| /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */ |
| /* |
| Copyright (c) 2001, 2002 by D-Link Corporation |
| Written by Edward Peng.<edward_peng@dlink.com.tw> |
| Created 03-May-2001, base on Linux' sundance.c. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| */ |
| |
| #define DRV_NAME "DL2000/TC902x-based linux driver" |
| #define DRV_VERSION "v1.19" |
| #define DRV_RELDATE "2007/08/12" |
| #include "dl2k.h" |
| #include <linux/dma-mapping.h> |
| |
| #define dw32(reg, val) iowrite32(val, ioaddr + (reg)) |
| #define dw16(reg, val) iowrite16(val, ioaddr + (reg)) |
| #define dw8(reg, val) iowrite8(val, ioaddr + (reg)) |
| #define dr32(reg) ioread32(ioaddr + (reg)) |
| #define dr16(reg) ioread16(ioaddr + (reg)) |
| #define dr8(reg) ioread8(ioaddr + (reg)) |
| |
| static char version[] = |
| KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n"; |
| #define MAX_UNITS 8 |
| static int mtu[MAX_UNITS]; |
| static int vlan[MAX_UNITS]; |
| static int jumbo[MAX_UNITS]; |
| static char *media[MAX_UNITS]; |
| static int tx_flow=-1; |
| static int rx_flow=-1; |
| static int copy_thresh; |
| static int rx_coalesce=10; /* Rx frame count each interrupt */ |
| static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */ |
| static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */ |
| |
| |
| MODULE_AUTHOR ("Edward Peng"); |
| MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter"); |
| MODULE_LICENSE("GPL"); |
| module_param_array(mtu, int, NULL, 0); |
| module_param_array(media, charp, NULL, 0); |
| module_param_array(vlan, int, NULL, 0); |
| module_param_array(jumbo, int, NULL, 0); |
| module_param(tx_flow, int, 0); |
| module_param(rx_flow, int, 0); |
| module_param(copy_thresh, int, 0); |
| module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */ |
| module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */ |
| module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */ |
| |
| |
| /* Enable the default interrupts */ |
| #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \ |
| UpdateStats | LinkEvent) |
| |
| static void dl2k_enable_int(struct netdev_private *np) |
| { |
| void __iomem *ioaddr = np->ioaddr; |
| |
| dw16(IntEnable, DEFAULT_INTR); |
| } |
| |
| static const int max_intrloop = 50; |
| static const int multicast_filter_limit = 0x40; |
| |
| static int rio_open (struct net_device *dev); |
| static void rio_timer (unsigned long data); |
| static void rio_tx_timeout (struct net_device *dev); |
| static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev); |
| static irqreturn_t rio_interrupt (int irq, void *dev_instance); |
| static void rio_free_tx (struct net_device *dev, int irq); |
| static void tx_error (struct net_device *dev, int tx_status); |
| static int receive_packet (struct net_device *dev); |
| static void rio_error (struct net_device *dev, int int_status); |
| static void set_multicast (struct net_device *dev); |
| static struct net_device_stats *get_stats (struct net_device *dev); |
| static int clear_stats (struct net_device *dev); |
| static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd); |
| static int rio_close (struct net_device *dev); |
| static int find_miiphy (struct net_device *dev); |
| static int parse_eeprom (struct net_device *dev); |
| static int read_eeprom (struct netdev_private *, int eep_addr); |
| static int mii_wait_link (struct net_device *dev, int wait); |
| static int mii_set_media (struct net_device *dev); |
| static int mii_get_media (struct net_device *dev); |
| static int mii_set_media_pcs (struct net_device *dev); |
| static int mii_get_media_pcs (struct net_device *dev); |
| static int mii_read (struct net_device *dev, int phy_addr, int reg_num); |
| static int mii_write (struct net_device *dev, int phy_addr, int reg_num, |
| u16 data); |
| |
| static const struct ethtool_ops ethtool_ops; |
| |
| static const struct net_device_ops netdev_ops = { |
| .ndo_open = rio_open, |
| .ndo_start_xmit = start_xmit, |
| .ndo_stop = rio_close, |
| .ndo_get_stats = get_stats, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_mac_address = eth_mac_addr, |
| .ndo_set_rx_mode = set_multicast, |
| .ndo_do_ioctl = rio_ioctl, |
| .ndo_tx_timeout = rio_tx_timeout, |
| }; |
| |
| static int |
| rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct net_device *dev; |
| struct netdev_private *np; |
| static int card_idx; |
| int chip_idx = ent->driver_data; |
| int err, irq; |
| void __iomem *ioaddr; |
| static int version_printed; |
| void *ring_space; |
| dma_addr_t ring_dma; |
| |
| if (!version_printed++) |
| printk ("%s", version); |
| |
| err = pci_enable_device (pdev); |
| if (err) |
| return err; |
| |
| irq = pdev->irq; |
| err = pci_request_regions (pdev, "dl2k"); |
| if (err) |
| goto err_out_disable; |
| |
| pci_set_master (pdev); |
| |
| err = -ENOMEM; |
| |
| dev = alloc_etherdev (sizeof (*np)); |
| if (!dev) |
| goto err_out_res; |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| np = netdev_priv(dev); |
| |
| /* IO registers range. */ |
| ioaddr = pci_iomap(pdev, 0, 0); |
| if (!ioaddr) |
| goto err_out_dev; |
| np->eeprom_addr = ioaddr; |
| |
| #ifdef MEM_MAPPING |
| /* MM registers range. */ |
| ioaddr = pci_iomap(pdev, 1, 0); |
| if (!ioaddr) |
| goto err_out_iounmap; |
| #endif |
| np->ioaddr = ioaddr; |
| np->chip_id = chip_idx; |
| np->pdev = pdev; |
| spin_lock_init (&np->tx_lock); |
| spin_lock_init (&np->rx_lock); |
| |
| /* Parse manual configuration */ |
| np->an_enable = 1; |
| np->tx_coalesce = 1; |
| if (card_idx < MAX_UNITS) { |
| if (media[card_idx] != NULL) { |
| np->an_enable = 0; |
| if (strcmp (media[card_idx], "auto") == 0 || |
| strcmp (media[card_idx], "autosense") == 0 || |
| strcmp (media[card_idx], "0") == 0 ) { |
| np->an_enable = 2; |
| } else if (strcmp (media[card_idx], "100mbps_fd") == 0 || |
| strcmp (media[card_idx], "4") == 0) { |
| np->speed = 100; |
| np->full_duplex = 1; |
| } else if (strcmp (media[card_idx], "100mbps_hd") == 0 || |
| strcmp (media[card_idx], "3") == 0) { |
| np->speed = 100; |
| np->full_duplex = 0; |
| } else if (strcmp (media[card_idx], "10mbps_fd") == 0 || |
| strcmp (media[card_idx], "2") == 0) { |
| np->speed = 10; |
| np->full_duplex = 1; |
| } else if (strcmp (media[card_idx], "10mbps_hd") == 0 || |
| strcmp (media[card_idx], "1") == 0) { |
| np->speed = 10; |
| np->full_duplex = 0; |
| } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 || |
