| /* |
| * VPDMA helper library |
| * |
| * Copyright (c) 2013 Texas Instruments Inc. |
| * |
| * David Griego, <dagriego@biglakesoftware.com> |
| * Dale Farnsworth, <dale@farnsworth.org> |
| * Archit Taneja, <archit@ti.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published by |
| * the Free Software Foundation. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/firmware.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/videodev2.h> |
| |
| #include "vpdma.h" |
| #include "vpdma_priv.h" |
| |
| #define VPDMA_FIRMWARE "vpdma-1b8.bin" |
| |
| const struct vpdma_data_format vpdma_yuv_fmts[] = { |
| [VPDMA_DATA_FMT_Y444] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_Y444, |
| .depth = 8, |
| }, |
| [VPDMA_DATA_FMT_Y422] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_Y422, |
| .depth = 8, |
| }, |
| [VPDMA_DATA_FMT_Y420] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_Y420, |
| .depth = 8, |
| }, |
| [VPDMA_DATA_FMT_C444] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_C444, |
| .depth = 8, |
| }, |
| [VPDMA_DATA_FMT_C422] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_C422, |
| .depth = 8, |
| }, |
| [VPDMA_DATA_FMT_C420] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_C420, |
| .depth = 4, |
| }, |
| [VPDMA_DATA_FMT_YCR422] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_YCR422, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_YC444] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_YC444, |
| .depth = 24, |
| }, |
| [VPDMA_DATA_FMT_CRY422] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_CRY422, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_CBY422] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_CBY422, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_YCB422] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_YCB422, |
| .depth = 16, |
| }, |
| }; |
| EXPORT_SYMBOL(vpdma_yuv_fmts); |
| |
| const struct vpdma_data_format vpdma_rgb_fmts[] = { |
| [VPDMA_DATA_FMT_RGB565] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_RGB16_565, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_ARGB16_1555] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_ARGB_1555, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_ARGB16] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_ARGB_4444, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_RGBA16_5551] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_RGBA_5551, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_RGBA16] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_RGBA_4444, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_ARGB24] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_ARGB24_6666, |
| .depth = 24, |
| }, |
| [VPDMA_DATA_FMT_RGB24] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_RGB24_888, |
| .depth = 24, |
| }, |
| [VPDMA_DATA_FMT_ARGB32] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_ARGB32_8888, |
| .depth = 32, |
| }, |
| [VPDMA_DATA_FMT_RGBA24] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_RGBA24_6666, |
| .depth = 24, |
| }, |
| [VPDMA_DATA_FMT_RGBA32] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_RGBA32_8888, |
| .depth = 32, |
| }, |
| [VPDMA_DATA_FMT_BGR565] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_BGR16_565, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_ABGR16_1555] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_ABGR_1555, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_ABGR16] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_ABGR_4444, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_BGRA16_5551] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_BGRA_5551, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_BGRA16] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_BGRA_4444, |
| .depth = 16, |
| }, |
| [VPDMA_DATA_FMT_ABGR24] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_ABGR24_6666, |
| .depth = 24, |
| }, |
| [VPDMA_DATA_FMT_BGR24] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_BGR24_888, |
| .depth = 24, |
| }, |
| [VPDMA_DATA_FMT_ABGR32] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_ABGR32_8888, |
| .depth = 32, |
| }, |
