| /* Generic MTRR (Memory Type Range Register) driver. |
| |
| Copyright (C) 1997-2000 Richard Gooch |
| Copyright (c) 2002 Patrick Mochel |
| |
| This library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Library General Public |
| License as published by the Free Software Foundation; either |
| version 2 of the License, or (at your option) any later version. |
| |
| This library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Library General Public License for more details. |
| |
| You should have received a copy of the GNU Library General Public |
| License along with this library; if not, write to the Free |
| Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| |
| Richard Gooch may be reached by email at rgooch@atnf.csiro.au |
| The postal address is: |
| Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia. |
| |
| Source: "Pentium Pro Family Developer's Manual, Volume 3: |
| Operating System Writer's Guide" (Intel document number 242692), |
| section 11.11.7 |
| |
| This was cleaned and made readable by Patrick Mochel <mochel@osdl.org> |
| on 6-7 March 2002. |
| Source: Intel Architecture Software Developers Manual, Volume 3: |
| System Programming Guide; Section 9.11. (1997 edition - PPro). |
| */ |
| |
| #define DEBUG |
| |
| #include <linux/types.h> /* FIXME: kvm_para.h needs this */ |
| |
| #include <linux/stop_machine.h> |
| #include <linux/kvm_para.h> |
| #include <linux/uaccess.h> |
| #include <linux/export.h> |
| #include <linux/mutex.h> |
| #include <linux/init.h> |
| #include <linux/sort.h> |
| #include <linux/cpu.h> |
| #include <linux/pci.h> |
| #include <linux/smp.h> |
| #include <linux/syscore_ops.h> |
| |
| #include <asm/cpufeature.h> |
| #include <asm/e820/api.h> |
| #include <asm/mtrr.h> |
| #include <asm/msr.h> |
| #include <asm/pat.h> |
| |
| #include "mtrr.h" |
| |
| /* arch_phys_wc_add returns an MTRR register index plus this offset. */ |
| #define MTRR_TO_PHYS_WC_OFFSET 1000 |
| |
| u32 num_var_ranges; |
| static bool __mtrr_enabled; |
| |
| static bool mtrr_enabled(void) |
| { |
| return __mtrr_enabled; |
| } |
| |
| unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES]; |
| static DEFINE_MUTEX(mtrr_mutex); |
| |
| u64 size_or_mask, size_and_mask; |
| static bool mtrr_aps_delayed_init; |
| |
| static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM] __ro_after_init; |
| |
| const struct mtrr_ops *mtrr_if; |
| |
| static void set_mtrr(unsigned int reg, unsigned long base, |
| unsigned long size, mtrr_type type); |
| |
| void __init set_mtrr_ops(const struct mtrr_ops *ops) |
| { |
| if (ops->vendor && ops->vendor < X86_VENDOR_NUM) |
| mtrr_ops[ops->vendor] = ops; |
| } |
| |
| /* Returns non-zero if we have the write-combining memory type */ |
| static int have_wrcomb(void) |
| { |
| struct pci_dev *dev; |
| |
| dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL); |
| if (dev != NULL) { |
| /* |
| * ServerWorks LE chipsets < rev 6 have problems with |
| * write-combining. Don't allow it and leave room for other |
| * chipsets to be tagged |
| */ |
| if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS && |
| dev->device == PCI_DEVICE_ID_SERVERWORKS_LE && |
| dev->revision <= 5) { |
| pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n"); |
| pci_dev_put(dev); |
| return 0; |
| } |
| /* |
| * Intel 450NX errata # 23. Non ascending cacheline evictions to |
| * write combining memory may resulting in data corruption |
| */ |
| if (dev->vendor == PCI_VENDOR_ID_INTEL && |
| dev->device == PCI_DEVICE_ID_INTEL_82451NX) { |
| pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n"); |
| pci_dev_put(dev); |
| return 0; |
| } |