| strcmp (media[card_idx], "6") == 0) { |
| np->speed=1000; |
| np->full_duplex=1; |
| } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 || |
| strcmp (media[card_idx], "5") == 0) { |
| np->speed = 1000; |
| np->full_duplex = 0; |
| } else { |
| np->an_enable = 1; |
| } |
| } |
| if (jumbo[card_idx] != 0) { |
| np->jumbo = 1; |
| dev->mtu = MAX_JUMBO; |
| } else { |
| np->jumbo = 0; |
| if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE) |
| dev->mtu = mtu[card_idx]; |
| } |
| np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ? |
| vlan[card_idx] : 0; |
| if (rx_coalesce > 0 && rx_timeout > 0) { |
| np->rx_coalesce = rx_coalesce; |
| np->rx_timeout = rx_timeout; |
| np->coalesce = 1; |
| } |
| np->tx_flow = (tx_flow == 0) ? 0 : 1; |
| np->rx_flow = (rx_flow == 0) ? 0 : 1; |
| |
| if (tx_coalesce < 1) |
| tx_coalesce = 1; |
| else if (tx_coalesce > TX_RING_SIZE-1) |
| tx_coalesce = TX_RING_SIZE - 1; |
| } |
| dev->netdev_ops = &netdev_ops; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| dev->ethtool_ops = ðtool_ops; |
| #if 0 |
| dev->features = NETIF_F_IP_CSUM; |
| #endif |
| /* MTU range: 68 - 1536 or 8000 */ |
| dev->min_mtu = ETH_MIN_MTU; |
| dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE; |
| |
| pci_set_drvdata (pdev, dev); |
| |
| ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma); |
| if (!ring_space) |
| goto err_out_iounmap; |
| np->tx_ring = ring_space; |
| np->tx_ring_dma = ring_dma; |
| |
| ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma); |
| if (!ring_space) |
| goto err_out_unmap_tx; |
| np->rx_ring = ring_space; |
| np->rx_ring_dma = ring_dma; |
| |
| /* Parse eeprom data */ |
| parse_eeprom (dev); |
| |
| /* Find PHY address */ |
| err = find_miiphy (dev); |
| if (err) |
| goto err_out_unmap_rx; |
| |
| /* Fiber device? */ |
| np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0; |
| np->link_status = 0; |
| /* Set media and reset PHY */ |
| if (np->phy_media) { |
| /* default Auto-Negotiation for fiber deivices */ |
| if (np->an_enable == 2) { |
| np->an_enable = 1; |
| } |
| } else { |
| /* Auto-Negotiation is mandatory for 1000BASE-T, |
| IEEE 802.3ab Annex 28D page 14 */ |
| if (np->speed == 1000) |
| np->an_enable = 1; |
| } |
| |
| err = register_netdev (dev); |
| if (err) |
| goto err_out_unmap_rx; |
| |
| card_idx++; |
| |
| printk (KERN_INFO "%s: %s, %pM, IRQ %d\n", |
| dev->name, np->name, dev->dev_addr, irq); |
| if (tx_coalesce > 1) |
| printk(KERN_INFO "tx_coalesce:\t%d packets\n", |
| tx_coalesce); |
| if (np->coalesce) |
| printk(KERN_INFO |
| "rx_coalesce:\t%d packets\n" |
| "rx_timeout: \t%d ns\n", |
| np->rx_coalesce, np->rx_timeout*640); |
| if (np->vlan) |
| printk(KERN_INFO "vlan(id):\t%d\n", np->vlan); |
| return 0; |
| |
| err_out_unmap_rx: |
| pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); |
| err_out_unmap_tx: |
| pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); |
| err_out_iounmap: |
| #ifdef MEM_MAPPING |
| pci_iounmap(pdev, np->ioaddr); |
| #endif |
| pci_iounmap(pdev, np->eeprom_addr); |
| err_out_dev: |
| free_netdev (dev); |
| err_out_res: |
| pci_release_regions (pdev); |
| err_out_disable: |
| pci_disable_device (pdev); |
| return err; |
| } |
| |
| static int |
| find_miiphy (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int i, phy_found = 0; |
| np = netdev_priv(dev); |
| np->phy_addr = 1; |
| |
| for (i = 31; i >= 0; i--) { |
| int mii_status = mii_read (dev, i, 1); |
| if (mii_status != 0xffff && mii_status != 0x0000) { |
| np->phy_addr = i; |
| phy_found++; |
| } |
| } |
| if (!phy_found) { |
| printk (KERN_ERR "%s: No MII PHY found!\n", dev->name); |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| static int |
| parse_eeprom (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| int i, j; |
| u8 sromdata[256]; |
| u8 *psib; |
| u32 crc; |
| PSROM_t psrom = (PSROM_t) sromdata; |
| |
| int cid, next; |
| |
| for (i = 0; i < 128; i++) |
| ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i)); |
| |
| if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */ |
| /* Check CRC */ |
| crc = ~ether_crc_le (256 - 4, sromdata); |
| if (psrom->crc != cpu_to_le32(crc)) { |
| printk (KERN_ERR "%s: EEPROM data CRC error.\n", |
| dev->name); |
| return -1; |
| } |
| } |
| |
| /* Set MAC address */ |
| for (i = 0; i < 6; i++) |
| dev->dev_addr[i] = psrom->mac_addr[i]; |
| |
| if (np->chip_id == CHIP_IP1000A) { |
| np->led_mode = psrom->led_mode; |
| return 0; |
| } |
| |
| if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) { |
| return 0; |
| } |
| |
| /* Parse Software Information Block */ |
| i = 0x30; |
| psib = (u8 *) sromdata; |
| do { |
| cid = psib[i++]; |
| next = psib[i++]; |
| if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) { |
| printk (KERN_ERR "Cell data error\n"); |
| return -1; |
| } |
| switch (cid) { |
| case 0: /* Format version */ |
| break; |
| case 1: /* End of cell */ |
| return 0; |
| case 2: /* Duplex Polarity */ |
| np->duplex_polarity = psib[i]; |
| dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]); |
| break; |
| case 3: /* Wake Polarity */ |
| np->wake_polarity = psib[i]; |
| break; |
| case 9: /* Adapter description */ |
| j = (next - i > 255) ? 255 : next - i; |
| memcpy (np->name, &(psib[i]), j); |
| break; |
| case 4: |
| case 5: |
| case 6: |
| case 7: |
| case 8: /* Reversed */ |
| break; |
| default: /* Unknown cell */ |
| return -1; |
| } |
| i = next; |
| } while (1); |
| |
| return 0; |
| } |
| |
| static void rio_set_led_mode(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| u32 mode; |
| |
| if (np->chip_id != CHIP_IP1000A) |
| return; |
| |
| mode = dr32(ASICCtrl); |
| mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); |
| |
| if (np->led_mode & 0x01) |
| mode |= IPG_AC_LED_MODE; |
| if (np->led_mode & 0x02) |
| mode |= IPG_AC_LED_MODE_BIT_1; |
| if (np->led_mode & 0x08) |
| mode |= IPG_AC_LED_SPEED; |
| |
| dw32(ASICCtrl, mode); |
| } |
| |
| static inline dma_addr_t desc_to_dma(struct netdev_desc *desc) |
| { |
| return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48); |
| } |
| |
| static void free_list(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| struct sk_buff *skb; |
| int i; |
| |
| /* Free all the skbuffs in the queue. */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| skb = np->rx_skbuff[i]; |
| if (skb) { |
| pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]), |