| [VPDMA_DATA_FMT_BGRA24] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_BGRA24_6666, |
| .depth = 24, |
| }, |
| [VPDMA_DATA_FMT_BGRA32] = { |
| .type = VPDMA_DATA_FMT_TYPE_RGB, |
| .data_type = DATA_TYPE_BGRA32_8888, |
| .depth = 32, |
| }, |
| }; |
| EXPORT_SYMBOL(vpdma_rgb_fmts); |
| |
| /* |
| * To handle RAW format we are re-using the CBY422 |
| * vpdma data type so that we use the vpdma to re-order |
| * the incoming bytes, as the parser assumes that the |
| * first byte presented on the bus is the MSB of a 2 |
| * bytes value. |
| * RAW8 handles from 1 to 8 bits |
| * RAW16 handles from 9 to 16 bits |
| */ |
| const struct vpdma_data_format vpdma_raw_fmts[] = { |
| [VPDMA_DATA_FMT_RAW8] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_CBY422, |
| .depth = 8, |
| }, |
| [VPDMA_DATA_FMT_RAW16] = { |
| .type = VPDMA_DATA_FMT_TYPE_YUV, |
| .data_type = DATA_TYPE_CBY422, |
| .depth = 16, |
| }, |
| }; |
| EXPORT_SYMBOL(vpdma_raw_fmts); |
| |
| const struct vpdma_data_format vpdma_misc_fmts[] = { |
| [VPDMA_DATA_FMT_MV] = { |
| .type = VPDMA_DATA_FMT_TYPE_MISC, |
| .data_type = DATA_TYPE_MV, |
| .depth = 4, |
| }, |
| }; |
| EXPORT_SYMBOL(vpdma_misc_fmts); |
| |
| struct vpdma_channel_info { |
| int num; /* VPDMA channel number */ |
| int cstat_offset; /* client CSTAT register offset */ |
| }; |
| |
| static const struct vpdma_channel_info chan_info[] = { |
| [VPE_CHAN_LUMA1_IN] = { |
| .num = VPE_CHAN_NUM_LUMA1_IN, |
| .cstat_offset = VPDMA_DEI_LUMA1_CSTAT, |
| }, |
| [VPE_CHAN_CHROMA1_IN] = { |
| .num = VPE_CHAN_NUM_CHROMA1_IN, |
| .cstat_offset = VPDMA_DEI_CHROMA1_CSTAT, |
| }, |
| [VPE_CHAN_LUMA2_IN] = { |
| .num = VPE_CHAN_NUM_LUMA2_IN, |
| .cstat_offset = VPDMA_DEI_LUMA2_CSTAT, |
| }, |
| [VPE_CHAN_CHROMA2_IN] = { |
| .num = VPE_CHAN_NUM_CHROMA2_IN, |
| .cstat_offset = VPDMA_DEI_CHROMA2_CSTAT, |
| }, |
| [VPE_CHAN_LUMA3_IN] = { |
| .num = VPE_CHAN_NUM_LUMA3_IN, |
| .cstat_offset = VPDMA_DEI_LUMA3_CSTAT, |
| }, |
| [VPE_CHAN_CHROMA3_IN] = { |
| .num = VPE_CHAN_NUM_CHROMA3_IN, |
| .cstat_offset = VPDMA_DEI_CHROMA3_CSTAT, |
| }, |
| [VPE_CHAN_MV_IN] = { |
| .num = VPE_CHAN_NUM_MV_IN, |
| .cstat_offset = VPDMA_DEI_MV_IN_CSTAT, |
| }, |
| [VPE_CHAN_MV_OUT] = { |
| .num = VPE_CHAN_NUM_MV_OUT, |
| .cstat_offset = VPDMA_DEI_MV_OUT_CSTAT, |
| }, |
| [VPE_CHAN_LUMA_OUT] = { |
| .num = VPE_CHAN_NUM_LUMA_OUT, |
| .cstat_offset = VPDMA_VIP_UP_Y_CSTAT, |
| }, |
| [VPE_CHAN_CHROMA_OUT] = { |
| .num = VPE_CHAN_NUM_CHROMA_OUT, |
| .cstat_offset = VPDMA_VIP_UP_UV_CSTAT, |
| }, |
| [VPE_CHAN_RGB_OUT] = { |
| .num = VPE_CHAN_NUM_RGB_OUT, |
| .cstat_offset = VPDMA_VIP_UP_Y_CSTAT, |
| }, |
| }; |
| |
| static u32 read_reg(struct vpdma_data *vpdma, int offset) |
| { |
| return ioread32(vpdma->base + offset); |
| } |
| |
| static void write_reg(struct vpdma_data *vpdma, int offset, u32 value) |
| { |
| iowrite32(value, vpdma->base + offset); |
| } |
| |
| static int read_field_reg(struct vpdma_data *vpdma, int offset, |
| u32 mask, int shift) |
| { |
| return (read_reg(vpdma, offset) & (mask << shift)) >> shift; |
| } |
| |
| static void write_field_reg(struct vpdma_data *vpdma, int offset, u32 field, |
| u32 mask, int shift) |
| { |
| u32 val = read_reg(vpdma, offset); |
| |
| val &= ~(mask << shift); |
| val |= (field & mask) << shift; |
| |
| write_reg(vpdma, offset, val); |
| } |
| |
| void vpdma_dump_regs(struct vpdma_data *vpdma) |
| { |
| struct device *dev = &vpdma->pdev->dev; |
| |
| #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(vpdma, VPDMA_##r)) |
| |
| dev_dbg(dev, "VPDMA Registers:\n"); |
| |
| DUMPREG(PID); |
| DUMPREG(LIST_ADDR); |
| DUMPREG(LIST_ATTR); |
| DUMPREG(LIST_STAT_SYNC); |
| DUMPREG(BG_RGB); |
| DUMPREG(BG_YUV); |
| DUMPREG(SETUP); |
| DUMPREG(MAX_SIZE1); |
| DUMPREG(MAX_SIZE2); |
| DUMPREG(MAX_SIZE3); |
| |
| /* |
| * dumping registers of only group0 and group3, because VPE channels |
| * lie within group0 and group3 registers |
| */ |
| DUMPREG(INT_CHAN_STAT(0)); |
| DUMPREG(INT_CHAN_MASK(0)); |
| DUMPREG(INT_CHAN_STAT(3)); |
| DUMPREG(INT_CHAN_MASK(3)); |
| DUMPREG(INT_CLIENT0_STAT); |
| DUMPREG(INT_CLIENT0_MASK); |
| DUMPREG(INT_CLIENT1_STAT); |
| DUMPREG(INT_CLIENT1_MASK); |
| DUMPREG(INT_LIST0_STAT); |