| pci_dev_put(dev); |
| } |
| return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0; |
| } |
| |
| /* This function returns the number of variable MTRRs */ |
| static void __init set_num_var_ranges(void) |
| { |
| unsigned long config = 0, dummy; |
| |
| if (use_intel()) |
| rdmsr(MSR_MTRRcap, config, dummy); |
| else if (is_cpu(AMD)) |
| config = 2; |
| else if (is_cpu(CYRIX) || is_cpu(CENTAUR)) |
| config = 8; |
| |
| num_var_ranges = config & 0xff; |
| } |
| |
| static void __init init_table(void) |
| { |
| int i, max; |
| |
| max = num_var_ranges; |
| for (i = 0; i < max; i++) |
| mtrr_usage_table[i] = 1; |
| } |
| |
| struct set_mtrr_data { |
| unsigned long smp_base; |
| unsigned long smp_size; |
| unsigned int smp_reg; |
| mtrr_type smp_type; |
| }; |
| |
| /** |
| * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed |
| * by all the CPUs. |
| * @info: pointer to mtrr configuration data |
| * |
| * Returns nothing. |
| */ |
| static int mtrr_rendezvous_handler(void *info) |
| { |
| struct set_mtrr_data *data = info; |
| |
| /* |
| * We use this same function to initialize the mtrrs during boot, |
| * resume, runtime cpu online and on an explicit request to set a |
| * specific MTRR. |
| * |
| * During boot or suspend, the state of the boot cpu's mtrrs has been |
| * saved, and we want to replicate that across all the cpus that come |
| * online (either at the end of boot or resume or during a runtime cpu |
| * online). If we're doing that, @reg is set to something special and on |
| * all the cpu's we do mtrr_if->set_all() (On the logical cpu that |
| * started the boot/resume sequence, this might be a duplicate |
| * set_all()). |
| */ |
| if (data->smp_reg != ~0U) { |
| mtrr_if->set(data->smp_reg, data->smp_base, |
| data->smp_size, data->smp_type); |
| } else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) { |
| mtrr_if->set_all(); |
| } |
| return 0; |
| } |
| |
| static inline int types_compatible(mtrr_type type1, mtrr_type type2) |
| { |
| return type1 == MTRR_TYPE_UNCACHABLE || |
| type2 == MTRR_TYPE_UNCACHABLE || |
| (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) || |
| (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH); |
| } |
| |
| /** |
| * set_mtrr - update mtrrs on all processors |
| * @reg: mtrr in question |
| * @base: mtrr base |
| * @size: mtrr size |
| * @type: mtrr type |
| * |
| * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly: |
| * |
| * 1. Queue work to do the following on all processors: |
| * 2. Disable Interrupts |
| * 3. Wait for all procs to do so |
| * 4. Enter no-fill cache mode |
| * 5. Flush caches |
| * 6. Clear PGE bit |
| * 7. Flush all TLBs |
| * 8. Disable all range registers |
| * 9. Update the MTRRs |
| * 10. Enable all range registers |
| * 11. Flush all TLBs and caches again |
| * 12. Enter normal cache mode and reenable caching |
| * 13. Set PGE |
| * 14. Wait for buddies to catch up |
| * 15. Enable interrupts. |
| * |
| * What does that mean for us? Well, stop_machine() will ensure that |
| * the rendezvous handler is started on each CPU. And in lockstep they |
| * do the state transition of disabling interrupts, updating MTRR's |
| * (the CPU vendors may each do it differently, so we call mtrr_if->set() |
| * callback and let them take care of it.) and enabling interrupts. |
| * |
| * Note that the mechanism is the same for UP systems, too; all the SMP stuff |
| * becomes nops. |
| */ |
| static void |
| set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type) |
| { |
| struct set_mtrr_data data = { .smp_reg = reg, |
| .smp_base = base, |
| .smp_size = size, |
| .smp_type = type |
| }; |
| |
| stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask); |
| } |
| |
| static void set_mtrr_cpuslocked(unsigned int reg, unsigned long base, |
| unsigned long size, mtrr_type type) |
| { |
| struct set_mtrr_data data = { .smp_reg = reg, |
| .smp_base = base, |
| .smp_size = size, |
| .smp_type = type |
| }; |
| |
| stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask); |
| } |
| |
| static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base, |
| unsigned long size, mtrr_type type) |
| { |
| struct set_mtrr_data data = { .smp_reg = reg, |
| .smp_base = base, |
| .smp_size = size, |
| .smp_type = type |
| }; |
| |
| stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data, |
| cpu_callout_mask); |
| } |
| |
| /** |
| * mtrr_add_page - Add a memory type region |
| * @base: Physical base address of region in pages (in units of 4 kB!) |
| * @size: Physical size of region in pages (4 kB) |
| * @type: Type of MTRR desired |
| * @increment: If this is true do usage counting on the region |
| * |
| * Memory type region registers control the caching on newer Intel and |
| * non Intel processors. This function allows drivers to request an |
| * MTRR is added. The details and hardware specifics of each processor's |
| * implementation are hidden from the caller, but nevertheless the |
| * caller should expect to need to provide a power of two size on an |
| * equivalent power of two boundary. |
| * |
| * If the region cannot be added either because all regions are in use |
| * or the CPU cannot support it a negative value is returned. On success |
| * the register number for this entry is returned, but should be treated |
| * as a cookie only. |
| * |
| * On a multiprocessor machine the changes are made to all processors. |
| * This is required on x86 by the Intel processors. |
| * |
| * The available types are |
| * |
| * %MTRR_TYPE_UNCACHABLE - No caching |
| * |
| * %MTRR_TYPE_WRBACK - Write data back in bursts whenever |
| * |
| * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts |
| * |
| * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes |
| * |
| * BUGS: Needs a quiet flag for the cases where drivers do not mind |
| * failures and do not wish system log messages to be sent. |
| */ |
| int mtrr_add_page(unsigned long base, unsigned long size, |
| unsigned int type, bool increment) |
| { |
| unsigned long lbase, lsize; |
| int i, replace, error; |
| mtrr_type ltype; |
| |
| if (!mtrr_enabled()) |
| return -ENXIO; |
| |
| error = mtrr_if->validate_add_page(base, size, type); |
| if (error) |
| return error; |
| |
| if (type >= MTRR_NUM_TYPES) { |
| pr_warn("mtrr: type: %u invalid\n", type); |
| return -EINVAL; |
| } |
| |
| /* If the type is WC, check that this processor supports it */ |
| if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) { |
| pr_warn("mtrr: your processor doesn't support write-combining\n"); |
| return -ENOSYS; |
| } |
| |
| if (!size) { |
| pr_warn("mtrr: zero sized request\n"); |
| return -EINVAL; |
| } |
| |
| if ((base | (base + size - 1)) >> |
| (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) { |
| pr_warn("mtrr: base or size exceeds the MTRR width\n"); |
| return -EINVAL; |
| } |
| |
| error = -EINVAL; |
| replace = -1; |
| |
| /* No CPU hotplug when we change MTRR entries */ |
| get_online_cpus(); |
| |
| /* Search for existing MTRR */ |
| mutex_lock(&mtrr_mutex); |
| for (i = 0; i < num_var_ranges; ++i) { |
| mtrr_if->get(i, &lbase, &lsize, <ype); |
| if (!lsize || base > lbase + lsize - 1 || |
| base + size - 1 < lbase) |
| continue; |
| /* |
| * At this point we know there is some kind of |
| * overlap/enclosure |
| */ |