| skb->len, PCI_DMA_FROMDEVICE); |
| dev_kfree_skb(skb); |
| np->rx_skbuff[i] = NULL; |
| } |
| np->rx_ring[i].status = 0; |
| np->rx_ring[i].fraginfo = 0; |
| } |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| skb = np->tx_skbuff[i]; |
| if (skb) { |
| pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]), |
| skb->len, PCI_DMA_TODEVICE); |
| dev_kfree_skb(skb); |
| np->tx_skbuff[i] = NULL; |
| } |
| } |
| } |
| |
| static void rio_reset_ring(struct netdev_private *np) |
| { |
| int i; |
| |
| np->cur_rx = 0; |
| np->cur_tx = 0; |
| np->old_rx = 0; |
| np->old_tx = 0; |
| |
| for (i = 0; i < TX_RING_SIZE; i++) |
| np->tx_ring[i].status = cpu_to_le64(TFDDone); |
| |
| for (i = 0; i < RX_RING_SIZE; i++) |
| np->rx_ring[i].status = 0; |
| } |
| |
| /* allocate and initialize Tx and Rx descriptors */ |
| static int alloc_list(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int i; |
| |
| rio_reset_ring(np); |
| np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32); |
| |
| /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */ |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| np->tx_skbuff[i] = NULL; |
| np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma + |
| ((i + 1) % TX_RING_SIZE) * |
| sizeof(struct netdev_desc)); |
| } |
| |
| /* Initialize Rx descriptors & allocate buffers */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| /* Allocated fixed size of skbuff */ |
| struct sk_buff *skb; |
| |
| skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz); |
| np->rx_skbuff[i] = skb; |
| if (!skb) { |
| free_list(dev); |
| return -ENOMEM; |
| } |
| |
| np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma + |
| ((i + 1) % RX_RING_SIZE) * |
| sizeof(struct netdev_desc)); |
| /* Rubicon now supports 40 bits of addressing space. */ |
| np->rx_ring[i].fraginfo = |
| cpu_to_le64(pci_map_single( |
| np->pdev, skb->data, np->rx_buf_sz, |
| PCI_DMA_FROMDEVICE)); |
| np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48); |
| } |
| |
| return 0; |
| } |
| |
| static void rio_hw_init(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| int i; |
| u16 macctrl; |
| |
| /* Reset all logic functions */ |
| dw16(ASICCtrl + 2, |
| GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset); |
| mdelay(10); |
| |
| rio_set_led_mode(dev); |
| |
| /* DebugCtrl bit 4, 5, 9 must set */ |
| dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230); |
| |
| if (np->chip_id == CHIP_IP1000A && |
| (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) { |
| /* PHY magic taken from ipg driver, undocumented registers */ |
| mii_write(dev, np->phy_addr, 31, 0x0001); |
| mii_write(dev, np->phy_addr, 27, 0x01e0); |
| mii_write(dev, np->phy_addr, 31, 0x0002); |
| mii_write(dev, np->phy_addr, 27, 0xeb8e); |
| mii_write(dev, np->phy_addr, 31, 0x0000); |
| mii_write(dev, np->phy_addr, 30, 0x005e); |
| /* advertise 1000BASE-T half & full duplex, prefer MASTER */ |
| mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700); |
| } |
| |
| if (np->phy_media) |
| mii_set_media_pcs(dev); |
| else |
| mii_set_media(dev); |
| |
| /* Jumbo frame */ |
| if (np->jumbo != 0) |
| dw16(MaxFrameSize, MAX_JUMBO+14); |
| |
| /* Set RFDListPtr */ |
| dw32(RFDListPtr0, np->rx_ring_dma); |
| dw32(RFDListPtr1, 0); |
| |
| /* Set station address */ |
| /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works |
| * too. However, it doesn't work on IP1000A so we use 16-bit access. |
| */ |
| for (i = 0; i < 3; i++) |
| dw16(StationAddr0 + 2 * i, |
| cpu_to_le16(((u16 *)dev->dev_addr)[i])); |
| |
| set_multicast (dev); |
| if (np->coalesce) { |
| dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16); |
| } |
| /* Set RIO to poll every N*320nsec. */ |
| dw8(RxDMAPollPeriod, 0x20); |
| dw8(TxDMAPollPeriod, 0xff); |
| dw8(RxDMABurstThresh, 0x30); |
| dw8(RxDMAUrgentThresh, 0x30); |
| dw32(RmonStatMask, 0x0007ffff); |
| /* clear statistics */ |
| clear_stats (dev); |
| |
| /* VLAN supported */ |
| if (np->vlan) { |
| /* priority field in RxDMAIntCtrl */ |
| dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10); |
| /* VLANId */ |
| dw16(VLANId, np->vlan); |
| /* Length/Type should be 0x8100 */ |
| dw32(VLANTag, 0x8100 << 16 | np->vlan); |
| /* Enable AutoVLANuntagging, but disable AutoVLANtagging. |
| VLAN information tagged by TFC' VID, CFI fields. */ |
| dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging); |
| } |
| |
| /* Start Tx/Rx */ |
| dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable); |
| |
| macctrl = 0; |
| macctrl |= (np->vlan) ? AutoVLANuntagging : 0; |
| macctrl |= (np->full_duplex) ? DuplexSelect : 0; |
| macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0; |
| macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0; |
| dw16(MACCtrl, macctrl); |
| } |
| |
| static void rio_hw_stop(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| |
| /* Disable interrupts */ |
| dw16(IntEnable, 0); |
| |
| /* Stop Tx and Rx logics */ |
| dw32(MACCtrl, TxDisable | RxDisable | StatsDisable); |
| } |
| |
| static int rio_open(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| const int irq = np->pdev->irq; |
| int i; |
| |
| i = alloc_list(dev); |
| if (i) |
| return i; |
| |
| rio_hw_init(dev); |
| |
| i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev); |
| if (i) { |
| rio_hw_stop(dev); |
| free_list(dev); |
| return i; |
| } |
| |
| setup_timer(&np->timer, rio_timer, (unsigned long)dev); |
| np->timer.expires = jiffies + 1 * HZ; |
| add_timer(&np->timer); |
| |
| netif_start_queue (dev); |
| |
| dl2k_enable_int(np); |
| return 0; |
| } |
| |
| static void |
| rio_timer (unsigned long data) |
| { |
| struct net_device *dev = (struct net_device *)data; |
| struct netdev_private *np = netdev_priv(dev); |
| unsigned int entry; |
| int next_tick = 1*HZ; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&np->rx_lock, flags); |
| /* Recover rx ring exhausted error */ |
| if (np->cur_rx - np->old_rx >= RX_RING_SIZE) { |
| printk(KERN_INFO "Try to recover rx ring exhausted...\n"); |
| /* Re-allocate skbuffs to fill the descriptor ring */ |
| for (; np->cur_rx - np->old_rx > 0; np->old_rx++) { |
| struct sk_buff *skb; |
| entry = np->old_rx % RX_RING_SIZE; |
| /* Dropped packets don't need to re-allocate */ |
| if (np->rx_skbuff[entry] == NULL) { |
| skb = netdev_alloc_skb_ip_align(dev, |
| np->rx_buf_sz); |
| if (skb == NULL) { |
| np->rx_ring[entry].fraginfo = 0; |
| printk (KERN_INFO |