| DUMPREG(INT_LIST0_MASK); |
| |
| /* |
| * these are registers specific to VPE clients, we can make this |
| * function dump client registers specific to VPE or VIP based on |
| * who is using it |
| */ |
| DUMPREG(DEI_CHROMA1_CSTAT); |
| DUMPREG(DEI_LUMA1_CSTAT); |
| DUMPREG(DEI_CHROMA2_CSTAT); |
| DUMPREG(DEI_LUMA2_CSTAT); |
| DUMPREG(DEI_CHROMA3_CSTAT); |
| DUMPREG(DEI_LUMA3_CSTAT); |
| DUMPREG(DEI_MV_IN_CSTAT); |
| DUMPREG(DEI_MV_OUT_CSTAT); |
| DUMPREG(VIP_UP_Y_CSTAT); |
| DUMPREG(VIP_UP_UV_CSTAT); |
| DUMPREG(VPI_CTL_CSTAT); |
| } |
| EXPORT_SYMBOL(vpdma_dump_regs); |
| |
| /* |
| * Allocate a DMA buffer |
| */ |
| int vpdma_alloc_desc_buf(struct vpdma_buf *buf, size_t size) |
| { |
| buf->size = size; |
| buf->mapped = false; |
| buf->addr = kzalloc(size, GFP_KERNEL); |
| if (!buf->addr) |
| return -ENOMEM; |
| |
| WARN_ON(((unsigned long)buf->addr & VPDMA_DESC_ALIGN) != 0); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(vpdma_alloc_desc_buf); |
| |
| void vpdma_free_desc_buf(struct vpdma_buf *buf) |
| { |
| WARN_ON(buf->mapped); |
| kfree(buf->addr); |
| buf->addr = NULL; |
| buf->size = 0; |
| } |
| EXPORT_SYMBOL(vpdma_free_desc_buf); |
| |
| /* |
| * map descriptor/payload DMA buffer, enabling DMA access |
| */ |
| int vpdma_map_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf) |
| { |
| struct device *dev = &vpdma->pdev->dev; |
| |
| WARN_ON(buf->mapped); |
| buf->dma_addr = dma_map_single(dev, buf->addr, buf->size, |
| DMA_BIDIRECTIONAL); |
| if (dma_mapping_error(dev, buf->dma_addr)) { |
| dev_err(dev, "failed to map buffer\n"); |
| return -EINVAL; |
| } |
| |
| buf->mapped = true; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(vpdma_map_desc_buf); |
| |
| /* |
| * unmap descriptor/payload DMA buffer, disabling DMA access and |
| * allowing the main processor to acces the data |
| */ |
| void vpdma_unmap_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf) |
| { |
| struct device *dev = &vpdma->pdev->dev; |
| |
| if (buf->mapped) |
| dma_unmap_single(dev, buf->dma_addr, buf->size, |
| DMA_BIDIRECTIONAL); |
| |
| buf->mapped = false; |
| } |
| EXPORT_SYMBOL(vpdma_unmap_desc_buf); |
| |
| /* |
| * Cleanup all pending descriptors of a list |
| * First, stop the current list being processed. |
| * If the VPDMA was busy, this step makes vpdma to accept post lists. |
| * To cleanup the internal FSM, post abort list descriptor for all the |
| * channels from @channels array of size @size. |
| */ |
| int vpdma_list_cleanup(struct vpdma_data *vpdma, int list_num, |
| int *channels, int size) |
| { |
| struct vpdma_desc_list abort_list; |
| int i, ret, timeout = 500; |
| |
| write_reg(vpdma, VPDMA_LIST_ATTR, |
| (list_num << VPDMA_LIST_NUM_SHFT) | |
| (1 << VPDMA_LIST_STOP_SHFT)); |
| |
| if (size <= 0 || !channels) |
| return 0; |
| |
| ret = vpdma_create_desc_list(&abort_list, |
| size * sizeof(struct vpdma_dtd), VPDMA_LIST_TYPE_NORMAL); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < size; i++) |
| vpdma_add_abort_channel_ctd(&abort_list, channels[i]); |
| |
| ret = vpdma_map_desc_buf(vpdma, &abort_list.buf); |
| if (ret) |
| return ret; |
| ret = vpdma_submit_descs(vpdma, &abort_list, list_num); |
| if (ret) |
| return ret; |
| |
| while (vpdma_list_busy(vpdma, list_num) && timeout--) |
| ; |
| |
| if (timeout == 0) { |
| dev_err(&vpdma->pdev->dev, "Timed out cleaning up VPDMA list\n"); |
| return -EBUSY; |
| } |
| |
| vpdma_unmap_desc_buf(vpdma, &abort_list.buf); |
| vpdma_free_desc_buf(&abort_list.buf); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(vpdma_list_cleanup); |
| |
| /* |
| * create a descriptor list, the user of this list will append configuration, |
| * control and data descriptors to this list, this list will be submitted to |
| * VPDMA. VPDMA's list parser will go through each descriptor and perform the |
| * required DMA operations |
| */ |
| int vpdma_create_desc_list(struct vpdma_desc_list *list, size_t size, int type) |
| { |
| int r; |
| |
| r = vpdma_alloc_desc_buf(&list->buf, size); |
| if (r) |
| return r; |
| |
| list->next = list->buf.addr; |
| |
| list->type = type; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(vpdma_create_desc_list); |