| if (base < lbase || base + size - 1 > lbase + lsize - 1) { |
| if (base <= lbase && |
| base + size - 1 >= lbase + lsize - 1) { |
| /* New region encloses an existing region */ |
| if (type == ltype) { |
| replace = replace == -1 ? i : -2; |
| continue; |
| } else if (types_compatible(type, ltype)) |
| continue; |
| } |
| pr_warn("mtrr: 0x%lx000,0x%lx000 overlaps existing" |
| " 0x%lx000,0x%lx000\n", base, size, lbase, |
| lsize); |
| goto out; |
| } |
| /* New region is enclosed by an existing region */ |
| if (ltype != type) { |
| if (types_compatible(type, ltype)) |
| continue; |
| pr_warn("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n", |
| base, size, mtrr_attrib_to_str(ltype), |
| mtrr_attrib_to_str(type)); |
| goto out; |
| } |
| if (increment) |
| ++mtrr_usage_table[i]; |
| error = i; |
| goto out; |
| } |
| /* Search for an empty MTRR */ |
| i = mtrr_if->get_free_region(base, size, replace); |
| if (i >= 0) { |
| set_mtrr_cpuslocked(i, base, size, type); |
| if (likely(replace < 0)) { |
| mtrr_usage_table[i] = 1; |
| } else { |
| mtrr_usage_table[i] = mtrr_usage_table[replace]; |
| if (increment) |
| mtrr_usage_table[i]++; |
| if (unlikely(replace != i)) { |
| set_mtrr_cpuslocked(replace, 0, 0, 0); |
| mtrr_usage_table[replace] = 0; |
| } |
| } |
| } else { |
| pr_info("mtrr: no more MTRRs available\n"); |
| } |
| error = i; |
| out: |
| mutex_unlock(&mtrr_mutex); |
| put_online_cpus(); |
| return error; |
| } |
| |
| static int mtrr_check(unsigned long base, unsigned long size) |
| { |
| if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) { |
| pr_warn("mtrr: size and base must be multiples of 4 kiB\n"); |
| pr_debug("mtrr: size: 0x%lx base: 0x%lx\n", size, base); |
| dump_stack(); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /** |
| * mtrr_add - Add a memory type region |
| * @base: Physical base address of region |
| * @size: Physical size of region |
| * @type: Type of MTRR desired |
| * @increment: If this is true do usage counting on the region |
| * |
| * Memory type region registers control the caching on newer Intel and |
| * non Intel processors. This function allows drivers to request an |
| * MTRR is added. The details and hardware specifics of each processor's |
| * implementation are hidden from the caller, but nevertheless the |
| * caller should expect to need to provide a power of two size on an |
| * equivalent power of two boundary. |
| * |
| * If the region cannot be added either because all regions are in use |
| * or the CPU cannot support it a negative value is returned. On success |
| * the register number for this entry is returned, but should be treated |
| * as a cookie only. |
| * |
| * On a multiprocessor machine the changes are made to all processors. |
| * This is required on x86 by the Intel processors. |
| * |
| * The available types are |
| * |
| * %MTRR_TYPE_UNCACHABLE - No caching |
| * |
| * %MTRR_TYPE_WRBACK - Write data back in bursts whenever |
| * |
| * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts |
| * |
| * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes |
| * |
| * BUGS: Needs a quiet flag for the cases where drivers do not mind |
| * failures and do not wish system log messages to be sent. |
| */ |
| int mtrr_add(unsigned long base, unsigned long size, unsigned int type, |
| bool increment) |
| { |
| if (!mtrr_enabled()) |
| return -ENODEV; |
| if (mtrr_check(base, size)) |
| return -EINVAL; |
| return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type, |
| increment); |
| } |
| |
| /** |
| * mtrr_del_page - delete a memory type region |
| * @reg: Register returned by mtrr_add |
| * @base: Physical base address |
