platform_driver fsl_ifc_nand_driver = { |
| .driver = { |
| .name = "fsl,ifc-nand", |
| .owner = THIS_MODULE, |
| .of_match_table = fsl_ifc_nand_match, |
| }, |
| .probe = fsl_ifc_nand_probe, |
| .remove = fsl_ifc_nand_remove, |
| }; |
| |
| module_platform_driver(fsl_ifc_nand_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Freescale"); |
| MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver"); |