| "%s: Still unable to re-allocate Rx skbuff.#%d\n", |
| dev->name, entry); |
| break; |
| } |
| np->rx_skbuff[entry] = skb; |
| np->rx_ring[entry].fraginfo = |
| cpu_to_le64 (pci_map_single |
| (np->pdev, skb->data, np->rx_buf_sz, |
| PCI_DMA_FROMDEVICE)); |
| } |
| np->rx_ring[entry].fraginfo |= |
| cpu_to_le64((u64)np->rx_buf_sz << 48); |
| np->rx_ring[entry].status = 0; |
| } /* end for */ |
| } /* end if */ |
| spin_unlock_irqrestore (&np->rx_lock, flags); |
| np->timer.expires = jiffies + next_tick; |
| add_timer(&np->timer); |
| } |
| |
| static void |
| rio_tx_timeout (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| |
| printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n", |
| dev->name, dr32(TxStatus)); |
| rio_free_tx(dev, 0); |
| dev->if_port = 0; |
| netif_trans_update(dev); /* prevent tx timeout */ |
| } |
| |
| static netdev_tx_t |
| start_xmit (struct sk_buff *skb, struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| struct netdev_desc *txdesc; |
| unsigned entry; |
| u64 tfc_vlan_tag = 0; |
| |
| if (np->link_status == 0) { /* Link Down */ |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; |
| } |
| entry = np->cur_tx % TX_RING_SIZE; |
| np->tx_skbuff[entry] = skb; |
| txdesc = &np->tx_ring[entry]; |
| |
| #if 0 |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| txdesc->status |= |
| cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable | |
| IPChecksumEnable); |
| } |
| #endif |
| if (np->vlan) { |
| tfc_vlan_tag = VLANTagInsert | |
| ((u64)np->vlan << 32) | |
| ((u64)skb->priority << 45); |
| } |
| txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data, |
| skb->len, |
| PCI_DMA_TODEVICE)); |
| txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48); |
| |
| /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode |
| * Work around: Always use 1 descriptor in 10Mbps mode */ |
| if (entry % np->tx_coalesce == 0 || np->speed == 10) |
| txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | |
| WordAlignDisable | |
| TxDMAIndicate | |
| (1 << FragCountShift)); |
| else |
| txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | |
| WordAlignDisable | |
| (1 << FragCountShift)); |
| |
| /* TxDMAPollNow */ |
| dw32(DMACtrl, dr32(DMACtrl) | 0x00001000); |
| /* Schedule ISR */ |
| dw32(CountDown, 10000); |
| np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE; |
| if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE |
| < TX_QUEUE_LEN - 1 && np->speed != 10) { |
| /* do nothing */ |
| } else if (!netif_queue_stopped(dev)) { |
| netif_stop_queue (dev); |
| } |
| |
| /* The first TFDListPtr */ |
| if (!dr32(TFDListPtr0)) { |
| dw32(TFDListPtr0, np->tx_ring_dma + |
| entry * sizeof (struct netdev_desc)); |
| dw32(TFDListPtr1, 0); |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static irqreturn_t |
| rio_interrupt (int irq, void *dev_instance) |
| { |
| struct net_device *dev = dev_instance; |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| unsigned int_status; |
| int cnt = max_intrloop; |
| int handled = 0; |
| |
| while (1) { |
| int_status = dr16(IntStatus); |
| dw16(IntStatus, int_status); |
| int_status &= DEFAULT_INTR; |
| if (int_status == 0 || --cnt < 0) |
| break; |
| handled = 1; |
| /* Processing received packets */ |
| if (int_status & RxDMAComplete) |
| receive_packet (dev); |
| /* TxDMAComplete interrupt */ |
| if ((int_status & (TxDMAComplete|IntRequested))) { |
| int tx_status; |
| tx_status = dr32(TxStatus); |
| if (tx_status & 0x01) |
| tx_error (dev, tx_status); |
| /* Free used tx skbuffs */ |
| rio_free_tx (dev, 1); |
| } |
| |
| /* Handle uncommon events */ |
| if (int_status & |
| (HostError | LinkEvent | UpdateStats)) |
| rio_error (dev, int_status); |
| } |
| if (np->cur_tx != np->old_tx) |
| dw32(CountDown, 100); |
| return IRQ_RETVAL(handled); |
| } |
| |
| static void |
| rio_free_tx (struct net_device *dev, int irq) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int entry = np->old_tx % TX_RING_SIZE; |
| int tx_use = 0; |
| unsigned long flag = 0; |
| |
| if (irq) |
| spin_lock(&np->tx_lock); |
| else |
| spin_lock_irqsave(&np->tx_lock, flag); |
| |
| /* Free used tx skbuffs */ |
| while (entry != np->cur_tx) { |
| struct sk_buff *skb; |
| |
| if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone))) |
| break; |
| skb = np->tx_skbuff[entry]; |
| pci_unmap_single (np->pdev, |
| desc_to_dma(&np->tx_ring[entry]), |
| skb->len, PCI_DMA_TODEVICE); |
| if (irq) |
| dev_kfree_skb_irq (skb); |
| else |
| dev_kfree_skb (skb); |
| |
| np->tx_skbuff[entry] = NULL; |
| entry = (entry + 1) % TX_RING_SIZE; |
| tx_use++; |
| } |
| if (irq) |
| spin_unlock(&np->tx_lock); |
| else |
| spin_unlock_irqrestore(&np->tx_lock, flag); |
| np->old_tx = entry; |
| |
| /* If the ring is no longer full, clear tx_full and |
| call netif_wake_queue() */ |
| |
| if (netif_queue_stopped(dev) && |
| ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE |
| < TX_QUEUE_LEN - 1 || np->speed == 10)) { |
| netif_wake_queue (dev); |
| } |
| } |
| |
| static void |
| tx_error (struct net_device *dev, int tx_status) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| int frame_id; |
| int i; |
| |
| frame_id = (tx_status & 0xffff0000); |
| printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n", |
| dev->name, tx_status, frame_id); |
| np->stats.tx_errors++; |
| /* Ttransmit Underrun */ |
| if (tx_status & 0x10) { |
| np->stats.tx_fifo_errors++; |
| dw16(TxStartThresh, dr16(TxStartThresh) + 0x10); |
| /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */ |
| dw16(ASICCtrl + 2, |
| TxReset | DMAReset | FIFOReset | NetworkReset); |
| /* Wait for ResetBusy bit clear */ |
| for (i = 50; i > 0; i--) { |
| if (!(dr16(ASICCtrl + 2) & ResetBusy)) |
| break; |
| mdelay (1); |
| } |
| rio_set_led_mode(dev); |
| rio_free_tx (dev, 1); |
| /* Reset TFDListPtr */ |
| dw32(TFDListPtr0, np->tx_ring_dma + |
| np->old_tx * sizeof (struct netdev_desc)); |
| dw32(TFDListPtr1, 0); |
| |
| /* Let TxStartThresh stay default value */ |
| } |
| /* Late Collision */ |
| if (tx_status & 0x04) { |
| np->stats.tx_fifo_errors++; |
| /* TxReset and clear FIFO */ |
| dw16(ASICCtrl + 2, TxReset | FIFOReset); |
| /* Wait reset done */ |
| for (i = 50; i > 0; i--) { |
| if (!(dr16(ASICCtrl + 2) & ResetBusy)) |
| break; |
| mdelay (1); |
| } |
| rio_set_led_mode(dev); |
| /* Let TxStartThresh stay default value */ |
| } |
| /* Maximum Collisions */ |