| |
| /* |
| * once a descriptor list is parsed by VPDMA, we reset the list by emptying it, |
| * to allow new descriptors to be added to the list. |
| */ |
| void vpdma_reset_desc_list(struct vpdma_desc_list *list) |
| { |
| list->next = list->buf.addr; |
| } |
| EXPORT_SYMBOL(vpdma_reset_desc_list); |
| |
| /* |
| * free the buffer allocated fot the VPDMA descriptor list, this should be |
| * called when the user doesn't want to use VPDMA any more. |
| */ |
| void vpdma_free_desc_list(struct vpdma_desc_list *list) |
| { |
| vpdma_free_desc_buf(&list->buf); |
| |
| list->next = NULL; |
| } |
| EXPORT_SYMBOL(vpdma_free_desc_list); |
| |
| bool vpdma_list_busy(struct vpdma_data *vpdma, int list_num) |
| { |
| return read_reg(vpdma, VPDMA_LIST_STAT_SYNC) & BIT(list_num + 16); |
| } |
| EXPORT_SYMBOL(vpdma_list_busy); |
| |
| /* |
| * submit a list of DMA descriptors to the VPE VPDMA, do not wait for completion |
| */ |
| int vpdma_submit_descs(struct vpdma_data *vpdma, |
| struct vpdma_desc_list *list, int list_num) |
| { |
| int list_size; |
| unsigned long flags; |
| |
| if (vpdma_list_busy(vpdma, list_num)) |
| return -EBUSY; |
| |
| /* 16-byte granularity */ |
| list_size = (list->next - list->buf.addr) >> 4; |
| |
| spin_lock_irqsave(&vpdma->lock, flags); |
| write_reg(vpdma, VPDMA_LIST_ADDR, (u32) list->buf.dma_addr); |
| |
| write_reg(vpdma, VPDMA_LIST_ATTR, |
| (list_num << VPDMA_LIST_NUM_SHFT) | |
| (list->type << VPDMA_LIST_TYPE_SHFT) | |
| list_size); |
| spin_unlock_irqrestore(&vpdma->lock, flags); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(vpdma_submit_descs); |
| |
| static void dump_dtd(struct vpdma_dtd *dtd); |
| |
| void vpdma_update_dma_addr(struct vpdma_data *vpdma, |
| struct vpdma_desc_list *list, dma_addr_t dma_addr, |
| void *write_dtd, int drop, int idx) |
| { |
| struct vpdma_dtd *dtd = list->buf.addr; |
| dma_addr_t write_desc_addr; |
| int offset; |
| |
| dtd += idx; |
| vpdma_unmap_desc_buf(vpdma, &list->buf); |
| |
| dtd->start_addr = dma_addr; |
| |
| /* Calculate write address from the offset of write_dtd from start |
| * of the list->buf |
| */ |
| offset = (void *)write_dtd - list->buf.addr; |
| write_desc_addr = list->buf.dma_addr + offset; |
| |
| if (drop) |
| dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr, |
| 1, 1, 0); |
| else |
| dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr, |
| 1, 0, 0); |
| |
| vpdma_map_desc_buf(vpdma, &list->buf); |
| |
| dump_dtd(dtd); |
| } |
| EXPORT_SYMBOL(vpdma_update_dma_addr); |
| |
| void vpdma_set_max_size(struct vpdma_data *vpdma, int reg_addr, |
| u32 width, u32 height) |
| { |
| if (reg_addr != VPDMA_MAX_SIZE1 && reg_addr != VPDMA_MAX_SIZE2 && |
| reg_addr != VPDMA_MAX_SIZE3) |
| reg_addr = VPDMA_MAX_SIZE1; |
| |
| write_field_reg(vpdma, reg_addr, width - 1, |
| VPDMA_MAX_SIZE_WIDTH_MASK, VPDMA_MAX_SIZE_WIDTH_SHFT); |
| |
| write_field_reg(vpdma, reg_addr, height - 1, |
| VPDMA_MAX_SIZE_HEIGHT_MASK, VPDMA_MAX_SIZE_HEIGHT_SHFT); |
| |
| } |
| EXPORT_SYMBOL(vpdma_set_max_size); |
| |
| static void dump_cfd(struct vpdma_cfd *cfd) |
| { |
| int class; |
| |
| class = cfd_get_class(cfd); |
| |
| pr_debug("config descriptor of payload class: %s\n", |
| class == CFD_CLS_BLOCK ? "simple block" : |
| "address data block"); |
| |
| if (class == CFD_CLS_BLOCK) |
| pr_debug("word0: dst_addr_offset = 0x%08x\n", |
| cfd->dest_addr_offset); |
| |
| if (class == CFD_CLS_BLOCK) |
| pr_debug("word1: num_data_wrds = %d\n", cfd->block_len); |
| |
| pr_debug("word2: payload_addr = 0x%08x\n", cfd->payload_addr); |
| |
| pr_debug("word3: pkt_type = %d, direct = %d, class = %d, dest = %d, payload_len = %d\n", |
| cfd_get_pkt_type(cfd), |
| cfd_get_direct(cfd), class, cfd_get_dest(cfd), |
| cfd_get_payload_len(cfd)); |
| } |
| |
| /* |
| * append a configuration descriptor to the given descriptor list, where the |
| * payload is in the form of a simple data block specified in the descriptor |
| * header, this is used to upload scaler coefficients to the scaler module |
| */ |
| void vpdma_add_cfd_block(struct vpdma_desc_list *list, int client, |
| struct vpdma_buf *blk, u32 dest_offset) |
| { |