| * @size: Size of region |
| * |
| * If register is supplied then base and size are ignored. This is |
| * how drivers should call it. |
| * |
| * Releases an MTRR region. If the usage count drops to zero the |
| * register is freed and the region returns to default state. |
| * On success the register is returned, on failure a negative error |
| * code. |
| */ |
| int mtrr_del_page(int reg, unsigned long base, unsigned long size) |
| { |
| int i, max; |
| mtrr_type ltype; |
| unsigned long lbase, lsize; |
| int error = -EINVAL; |
| |
| if (!mtrr_enabled()) |
| return -ENODEV; |
| |
| max = num_var_ranges; |
| /* No CPU hotplug when we change MTRR entries */ |
| get_online_cpus(); |
| mutex_lock(&mtrr_mutex); |
| if (reg < 0) { |
| /* Search for existing MTRR */ |
| for (i = 0; i < max; ++i) { |
| mtrr_if->get(i, &lbase, &lsize, <ype); |
| if (lbase == base && lsize == size) { |
| reg = i; |
| break; |
| } |
| } |
| if (reg < 0) { |
| pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n", |
| base, size); |
| goto out; |
| } |
| } |
| if (reg >= max) { |
| pr_warn("mtrr: register: %d too big\n", reg); |
| goto out; |
| } |
| mtrr_if->get(reg, &lbase, &lsize, <ype); |
| if (lsize < 1) { |
| pr_warn("mtrr: MTRR %d not used\n", reg); |
| goto out; |
| } |
| if (mtrr_usage_table[reg] < 1) { |
| pr_warn("mtrr: reg: %d has count=0\n", reg); |
| goto out; |
| } |
| if (--mtrr_usage_table[reg] < 1) |
| set_mtrr_cpuslocked(reg, 0, 0, 0); |
| error = reg; |
| out: |
| mutex_unlock(&mtrr_mutex); |
| put_online_cpus(); |
| return error; |
| } |
| |
| /** |
| * mtrr_del - delete a memory type region |
| * @reg: Register returned by mtrr_add |
| * @base: Physical base address |
| * @size: Size of region |
| * |
| * If register is supplied then base and size are ignored. This is |
| * how drivers should call it. |
| * |
| * Releases an MTRR region. If the usage count drops to zero the |
| * register is freed and the region returns to default state. |
| * On success the register is returned, on failure a negative error |
| * code. |
| */ |
| int mtrr_del(int reg, unsigned long base, unsigned long size) |
| { |
| if (!mtrr_enabled()) |
| return -ENODEV; |
| if (mtrr_check(base, size)) |
| return -EINVAL; |
| return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT); |
| } |
| |
| /** |
| * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable |
| * @base: Physical base address |
| * @size: Size of region |
| * |
| * If PAT is available, this does nothing. If PAT is unavailable, it |
| * attempts to add a WC MTRR covering size bytes starting at base and |
| * logs an error if this fails. |
| * |
| * The called should provide a power of two size on an equivalent |
| * power of two boundary. |
| * |
| * Drivers must store the return value to pass to mtrr_del_wc_if_needed, |
| * but drivers should not try to interpret that return value. |
| */ |
| int arch_phys_wc_add(unsigned long base, unsigned long size) |
| { |
| int ret; |
| |
| if (pat_enabled() || !mtrr_enabled()) |
| return 0; /* Success! (We don't need to do anything.) */ |
| |
| ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true); |
| if (ret < 0) { |
| pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.", |
| (void *)base, (void *)(base + size - 1)); |
| return ret; |
| } |
| return ret + MTRR_TO_PHYS_WC_OFFSET; |
| } |
| EXPORT_SYMBOL(arch_phys_wc_add); |
| |
| /* |
| * arch_phys_wc_del - undoes arch_phys_wc_add |
| * @handle: Return value from arch_phys_wc_add |
| * |
| * This cleans up after mtrr_add_wc_if_needed. |
| * |
| * The API guarantees that mtrr_del_wc_if_needed(error code) and |
| * mtrr_del_wc_if_needed(0) do nothing. |