| #ifdef ETHER_STATS |
| if (tx_status & 0x08) |
| np->stats.collisions16++; |
| #else |
| if (tx_status & 0x08) |
| np->stats.collisions++; |
| #endif |
| /* Restart the Tx */ |
| dw32(MACCtrl, dr16(MACCtrl) | TxEnable); |
| } |
| |
| static int |
| receive_packet (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int entry = np->cur_rx % RX_RING_SIZE; |
| int cnt = 30; |
| |
| /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */ |
| while (1) { |
| struct netdev_desc *desc = &np->rx_ring[entry]; |
| int pkt_len; |
| u64 frame_status; |
| |
| if (!(desc->status & cpu_to_le64(RFDDone)) || |
| !(desc->status & cpu_to_le64(FrameStart)) || |
| !(desc->status & cpu_to_le64(FrameEnd))) |
| break; |
| |
| /* Chip omits the CRC. */ |
| frame_status = le64_to_cpu(desc->status); |
| pkt_len = frame_status & 0xffff; |
| if (--cnt < 0) |
| break; |
| /* Update rx error statistics, drop packet. */ |
| if (frame_status & RFS_Errors) { |
| np->stats.rx_errors++; |
| if (frame_status & (RxRuntFrame | RxLengthError)) |
| np->stats.rx_length_errors++; |
| if (frame_status & RxFCSError) |
| np->stats.rx_crc_errors++; |
| if (frame_status & RxAlignmentError && np->speed != 1000) |
| np->stats.rx_frame_errors++; |
| if (frame_status & RxFIFOOverrun) |
| np->stats.rx_fifo_errors++; |
| } else { |
| struct sk_buff *skb; |
| |
| /* Small skbuffs for short packets */ |
| if (pkt_len > copy_thresh) { |
| pci_unmap_single (np->pdev, |
| desc_to_dma(desc), |
| np->rx_buf_sz, |
| PCI_DMA_FROMDEVICE); |
| skb_put (skb = np->rx_skbuff[entry], pkt_len); |
| np->rx_skbuff[entry] = NULL; |
| } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) { |
| pci_dma_sync_single_for_cpu(np->pdev, |
| desc_to_dma(desc), |
| np->rx_buf_sz, |
| PCI_DMA_FROMDEVICE); |
| skb_copy_to_linear_data (skb, |
| np->rx_skbuff[entry]->data, |
| pkt_len); |
| skb_put (skb, pkt_len); |
| pci_dma_sync_single_for_device(np->pdev, |
| desc_to_dma(desc), |
| np->rx_buf_sz, |
| PCI_DMA_FROMDEVICE); |
| } |
| skb->protocol = eth_type_trans (skb, dev); |
| #if 0 |
| /* Checksum done by hw, but csum value unavailable. */ |
| if (np->pdev->pci_rev_id >= 0x0c && |
| !(frame_status & (TCPError | UDPError | IPError))) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| #endif |
| netif_rx (skb); |
| } |
| entry = (entry + 1) % RX_RING_SIZE; |
| } |
| spin_lock(&np->rx_lock); |
| np->cur_rx = entry; |
| /* Re-allocate skbuffs to fill the descriptor ring */ |
| entry = np->old_rx; |
| while (entry != np->cur_rx) { |
| struct sk_buff *skb; |
| /* Dropped packets don't need to re-allocate */ |
| if (np->rx_skbuff[entry] == NULL) { |
| skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz); |
| if (skb == NULL) { |
| np->rx_ring[entry].fraginfo = 0; |
| printk (KERN_INFO |
| "%s: receive_packet: " |
| "Unable to re-allocate Rx skbuff.#%d\n", |
| dev->name, entry); |
| break; |
| } |
| np->rx_skbuff[entry] = skb; |
| np->rx_ring[entry].fraginfo = |
| cpu_to_le64 (pci_map_single |
| (np->pdev, skb->data, np->rx_buf_sz, |
| PCI_DMA_FROMDEVICE)); |
| } |
| np->rx_ring[entry].fraginfo |= |
| cpu_to_le64((u64)np->rx_buf_sz << 48); |
| np->rx_ring[entry].status = 0; |
| entry = (entry + 1) % RX_RING_SIZE; |
| } |
| np->old_rx = entry; |
| spin_unlock(&np->rx_lock); |
| return 0; |
| } |
| |
| static void |
| rio_error (struct net_device *dev, int int_status) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| u16 macctrl; |
| |
| /* Link change event */ |
| if (int_status & LinkEvent) { |
| if (mii_wait_link (dev, 10) == 0) { |
| printk (KERN_INFO "%s: Link up\n", dev->name); |
| if (np->phy_media) |
| mii_get_media_pcs (dev); |
| else |
| mii_get_media (dev); |
| if (np->speed == 1000) |
| np->tx_coalesce = tx_coalesce; |
| else |
| np->tx_coalesce = 1; |
| macctrl = 0; |
| macctrl |= (np->vlan) ? AutoVLANuntagging : 0; |
| macctrl |= (np->full_duplex) ? DuplexSelect : 0; |
| macctrl |= (np->tx_flow) ? |
| TxFlowControlEnable : 0; |
| macctrl |= (np->rx_flow) ? |
| RxFlowControlEnable : 0; |
| dw16(MACCtrl, macctrl); |
| np->link_status = 1; |
| netif_carrier_on(dev); |
| } else { |
| printk (KERN_INFO "%s: Link off\n", dev->name); |
| np->link_status = 0; |
| netif_carrier_off(dev); |
| } |
| } |
| |
| /* UpdateStats statistics registers */ |
| if (int_status & UpdateStats) { |
| get_stats (dev); |
| } |
| |
| /* PCI Error, a catastronphic error related to the bus interface |
| occurs, set GlobalReset and HostReset to reset. */ |
| if (int_status & HostError) { |
| printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n", |
| dev->name, int_status); |
| dw16(ASICCtrl + 2, GlobalReset | HostReset); |
| mdelay (500); |
| rio_set_led_mode(dev); |
| } |
| } |
| |
| static struct net_device_stats * |
| get_stats (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| #ifdef MEM_MAPPING |
| int i; |
| #endif |
| unsigned int stat_reg; |
| |
| /* All statistics registers need to be acknowledged, |
| else statistic overflow could cause problems */ |
| |
| np->stats.rx_packets += dr32(FramesRcvOk); |
| np->stats.tx_packets += dr32(FramesXmtOk); |
| np->stats.rx_bytes += dr32(OctetRcvOk); |
| np->stats.tx_bytes += dr32(OctetXmtOk); |
| |
| np->stats.multicast = dr32(McstFramesRcvdOk); |
| np->stats.collisions += dr32(SingleColFrames) |
| + dr32(MultiColFrames); |
| |
| /* detailed tx errors */ |
| stat_reg = dr16(FramesAbortXSColls); |
| np->stats.tx_aborted_errors += stat_reg; |
| np->stats.tx_errors += stat_reg; |
| |
| stat_reg = dr16(CarrierSenseErrors); |
| np->stats.tx_carrier_errors += stat_reg; |
| np->stats.tx_errors += stat_reg; |
| |
| /* Clear all other statistic register. */ |
| dr32(McstOctetXmtOk); |
| dr16(BcstFramesXmtdOk); |
| dr32(McstFramesXmtdOk); |
| dr16(BcstFramesRcvdOk); |
| dr16(MacControlFramesRcvd); |
| dr16(FrameTooLongErrors); |
| dr16(InRangeLengthErrors); |
| dr16(FramesCheckSeqErrors); |
| dr16(FramesLostRxErrors); |
| dr32(McstOctetXmtOk); |
| dr32(BcstOctetXmtOk); |
| dr32(McstFramesXmtdOk); |
| dr32(FramesWDeferredXmt); |
| dr32(LateCollisions); |
| dr16(BcstFramesXmtdOk); |
| dr16(MacControlFramesXmtd); |
| dr16(FramesWEXDeferal); |
| |
| #ifdef MEM_MAPPING |
| for (i = 0x100; i <= 0x150; i += 4) |
| dr32(i); |
| #endif |
| dr16(TxJumboFrames); |
| dr16(RxJumboFrames); |
| dr16(TCPCheckSumErrors); |
| dr16(UDPCheckSumErrors); |
| dr16(IPCheckSumErrors); |
| return &np->stats; |
| } |
| |
| static int |