| struct vpdma_cfd *cfd; |
| int len = blk->size; |
| |
| WARN_ON(blk->dma_addr & VPDMA_DESC_ALIGN); |
| |
| cfd = list->next; |
| WARN_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size)); |
| |
| cfd->dest_addr_offset = dest_offset; |
| cfd->block_len = len; |
| cfd->payload_addr = (u32) blk->dma_addr; |
| cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_BLOCK, |
| client, len >> 4); |
| |
| list->next = cfd + 1; |
| |
| dump_cfd(cfd); |
| } |
| EXPORT_SYMBOL(vpdma_add_cfd_block); |
| |
| /* |
| * append a configuration descriptor to the given descriptor list, where the |
| * payload is in the address data block format, this is used to a configure a |
| * discontiguous set of MMRs |
| */ |
| void vpdma_add_cfd_adb(struct vpdma_desc_list *list, int client, |
| struct vpdma_buf *adb) |
| { |
| struct vpdma_cfd *cfd; |
| unsigned int len = adb->size; |
| |
| WARN_ON(len & VPDMA_ADB_SIZE_ALIGN); |
| WARN_ON(adb->dma_addr & VPDMA_DESC_ALIGN); |
| |
| cfd = list->next; |
| BUG_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size)); |
| |
| cfd->w0 = 0; |
| cfd->w1 = 0; |
| cfd->payload_addr = (u32) adb->dma_addr; |
| cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_ADB, |
| client, len >> 4); |
| |
| list->next = cfd + 1; |
| |
| dump_cfd(cfd); |
| }; |
| EXPORT_SYMBOL(vpdma_add_cfd_adb); |
| |
| /* |
| * control descriptor format change based on what type of control descriptor it |
| * is, we only use 'sync on channel' control descriptors for now, so assume it's |
| * that |
| */ |
| static void dump_ctd(struct vpdma_ctd *ctd) |
| { |
| pr_debug("control descriptor\n"); |
| |
| pr_debug("word3: pkt_type = %d, source = %d, ctl_type = %d\n", |
| ctd_get_pkt_type(ctd), ctd_get_source(ctd), ctd_get_ctl(ctd)); |
| } |
| |
| /* |
| * append a 'sync on channel' type control descriptor to the given descriptor |
| * list, this descriptor stalls the VPDMA list till the time DMA is completed |
| * on the specified channel |
| */ |
| void vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list *list, |
| enum vpdma_channel chan) |
| { |
| struct vpdma_ctd *ctd; |
| |
| ctd = list->next; |
| WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size)); |
| |
| ctd->w0 = 0; |
| ctd->w1 = 0; |
| ctd->w2 = 0; |
| ctd->type_source_ctl = ctd_type_source_ctl(chan_info[chan].num, |
| CTD_TYPE_SYNC_ON_CHANNEL); |
| |
| list->next = ctd + 1; |
| |
| dump_ctd(ctd); |
| } |
| EXPORT_SYMBOL(vpdma_add_sync_on_channel_ctd); |
| |
| /* |
| * append an 'abort_channel' type control descriptor to the given descriptor |
| * list, this descriptor aborts any DMA transaction happening using the |
| * specified channel |
| */ |
| void vpdma_add_abort_channel_ctd(struct vpdma_desc_list *list, |
| int chan_num) |
| { |
| struct vpdma_ctd *ctd; |
| |
| ctd = list->next; |
| WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size)); |
| |
| ctd->w0 = 0; |
| ctd->w1 = 0; |
| ctd->w2 = 0; |
| ctd->type_source_ctl = ctd_type_source_ctl(chan_num, |
| CTD_TYPE_ABORT_CHANNEL); |
| |
| list->next = ctd + 1; |
| |
| dump_ctd(ctd); |
| } |
| EXPORT_SYMBOL(vpdma_add_abort_channel_ctd); |
| |
| static void dump_dtd(struct vpdma_dtd *dtd) |
| { |
| int dir, chan; |
| |
| dir = dtd_get_dir(dtd); |
| chan = dtd_get_chan(dtd); |
| |
| pr_debug("%s data transfer descriptor for channel %d\n", |
| dir == DTD_DIR_OUT ? "outbound" : "inbound", chan); |
| |
| pr_debug("word0: data_type = %d, notify = %d, field = %d, 1D = %d, even_ln_skp = %d, odd_ln_skp = %d, line_stride = %d\n", |
| dtd_get_data_type(dtd), dtd_get_notify(dtd), dtd_get_field(dtd), |
| dtd_get_1d(dtd), dtd_get_even_line_skip(dtd), |
| dtd_get_odd_line_skip(dtd), dtd_get_line_stride(dtd)); |
| |
| if (dir == DTD_DIR_IN) |
| pr_debug("word1: line_length = %d, xfer_height = %d\n", |
| dtd_get_line_length(dtd), dtd_get_xfer_height(dtd)); |
| |
| pr_debug("word2: start_addr = %pad\n", &dtd->start_addr); |
| |
| pr_debug("word3: pkt_type = %d, mode = %d, dir = %d, chan = %d, pri = %d, next_chan = %d\n", |
| dtd_get_pkt_type(dtd), |
| dtd_get_mode(dtd), dir, chan, dtd_get_priority(dtd), |
| dtd_get_next_chan(dtd)); |
| |
| if (dir == DTD_DIR_IN) |
| pr_debug("word4: frame_width = %d, frame_height = %d\n", |