| */ |
| void arch_phys_wc_del(int handle) |
| { |
| if (handle >= 1) { |
| WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET); |
| mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0); |
| } |
| } |
| EXPORT_SYMBOL(arch_phys_wc_del); |
| |
| /* |
| * arch_phys_wc_index - translates arch_phys_wc_add's return value |
| * @handle: Return value from arch_phys_wc_add |
| * |
| * This will turn the return value from arch_phys_wc_add into an mtrr |
| * index suitable for debugging. |
| * |
| * Note: There is no legitimate use for this function, except possibly |
| * in printk line. Alas there is an illegitimate use in some ancient |
| * drm ioctls. |
| */ |
| int arch_phys_wc_index(int handle) |
| { |
| if (handle < MTRR_TO_PHYS_WC_OFFSET) |
| return -1; |
| else |
| return handle - MTRR_TO_PHYS_WC_OFFSET; |
| } |
| EXPORT_SYMBOL_GPL(arch_phys_wc_index); |
| |
| /* |
| * HACK ALERT! |
| * These should be called implicitly, but we can't yet until all the initcall |
| * stuff is done... |
| */ |
| static void __init init_ifs(void) |
| { |
| #ifndef CONFIG_X86_64 |
| amd_init_mtrr(); |
| cyrix_init_mtrr(); |
| centaur_init_mtrr(); |
| #endif |
| } |
| |
| /* The suspend/resume methods are only for CPU without MTRR. CPU using generic |
| * MTRR driver doesn't require this |
| */ |
| struct mtrr_value { |
| mtrr_type ltype; |
| unsigned long lbase; |
| unsigned long lsize; |
| }; |
| |
| static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES]; |
| |
| static int mtrr_save(void) |
| { |
| int i; |
| |
| for (i = 0; i < num_var_ranges; i++) { |
| mtrr_if->get(i, &mtrr_value[i].lbase, |
| &mtrr_value[i].lsize, |
| &mtrr_value[i].ltype); |
| } |
| return 0; |
| } |
| |
| static void mtrr_restore(void) |
| { |
| int i; |
| |
| for (i = 0; i < num_var_ranges; i++) { |
| if (mtrr_value[i].lsize) { |
| set_mtrr(i, mtrr_value[i].lbase, |
| mtrr_value[i].lsize, |
| mtrr_value[i].ltype); |
| } |
| } |
| } |
| |
| |
| |
| static struct syscore_ops mtrr_syscore_ops = { |
| .suspend = mtrr_save, |
| .resume = mtrr_restore, |
| }; |
| |
| int __initdata changed_by_mtrr_cleanup; |
| |
| #define SIZE_OR_MASK_BITS(n) (~((1ULL << ((n) - PAGE_SHIFT)) - 1)) |
| /** |
| * mtrr_bp_init - initialize mtrrs on the boot CPU |
| * |
| * This needs to be called early; before any of the other CPUs are |
| * initialized (i.e. before smp_init()). |
| * |
| */ |
| void __init mtrr_bp_init(void) |
| { |
| u32 phys_addr; |
| |
| init_ifs(); |
| |
| phys_addr = 32; |
| |
| if (boot_cpu_has(X86_FEATURE_MTRR)) { |
| mtrr_if = &generic_mtrr_ops; |
| size_or_mask = SIZE_OR_MASK_BITS(36); |
| size_and_mask = 0x00f00000; |
| phys_addr = 36; |
| |
| /* |
| * This is an AMD specific MSR, but we assume(hope?) that |
| * Intel will implement it too when they extend the address |
| * bus of the Xeon. |
| */ |
| if (cpuid_eax(0x80000000) >= 0x80000008) { |
| phys_addr = cpuid_eax(0x80000008) & 0xff; |
| /* CPUID workaround for Intel 0F33/0F34 CPU */ |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && |
| boot_cpu_data.x86 == 0xF && |
| boot_cpu_data.x86_model == 0x3 && |
| (boot_cpu_data.x86_stepping == 0x3 || |
| boot_cpu_data.x86_stepping == 0x4)) |
| phys_addr = 36; |
| |
| size_or_mask = SIZE_OR_MASK_BITS(phys_addr); |
| size_and_mask = ~size_or_mask & 0xfffff00000ULL; |
| } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR && |
| boot_cpu_data.x86 == 6) { |
| /* |
| * VIA C* family have Intel style MTRRs, |
| * but don't support PAE |
| */ |
| size_or_mask = SIZE_OR_MASK_BITS(32); |
| size_and_mask = 0; |
| phys_addr = 32; |
| } |
| } else { |
| switch (boot_cpu_data.x86_vendor) { |
| case X86_VENDOR_AMD: |