| clear_stats (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| #ifdef MEM_MAPPING |
| int i; |
| #endif |
| |
| /* All statistics registers need to be acknowledged, |
| else statistic overflow could cause problems */ |
| dr32(FramesRcvOk); |
| dr32(FramesXmtOk); |
| dr32(OctetRcvOk); |
| dr32(OctetXmtOk); |
| |
| dr32(McstFramesRcvdOk); |
| dr32(SingleColFrames); |
| dr32(MultiColFrames); |
| dr32(LateCollisions); |
| /* detailed rx errors */ |
| dr16(FrameTooLongErrors); |
| dr16(InRangeLengthErrors); |
| dr16(FramesCheckSeqErrors); |
| dr16(FramesLostRxErrors); |
| |
| /* detailed tx errors */ |
| dr16(FramesAbortXSColls); |
| dr16(CarrierSenseErrors); |
| |
| /* Clear all other statistic register. */ |
| dr32(McstOctetXmtOk); |
| dr16(BcstFramesXmtdOk); |
| dr32(McstFramesXmtdOk); |
| dr16(BcstFramesRcvdOk); |
| dr16(MacControlFramesRcvd); |
| dr32(McstOctetXmtOk); |
| dr32(BcstOctetXmtOk); |
| dr32(McstFramesXmtdOk); |
| dr32(FramesWDeferredXmt); |
| dr16(BcstFramesXmtdOk); |
| dr16(MacControlFramesXmtd); |
| dr16(FramesWEXDeferal); |
| #ifdef MEM_MAPPING |
| for (i = 0x100; i <= 0x150; i += 4) |
| dr32(i); |
| #endif |
| dr16(TxJumboFrames); |
| dr16(RxJumboFrames); |
| dr16(TCPCheckSumErrors); |
| dr16(UDPCheckSumErrors); |
| dr16(IPCheckSumErrors); |
| return 0; |
| } |
| |
| static void |
| set_multicast (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| u32 hash_table[2]; |
| u16 rx_mode = 0; |
| |
| hash_table[0] = hash_table[1] = 0; |
| /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */ |
| hash_table[1] |= 0x02000000; |
| if (dev->flags & IFF_PROMISC) { |
| /* Receive all frames promiscuously. */ |
| rx_mode = ReceiveAllFrames; |
| } else if ((dev->flags & IFF_ALLMULTI) || |
| (netdev_mc_count(dev) > multicast_filter_limit)) { |
| /* Receive broadcast and multicast frames */ |
| rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast; |
| } else if (!netdev_mc_empty(dev)) { |
| struct netdev_hw_addr *ha; |
| /* Receive broadcast frames and multicast frames filtering |
| by Hashtable */ |
| rx_mode = |
| ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast; |
| netdev_for_each_mc_addr(ha, dev) { |
| int bit, index = 0; |
| int crc = ether_crc_le(ETH_ALEN, ha->addr); |
| /* The inverted high significant 6 bits of CRC are |
| used as an index to hashtable */ |
| for (bit = 0; bit < 6; bit++) |
| if (crc & (1 << (31 - bit))) |
| index |= (1 << bit); |
| hash_table[index / 32] |= (1 << (index % 32)); |
| } |
| } else { |
| rx_mode = ReceiveBroadcast | ReceiveUnicast; |
| } |
| if (np->vlan) { |
| /* ReceiveVLANMatch field in ReceiveMode */ |
| rx_mode |= ReceiveVLANMatch; |
| } |
| |
| dw32(HashTable0, hash_table[0]); |
| dw32(HashTable1, hash_table[1]); |
| dw16(ReceiveMode, rx_mode); |
| } |
| |
| static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| strlcpy(info->driver, "dl2k", sizeof(info->driver)); |
| strlcpy(info->version, DRV_VERSION, sizeof(info->version)); |
| strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info)); |
| } |
| |
| static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| if (np->phy_media) { |
| /* fiber device */ |
| cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE; |
| cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE; |
| cmd->port = PORT_FIBRE; |
| cmd->transceiver = XCVR_INTERNAL; |
| } else { |
| /* copper device */ |
| cmd->supported = SUPPORTED_10baseT_Half | |
| SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
| | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | |
| SUPPORTED_Autoneg | SUPPORTED_MII; |
| cmd->advertising = ADVERTISED_10baseT_Half | |
| ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | |
| ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full| |
| ADVERTISED_Autoneg | ADVERTISED_MII; |
| cmd->port = PORT_MII; |
| cmd->transceiver = XCVR_INTERNAL; |
| } |
| if ( np->link_status ) { |
| ethtool_cmd_speed_set(cmd, np->speed); |
| cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; |
| } else { |
| ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN); |
| cmd->duplex = DUPLEX_UNKNOWN; |
| } |
| if ( np->an_enable) |
| cmd->autoneg = AUTONEG_ENABLE; |
| else |
| cmd->autoneg = AUTONEG_DISABLE; |
| |
| cmd->phy_address = np->phy_addr; |
| return 0; |
| } |
| |
| static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| netif_carrier_off(dev); |
| if (cmd->autoneg == AUTONEG_ENABLE) { |
| if (np->an_enable) |
| return 0; |
| else { |
| np->an_enable = 1; |
| mii_set_media(dev); |
| return 0; |
| } |
| } else { |
| np->an_enable = 0; |
| if (np->speed == 1000) { |
| ethtool_cmd_speed_set(cmd, SPEED_100); |
| cmd->duplex = DUPLEX_FULL; |
| printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n"); |
| } |
| switch (ethtool_cmd_speed(cmd)) { |
| case SPEED_10: |
| np->speed = 10; |
| np->full_duplex = (cmd->duplex == DUPLEX_FULL); |
| break; |
| case SPEED_100: |
| np->speed = 100; |
| np->full_duplex = (cmd->duplex == DUPLEX_FULL); |
| break; |
| case SPEED_1000: /* not supported */ |
| default: |
| return -EINVAL; |
| } |
| mii_set_media(dev); |
| } |
| return 0; |
| } |
| |
| static u32 rio_get_link(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| return np->link_status; |
| } |
| |
| static const struct ethtool_ops ethtool_ops = { |
| .get_drvinfo = rio_get_drvinfo, |
| .get_settings = rio_get_settings, |
| .set_settings = rio_set_settings, |
| .get_link = rio_get_link, |
| }; |
| |
| static int |
| rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| int phy_addr; |
| struct netdev_private *np = netdev_priv(dev); |
| struct mii_ioctl_data *miidata = if_mii(rq); |
| |
| phy_addr = np->phy_addr; |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| miidata->phy_id = phy_addr; |
| break; |
| case SIOCGMIIREG: |
| miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num); |
| break; |
| case SIOCSMIIREG: |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| return 0; |
| } |
| |
| #define EEP_READ 0x0200 |
| #define EEP_BUSY 0x8000 |
| /* Read the EEPROM word */ |
| /* We use I/O instruction to read/write eeprom to avoid fail on some machines */ |
| static int read_eeprom(struct netdev_private *np, int eep_addr) |
| { |
| void __iomem *ioaddr = np->eeprom_addr; |
| int i = 1000; |
| |
| dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff)); |
| while (i-- > 0) { |
| if (!(dr16(EepromCtrl) & EEP_BUSY)) |
| return dr16(EepromData); |
| } |
| return 0; |
| } |
| |
| enum phy_ctrl_bits { |
| MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04, |
| MII_DUPLEX = 0x08, |
| }; |
| |
| #define mii_delay() dr8(PhyCtrl) |
| static void |
| mii_sendbit (struct net_device *dev, u32 data) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| |
| data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE; |
| dw8(PhyCtrl, data); |
| mii_delay (); |
| dw8(PhyCtrl, data | MII_CLK); |
| mii_delay (); |
| } |
| |
| static int |
| mii_getbit (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = np->ioaddr; |
| u8 data; |
| |
| data = (dr8(PhyCtrl) & 0xf8) | MII_READ; |
| dw8(PhyCtrl, data); |
| mii_delay (); |
| dw8(PhyCtrl, data | MII_CLK); |
| mii_delay (); |
| return (dr8(PhyCtrl) >> 1) & 1; |
| } |
| |
| static void |
| mii_send_bits (struct net_device *dev, u32 data, int len) |
| { |
| int i; |
| |
| for (i = len - 1; i >= 0; i--) { |
| mii_sendbit (dev, data & (1 << i)); |
| } |
| } |
| |
| static int |
| mii_read (struct net_device *dev, int phy_addr, int reg_num) |
| { |
| u32 cmd; |
| int i; |
| u32 retval = 0; |
| |
| /* Preamble */ |
| mii_send_bits (dev, 0xffffffff, 32); |
| /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ |
| /* ST,OP = 0110'b for read operation */ |
| cmd = (0x06 << 10 | phy_addr << 5 | reg_num); |
| mii_send_bits (dev, cmd, 14); |
| /* Turnaround */ |
| if (mii_getbit (dev)) |
| goto err_out; |
| /* Read data */ |
| for (i = 0; i < 16; i++) { |
| retval |= mii_getbit (dev); |
| retval <<= 1; |
| } |
| /* End cycle */ |
| mii_getbit (dev); |
| return (retval >> 1) & 0xffff; |
| |
| err_out: |
| return 0; |
| } |
| static int |
| mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data) |
| { |
| u32 cmd; |
| |
| /* Preamble */ |
| mii_send_bits (dev, 0xffffffff, 32); |
| /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ |
| /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ |
| cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data; |
| mii_send_bits (dev, cmd, 32); |
| /* End cycle */ |
| mii_getbit (dev); |
| return 0; |
| } |
| static int |
| mii_wait_link (struct net_device *dev, int wait) |
| { |
| __u16 bmsr; |
| int phy_addr; |
| struct netdev_private *np; |
| |
| np = netdev_priv(dev); |
| phy_addr = np->phy_addr; |
| |
| do { |
| bmsr = mii_read (dev, phy_addr, MII_BMSR); |
| if (bmsr & BMSR_LSTATUS) |
| return 0; |
| mdelay (1); |
| } while (--wait > 0); |
| return -1; |
| } |
| static int |
| mii_get_media (struct net_device *dev) |
| { |
| __u16 negotiate; |
| __u16 bmsr; |
| __u16 mscr; |
| __u16 mssr; |
| int phy_addr; |
| struct netdev_private *np; |
| |
| np = netdev_priv(dev); |
| phy_addr = np->phy_addr; |
| |
| bmsr = mii_read (dev, phy_addr, MII_BMSR); |
| if (np->an_enable) { |
| if (!(bmsr & BMSR_ANEGCOMPLETE)) { |
| /* Auto-Negotiation not completed */ |
| return -1; |
| } |
| negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) & |
| mii_read (dev, phy_addr, MII_LPA); |
| mscr = mii_read (dev, phy_addr, MII_CTRL1000); |
| mssr = mii_read (dev, phy_addr, MII_STAT1000); |
| if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) { |
| np->speed = 1000; |
| np->full_duplex = 1; |
| printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); |
| } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) { |
| np->speed = 1000; |
| np->full_duplex = 0; |
| printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n"); |
| } else if (negotiate & ADVERTISE_100FULL) { |
| np->speed = 100; |
| np->full_duplex = 1; |
| printk (KERN_INFO "Auto 100 Mbps, Full duplex\n"); |
| } else if (negotiate & ADVERTISE_100HALF) { |
| np->speed = 100; |
| np->full_duplex = 0; |
| printk (KERN_INFO "Auto 100 Mbps, Half duplex\n"); |
| } else if (negotiate & ADVERTISE_10FULL) { |
| np->speed = 10; |
| np->full_duplex = 1; |
| printk (KERN_INFO "Auto 10 Mbps, Full duplex\n"); |
| } else if (negotiate & ADVERTISE_10HALF) { |
| np->speed = 10; |
| np->full_duplex = 0; |
| printk (KERN_INFO "Auto 10 Mbps, Half duplex\n"); |
| } |
| if (negotiate & ADVERTISE_PAUSE_CAP) { |
| np->tx_flow &= 1; |
| np->rx_flow &= 1; |
| } else if (negotiate & ADVERTISE_PAUSE_ASYM) { |
| np->tx_flow = 0; |
| np->rx_flow &= 1; |
| } |
| /* else tx_flow, rx_flow = user select */ |
| } else { |
| __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR); |
| switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) { |
| case BMCR_SPEED1000: |
| printk (KERN_INFO "Operating at 1000 Mbps, "); |
| break; |
| case BMCR_SPEED100: |
| printk (KERN_INFO "Operating at 100 Mbps, "); |
| break; |
| case 0: |
| printk (KERN_INFO "Operating at 10 Mbps, "); |
| } |
| if (bmcr & BMCR_FULLDPLX) { |
| printk (KERN_CONT "Full duplex\n"); |
| } else { |
| printk (KERN_CONT "Half duplex\n"); |
| } |
| } |
| if (np->tx_flow) |
| printk(KERN_INFO "Enable Tx Flow Control\n"); |
| else |
| printk(KERN_INFO "Disable Tx Flow Control\n"); |
| if (np->rx_flow) |
| printk(KERN_INFO "Enable Rx Flow Control\n"); |
| else |
| printk(KERN_INFO "Disable Rx Flow Control\n"); |
| |
| return 0; |
| } |
| |
| static int |
| mii_set_media (struct net_device *dev) |
| { |
| __u16 pscr; |
| __u16 bmcr; |
| __u16 bmsr; |
| __u16 anar; |
| int phy_addr; |
| struct netdev_private *np; |
| np = netdev_priv(dev); |
| phy_addr = np->phy_addr; |
| |
| /* Does user set speed? */ |
| if (np->an_enable) { |
| /* Advertise capabilities */ |
| bmsr = mii_read (dev, phy_addr, MII_BMSR); |
| anar = mii_read (dev, phy_addr, MII_ADVERTISE) & |
| ~(ADVERTISE_100FULL | ADVERTISE_10FULL | |
| ADVERTISE_100HALF | ADVERTISE_10HALF | |
| ADVERTISE_100BASE4); |
| if (bmsr & BMSR_100FULL) |
| anar |= ADVERTISE_100FULL; |
| if (bmsr & BMSR_100HALF) |
| anar |= ADVERTISE_100HALF; |
| if (bmsr & BMSR_100BASE4) |
| anar |= ADVERTISE_100BASE4; |
| if (bmsr & BMSR_10FULL) |
| anar |= ADVERTISE_10FULL; |
| if (bmsr & BMSR_10HALF) |
| anar |= ADVERTISE_10HALF; |
| anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; |
| mii_write (dev, phy_addr, MII_ADVERTISE, anar); |
| |
| /* Enable Auto crossover */ |
| pscr = mii_read (dev, phy_addr, MII_PHY_SCR); |
| pscr |= 3 << 5; /* 11'b */ |
| mii_write (dev, phy_addr, MII_PHY_SCR, pscr); |
| |
| /* Soft reset PHY */ |
| mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET); |
| bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET; |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| mdelay(1); |
| } else { |
| /* Force speed setting */ |
| /* 1) Disable Auto crossover */ |