| dtd_get_frame_width(dtd), dtd_get_frame_height(dtd)); |
| else |
| pr_debug("word4: desc_write_addr = 0x%08x, write_desc = %d, drp_data = %d, use_desc_reg = %d\n", |
| dtd_get_desc_write_addr(dtd), dtd_get_write_desc(dtd), |
| dtd_get_drop_data(dtd), dtd_get_use_desc(dtd)); |
| |
| if (dir == DTD_DIR_IN) |
| pr_debug("word5: hor_start = %d, ver_start = %d\n", |
| dtd_get_h_start(dtd), dtd_get_v_start(dtd)); |
| else |
| pr_debug("word5: max_width %d, max_height %d\n", |
| dtd_get_max_width(dtd), dtd_get_max_height(dtd)); |
| |
| pr_debug("word6: client specific attr0 = 0x%08x\n", dtd->client_attr0); |
| pr_debug("word7: client specific attr1 = 0x%08x\n", dtd->client_attr1); |
| } |
| |
| /* |
| * append an outbound data transfer descriptor to the given descriptor list, |
| * this sets up a 'client to memory' VPDMA transfer for the given VPDMA channel |
| * |
| * @list: vpdma desc list to which we add this decriptor |
| * @width: width of the image in pixels in memory |
| * @c_rect: compose params of output image |
| * @fmt: vpdma data format of the buffer |
| * dma_addr: dma address as seen by VPDMA |
| * max_width: enum for maximum width of data transfer |
| * max_height: enum for maximum height of data transfer |
| * chan: VPDMA channel |
| * flags: VPDMA flags to configure some descriptor fileds |
| */ |
| void vpdma_add_out_dtd(struct vpdma_desc_list *list, int width, |
| const struct v4l2_rect *c_rect, |
| const struct vpdma_data_format *fmt, dma_addr_t dma_addr, |
| int max_w, int max_h, enum vpdma_channel chan, u32 flags) |
| { |
| vpdma_rawchan_add_out_dtd(list, width, c_rect, fmt, dma_addr, |
| max_w, max_h, chan_info[chan].num, flags); |
| } |
| EXPORT_SYMBOL(vpdma_add_out_dtd); |
| |
| void vpdma_rawchan_add_out_dtd(struct vpdma_desc_list *list, int width, |
| const struct v4l2_rect *c_rect, |
| const struct vpdma_data_format *fmt, dma_addr_t dma_addr, |
| int max_w, int max_h, int raw_vpdma_chan, u32 flags) |
| { |
| int priority = 0; |
| int field = 0; |
| int notify = 1; |
| int channel, next_chan; |
| struct v4l2_rect rect = *c_rect; |
| int depth = fmt->depth; |
| int stride; |
| struct vpdma_dtd *dtd; |
| |
| channel = next_chan = raw_vpdma_chan; |
| |
| if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV && |
| fmt->data_type == DATA_TYPE_C420) { |
| rect.height >>= 1; |
| rect.top >>= 1; |
| depth = 8; |
| } |
| |
| stride = ALIGN((depth * width) >> 3, VPDMA_STRIDE_ALIGN); |
| |
| dma_addr += rect.top * stride + (rect.left * depth >> 3); |
| |
| dtd = list->next; |
| WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size)); |
| |
| dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type, |
| notify, |
| field, |
| !!(flags & VPDMA_DATA_FRAME_1D), |
| !!(flags & VPDMA_DATA_EVEN_LINE_SKIP), |
| !!(flags & VPDMA_DATA_ODD_LINE_SKIP), |
| stride); |
| dtd->w1 = 0; |
| dtd->start_addr = (u32) dma_addr; |
| dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED), |
| DTD_DIR_OUT, channel, priority, next_chan); |
| dtd->desc_write_addr = dtd_desc_write_addr(0, 0, 0, 0); |
| dtd->max_width_height = dtd_max_width_height(max_w, max_h); |
| dtd->client_attr0 = 0; |
| dtd->client_attr1 = 0; |
| |
| list->next = dtd + 1; |
| |
| dump_dtd(dtd); |
| } |
| EXPORT_SYMBOL(vpdma_rawchan_add_out_dtd); |
| |
| /* |
| * append an inbound data transfer descriptor to the given descriptor list, |
| * this sets up a 'memory to client' VPDMA transfer for the given VPDMA channel |
| * |
| * @list: vpdma desc list to which we add this decriptor |
| * @width: width of the image in pixels in memory(not the cropped width) |
| * @c_rect: crop params of input image |
| * @fmt: vpdma data format of the buffer |
| * dma_addr: dma address as seen by VPDMA |
| * chan: VPDMA channel |
| * field: top or bottom field info of the input image |
| * flags: VPDMA flags to configure some descriptor fileds |
| * frame_width/height: the complete width/height of the image presented to the |
| * client (this makes sense when multiple channels are |
| * connected to the same client, forming a larger frame) |
| * start_h, start_v: position where the given channel starts providing pixel |