| if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) { |
| /* Pre-Athlon (K6) AMD CPU MTRRs */ |
| mtrr_if = mtrr_ops[X86_VENDOR_AMD]; |
| size_or_mask = SIZE_OR_MASK_BITS(32); |
| size_and_mask = 0; |
| } |
| break; |
| case X86_VENDOR_CENTAUR: |
| if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) { |
| mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR]; |
| size_or_mask = SIZE_OR_MASK_BITS(32); |
| size_and_mask = 0; |
| } |
| break; |
| case X86_VENDOR_CYRIX: |
| if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) { |
| mtrr_if = mtrr_ops[X86_VENDOR_CYRIX]; |
| size_or_mask = SIZE_OR_MASK_BITS(32); |
| size_and_mask = 0; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (mtrr_if) { |
| __mtrr_enabled = true; |
| set_num_var_ranges(); |
| init_table(); |
| if (use_intel()) { |
| /* BIOS may override */ |
| __mtrr_enabled = get_mtrr_state(); |
| |
| if (mtrr_enabled()) |
| mtrr_bp_pat_init(); |
| |
| if (mtrr_cleanup(phys_addr)) { |
| changed_by_mtrr_cleanup = 1; |
| mtrr_if->set_all(); |
| } |
| } |
| } |
| |
| if (!mtrr_enabled()) { |
| pr_info("MTRR: Disabled\n"); |
| |
| /* |
| * PAT initialization relies on MTRR's rendezvous handler. |
| * Skip PAT init until the handler can initialize both |
| * features independently. |
| */ |
| pat_disable("MTRRs disabled, skipping PAT initialization too."); |
| } |
| } |
| |
| void mtrr_ap_init(void) |
| { |
| if (!mtrr_enabled()) |
| return; |
| |
| if (!use_intel() || mtrr_aps_delayed_init) |
| return; |
| /* |
| * Ideally we should hold mtrr_mutex here to avoid mtrr entries |
| * changed, but this routine will be called in cpu boot time, |
| * holding the lock breaks it. |
| * |
| * This routine is called in two cases: |
| * |
| * 1. very earily time of software resume, when there absolutely |
| * isn't mtrr entry changes; |
| * |
| * 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug |
| * lock to prevent mtrr entry changes |
| */ |
| set_mtrr_from_inactive_cpu(~0U, 0, 0, 0); |
| } |
| |
| /** |
| * Save current fixed-range MTRR state of the first cpu in cpu_online_mask. |
| */ |
| void mtrr_save_state(void) |
| { |
| int first_cpu; |
| |
| if (!mtrr_enabled()) |
| return; |
| |
| first_cpu = cpumask_first(cpu_online_mask); |
| smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1); |
| } |
| |
| void set_mtrr_aps_delayed_init(void) |
| { |
| if (!mtrr_enabled()) |
| return; |
| if (!use_intel()) |
| return; |
| |
| mtrr_aps_delayed_init = true; |
| } |
| |
| /* |
| * Delayed MTRR initialization for all AP's |
| */ |
| void mtrr_aps_init(void) |
| { |
| if (!use_intel() || !mtrr_enabled()) |
| return; |
| |
| /* |
| * Check if someone has requested the delay of AP MTRR initialization, |
| * by doing set_mtrr_aps_delayed_init(), prior to this point. If not, |
| * then we are done. |
| */ |
| if (!mtrr_aps_delayed_init) |
| return; |
| |
| set_mtrr(~0U, 0, 0, 0); |
| mtrr_aps_delayed_init = false; |
| } |
| |
| void mtrr_bp_restore(void) |
| { |
| if (!use_intel() || !mtrr_enabled()) |
| return; |
| |
| mtrr_if->set_all(); |
| } |
| |
| static int __init mtrr_init_finialize(void) |
| { |
| if (!mtrr_enabled()) |
| return 0; |
| |
| if (use_intel()) { |
| if (!changed_by_mtrr_cleanup) |
| mtrr_state_warn(); |
| return 0; |
| } |
| |
| /* |
| * The CPU has no MTRR and seems to not support SMP. They have |
| * specific drivers, we use a tricky method to support |
| * suspend/resume for them. |
| * |
| * TBD: is there any system with such CPU which supports |
| * suspend/resume? If no, we should remove the code. |
| */ |
| register_syscore_ops(&mtrr_syscore_ops); |
| |
| return 0; |
| } |
| subsys_initcall(mtrr_init_finialize); |