| pscr = mii_read (dev, phy_addr, MII_PHY_SCR); |
| pscr &= ~(3 << 5); |
| mii_write (dev, phy_addr, MII_PHY_SCR, pscr); |
| |
| /* 2) PHY Reset */ |
| bmcr = mii_read (dev, phy_addr, MII_BMCR); |
| bmcr |= BMCR_RESET; |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| |
| /* 3) Power Down */ |
| bmcr = 0x1940; /* must be 0x1940 */ |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| mdelay (100); /* wait a certain time */ |
| |
| /* 4) Advertise nothing */ |
| mii_write (dev, phy_addr, MII_ADVERTISE, 0); |
| |
| /* 5) Set media and Power Up */ |
| bmcr = BMCR_PDOWN; |
| if (np->speed == 100) { |
| bmcr |= BMCR_SPEED100; |
| printk (KERN_INFO "Manual 100 Mbps, "); |
| } else if (np->speed == 10) { |
| printk (KERN_INFO "Manual 10 Mbps, "); |
| } |
| if (np->full_duplex) { |
| bmcr |= BMCR_FULLDPLX; |
| printk (KERN_CONT "Full duplex\n"); |
| } else { |
| printk (KERN_CONT "Half duplex\n"); |
| } |
| #if 0 |
| /* Set 1000BaseT Master/Slave setting */ |
| mscr = mii_read (dev, phy_addr, MII_CTRL1000); |
| mscr |= MII_MSCR_CFG_ENABLE; |
| mscr &= ~MII_MSCR_CFG_VALUE = 0; |
| #endif |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| mdelay(10); |
| } |
| return 0; |
| } |
| |
| static int |
| mii_get_media_pcs (struct net_device *dev) |
| { |
| __u16 negotiate; |
| __u16 bmsr; |
| int phy_addr; |
| struct netdev_private *np; |
| |
| np = netdev_priv(dev); |
| phy_addr = np->phy_addr; |
| |
| bmsr = mii_read (dev, phy_addr, PCS_BMSR); |
| if (np->an_enable) { |
| if (!(bmsr & BMSR_ANEGCOMPLETE)) { |
| /* Auto-Negotiation not completed */ |
| return -1; |
| } |
| negotiate = mii_read (dev, phy_addr, PCS_ANAR) & |
| mii_read (dev, phy_addr, PCS_ANLPAR); |
| np->speed = 1000; |
| if (negotiate & PCS_ANAR_FULL_DUPLEX) { |
| printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); |
| np->full_duplex = 1; |
| } else { |
| printk (KERN_INFO "Auto 1000 Mbps, half duplex\n"); |
| np->full_duplex = 0; |
| } |
| if (negotiate & PCS_ANAR_PAUSE) { |
| np->tx_flow &= 1; |
| np->rx_flow &= 1; |
| } else if (negotiate & PCS_ANAR_ASYMMETRIC) { |
| np->tx_flow = 0; |
| np->rx_flow &= 1; |
| } |
| /* else tx_flow, rx_flow = user select */ |
| } else { |
| __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR); |
| printk (KERN_INFO "Operating at 1000 Mbps, "); |
| if (bmcr & BMCR_FULLDPLX) { |
| printk (KERN_CONT "Full duplex\n"); |
| } else { |
| printk (KERN_CONT "Half duplex\n"); |
| } |
| } |
| if (np->tx_flow) |
| printk(KERN_INFO "Enable Tx Flow Control\n"); |
| else |
| printk(KERN_INFO "Disable Tx Flow Control\n"); |
| if (np->rx_flow) |
| printk(KERN_INFO "Enable Rx Flow Control\n"); |
| else |
| printk(KERN_INFO "Disable Rx Flow Control\n"); |
| |
| return 0; |
| } |
| |
| static int |
| mii_set_media_pcs (struct net_device *dev) |
| { |
| __u16 bmcr; |
| __u16 esr; |
| __u16 anar; |
| int phy_addr; |
| struct netdev_private *np; |
| np = netdev_priv(dev); |
| phy_addr = np->phy_addr; |
| |
| /* Auto-Negotiation? */ |
| if (np->an_enable) { |
| /* Advertise capabilities */ |
| esr = mii_read (dev, phy_addr, PCS_ESR); |
| anar = mii_read (dev, phy_addr, MII_ADVERTISE) & |
| ~PCS_ANAR_HALF_DUPLEX & |
| ~PCS_ANAR_FULL_DUPLEX; |
| if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD)) |
| anar |= PCS_ANAR_HALF_DUPLEX; |
| if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD)) |
| anar |= PCS_ANAR_FULL_DUPLEX; |
| anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC; |
| mii_write (dev, phy_addr, MII_ADVERTISE, anar); |
| |
| /* Soft reset PHY */ |
| mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET); |
| bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET; |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| mdelay(1); |
| } else { |
| /* Force speed setting */ |
| /* PHY Reset */ |
| bmcr = BMCR_RESET; |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| mdelay(10); |
| if (np->full_duplex) { |
| bmcr = BMCR_FULLDPLX; |
| printk (KERN_INFO "Manual full duplex\n"); |
| } else { |
| bmcr = 0; |
| printk (KERN_INFO "Manual half duplex\n"); |
| } |
| mii_write (dev, phy_addr, MII_BMCR, bmcr); |
| mdelay(10); |
| |
| /* Advertise nothing */ |
| mii_write (dev, phy_addr, MII_ADVERTISE, 0); |
| } |
| return 0; |
| } |
| |
| |
| static int |
| rio_close (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| struct pci_dev *pdev = np->pdev; |
| |
| netif_stop_queue (dev); |
| |
| rio_hw_stop(dev); |
| |
| free_irq(pdev->irq, dev); |
| del_timer_sync (&np->timer); |
| |
| free_list(dev); |
| |
| return 0; |
| } |
| |
| static void |
| rio_remove1 (struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata (pdev); |
| |
| if (dev) { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| unregister_netdev (dev); |
| pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, |
| np->rx_ring_dma); |
| pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, |
| np->tx_ring_dma); |
| #ifdef MEM_MAPPING |
| pci_iounmap(pdev, np->ioaddr); |
| #endif |
| pci_iounmap(pdev, np->eeprom_addr); |
| free_netdev (dev); |
| pci_release_regions (pdev); |
| pci_disable_device (pdev); |
| } |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int rio_suspend(struct device *device) |
| { |
| struct net_device *dev = dev_get_drvdata(device); |
| struct netdev_private *np = netdev_priv(dev); |
| |
| if (!netif_running(dev)) |
| return 0; |
| |
| netif_device_detach(dev); |
| del_timer_sync(&np->timer); |
| rio_hw_stop(dev); |
| |
| return 0; |
| } |
| |
| static int rio_resume(struct device *device) |
| { |
| struct net_device *dev = dev_get_drvdata(device); |
| struct netdev_private *np = netdev_priv(dev); |
| |
| if (!netif_running(dev)) |
| return 0; |
| |
| rio_reset_ring(np); |
| rio_hw_init(dev); |
| np->timer.expires = jiffies + 1 * HZ; |
| add_timer(&np->timer); |
| netif_device_attach(dev); |
| dl2k_enable_int(np); |
| |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume); |
| #define RIO_PM_OPS (&rio_pm_ops) |
| |
| #else |
| |
| #define RIO_PM_OPS NULL |
| |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| static struct pci_driver rio_driver = { |
| .name = "dl2k", |
| .id_table = rio_pci_tbl, |
| .probe = rio_probe1, |
| .remove = rio_remove1, |
| .driver.pm = RIO_PM_OPS, |
| }; |
| |
| module_pci_driver(rio_driver); |
| /* |
| |
| Compile command: |
| |
| gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c |
| |
| Read Documentation/networking/dl2k.txt for details. |
| |
| */ |
| |