| * data to the client (makes sense when multiple channels |
| * contribute to the client) |
| */ |
| void vpdma_add_in_dtd(struct vpdma_desc_list *list, int width, |
| const struct v4l2_rect *c_rect, |
| const struct vpdma_data_format *fmt, dma_addr_t dma_addr, |
| enum vpdma_channel chan, int field, u32 flags, int frame_width, |
| int frame_height, int start_h, int start_v) |
| { |
| int priority = 0; |
| int notify = 1; |
| int depth = fmt->depth; |
| int channel, next_chan; |
| struct v4l2_rect rect = *c_rect; |
| int stride; |
| struct vpdma_dtd *dtd; |
| |
| channel = next_chan = chan_info[chan].num; |
| |
| if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV && |
| fmt->data_type == DATA_TYPE_C420) { |
| rect.height >>= 1; |
| rect.top >>= 1; |
| depth = 8; |
| } |
| |
| stride = ALIGN((depth * width) >> 3, VPDMA_STRIDE_ALIGN); |
| |
| dma_addr += rect.top * stride + (rect.left * depth >> 3); |
| |
| dtd = list->next; |
| WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size)); |
| |
| dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type, |
| notify, |
| field, |
| !!(flags & VPDMA_DATA_FRAME_1D), |
| !!(flags & VPDMA_DATA_EVEN_LINE_SKIP), |
| !!(flags & VPDMA_DATA_ODD_LINE_SKIP), |
| stride); |
| |
| dtd->xfer_length_height = dtd_xfer_length_height(rect.width, |
| rect.height); |
| dtd->start_addr = (u32) dma_addr; |
| dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED), |
| DTD_DIR_IN, channel, priority, next_chan); |
| dtd->frame_width_height = dtd_frame_width_height(frame_width, |
| frame_height); |
| dtd->start_h_v = dtd_start_h_v(start_h, start_v); |
| dtd->client_attr0 = 0; |
| dtd->client_attr1 = 0; |
| |
| list->next = dtd + 1; |
| |
| dump_dtd(dtd); |
| } |
| EXPORT_SYMBOL(vpdma_add_in_dtd); |
| |
| int vpdma_hwlist_alloc(struct vpdma_data *vpdma, void *priv) |
| { |
| int i, list_num = -1; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&vpdma->lock, flags); |
| for (i = 0; i < VPDMA_MAX_NUM_LIST && |
| vpdma->hwlist_used[i] == true; i++) |
| ; |
| |
| if (i < VPDMA_MAX_NUM_LIST) { |
| list_num = i; |
| vpdma->hwlist_used[i] = true; |
| vpdma->hwlist_priv[i] = priv; |
| } |
| spin_unlock_irqrestore(&vpdma->lock, flags); |
| |
| return list_num; |
| } |
| EXPORT_SYMBOL(vpdma_hwlist_alloc); |
| |
| void *vpdma_hwlist_get_priv(struct vpdma_data *vpdma, int list_num) |
| { |
| if (!vpdma || list_num >= VPDMA_MAX_NUM_LIST) |
| return NULL; |
| |
| return vpdma->hwlist_priv[list_num]; |
| } |
| EXPORT_SYMBOL(vpdma_hwlist_get_priv); |
| |
| void *vpdma_hwlist_release(struct vpdma_data *vpdma, int list_num) |
| { |
| void *priv; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&vpdma->lock, flags); |
| vpdma->hwlist_used[list_num] = false; |
| priv = vpdma->hwlist_priv; |
| spin_unlock_irqrestore(&vpdma->lock, flags); |
| |
| return priv; |
| } |
| EXPORT_SYMBOL(vpdma_hwlist_release); |
| |
| /* set or clear the mask for list complete interrupt */ |
| void vpdma_enable_list_complete_irq(struct vpdma_data *vpdma, int irq_num, |
| int list_num, bool enable) |
| { |
| u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num; |
| u32 val; |
| |
| val = read_reg(vpdma, reg_addr); |
| if (enable) |
| val |= (1 << (list_num * 2)); |
| else |
| val &= ~(1 << (list_num * 2)); |
| write_reg(vpdma, reg_addr, val); |
| } |
| EXPORT_SYMBOL(vpdma_enable_list_complete_irq); |
| |
| /* get the LIST_STAT register */ |
| unsigned int vpdma_get_list_stat(struct vpdma_data *vpdma, int irq_num) |
| { |
| u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num; |
| |
| return read_reg(vpdma, reg_addr); |
| } |
| EXPORT_SYMBOL(vpdma_get_list_stat); |
| |
| /* get the LIST_MASK register */ |
| unsigned int vpdma_get_list_mask(struct vpdma_data *vpdma, int irq_num) |
| { |
| u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num; |
| |
| return read_reg(vpdma, reg_addr); |
| } |
| EXPORT_SYMBOL(vpdma_get_list_mask); |
| |
| /* clear previosuly occured list intterupts in the LIST_STAT register */ |
| void vpdma_clear_list_stat(struct vpdma_data *vpdma, int irq_num, |
| int list_num) |
| { |
| u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num; |
| |
| write_reg(vpdma, reg_addr, 3 << (list_num * 2)); |
| } |
| EXPORT_SYMBOL(vpdma_clear_list_stat); |
| |
| void vpdma_set_bg_color(struct vpdma_data *vpdma, |
| struct vpdma_data_format *fmt, u32 color) |
| { |
| if (fmt->type == VPDMA_DATA_FMT_TYPE_RGB) |
| write_reg(vpdma, VPDMA_BG_RGB, color); |
| else if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV) |
| write_reg(vpdma, VPDMA_BG_YUV, color); |
| } |
| EXPORT_SYMBOL(vpdma_set_bg_color); |
| |
| /* |
| * configures the output mode of the line buffer for the given client, the |
| * line buffer content can either be mirrored(each line repeated twice) or |
| * passed to the client as is |
| */ |
| void vpdma_set_line_mode(struct vpdma_data *vpdma, int line_mode, |
| enum vpdma_channel chan) |
| { |
| int client_cstat = chan_info[chan].cstat_offset; |
| |
| write_field_reg(vpdma, client_cstat, line_mode, |
| VPDMA_CSTAT_LINE_MODE_MASK, VPDMA_CSTAT_LINE_MODE_SHIFT); |
| } |
| EXPORT_SYMBOL(vpdma_set_line_mode); |
| |
| /* |
| * configures the event which should trigger VPDMA transfer for the given |
| * client |
| */ |
| void vpdma_set_frame_start_event(struct vpdma_data *vpdma, |
| enum vpdma_frame_start_event fs_event, |
| enum vpdma_channel chan) |
| { |
| int client_cstat = chan_info[chan].cstat_offset; |
| |
| write_field_reg(vpdma, client_cstat, fs_event, |
| VPDMA_CSTAT_FRAME_START_MASK, VPDMA_CSTAT_FRAME_START_SHIFT); |
| } |
| EXPORT_SYMBOL(vpdma_set_frame_start_event); |
| |
| static void vpdma_firmware_cb(const struct firmware *f, void *context) |
| { |
| struct vpdma_data *vpdma = context; |
| struct vpdma_buf fw_dma_buf; |
| int i, r; |
| |
| dev_dbg(&vpdma->pdev->dev, "firmware callback\n"); |
| |
| if (!f || !f->data) { |
| dev_err(&vpdma->pdev->dev, "couldn't get firmware\n"); |
| return; |
| } |
| |
| /* already initialized */ |
| if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK, |
| VPDMA_LIST_RDY_SHFT)) { |
| vpdma->cb(vpdma->pdev); |
| return; |
| } |
| |
| r = vpdma_alloc_desc_buf(&fw_dma_buf, f->size); |
| if (r) { |
| dev_err(&vpdma->pdev->dev, |
| "failed to allocate dma buffer for firmware\n"); |
| goto rel_fw; |
| } |
| |
| memcpy(fw_dma_buf.addr, f->data, f->size); |
| |
| vpdma_map_desc_buf(vpdma, &fw_dma_buf); |
| |
| write_reg(vpdma, VPDMA_LIST_ADDR, (u32) fw_dma_buf.dma_addr); |
| |
| for (i = 0; i < 100; i++) { /* max 1 second */ |
| msleep_interruptible(10); |
| |
| if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK, |
| VPDMA_LIST_RDY_SHFT)) |
| break; |
| } |
| |
| if (i == 100) { |
| dev_err(&vpdma->pdev->dev, "firmware upload failed\n"); |
| goto free_buf; |
| } |
| |
| vpdma->cb(vpdma->pdev); |
| |
| free_buf: |
| vpdma_unmap_desc_buf(vpdma, &fw_dma_buf); |
| |
| vpdma_free_desc_buf(&fw_dma_buf); |
| rel_fw: |
| release_firmware(f); |
| } |
| |
| static int vpdma_load_firmware(struct vpdma_data *vpdma) |
| { |
| int r; |
| struct device *dev = &vpdma->pdev->dev; |
| |
| r = request_firmware_nowait(THIS_MODULE, 1, |
| (const char *) VPDMA_FIRMWARE, dev, GFP_KERNEL, vpdma, |
| vpdma_firmware_cb); |
| if (r) { |
| dev_err(dev, "firmware not available %s\n", VPDMA_FIRMWARE); |
| return r; |
| } else { |
| dev_info(dev, "loading firmware %s\n", VPDMA_FIRMWARE); |
| } |
| |
| return 0; |
| } |
| |
| int vpdma_create(struct platform_device *pdev, struct vpdma_data *vpdma, |
| void (*cb)(struct platform_device *pdev)) |
| { |
| struct resource *res; |
| int r; |
| |
| dev_dbg(&pdev->dev, "vpdma_create\n"); |
| |
| vpdma->pdev = pdev; |
| vpdma->cb = cb; |
| spin_lock_init(&vpdma->lock); |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpdma"); |
| if (res == NULL) { |
| dev_err(&pdev->dev, "missing platform resources data\n"); |
| return -ENODEV; |
| } |
| |
| vpdma->base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); |
| if (!vpdma->base) { |
| dev_err(&pdev->dev, "failed to ioremap\n"); |
| return -ENOMEM; |
| } |
| |
| r = vpdma_load_firmware(vpdma); |
| if (r) { |
| pr_err("failed to load firmware %s\n", VPDMA_FIRMWARE); |
| return r; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(vpdma_create); |
| |
| MODULE_AUTHOR("Texas Instruments Inc."); |
| MODULE_FIRMWARE(VPDMA_FIRMWARE); |
| MODULE_LICENSE("GPL v2"); |