| /* |
| * Just-In-Time compiler for BPF filters on MIPS |
| * |
| * Copyright (c) 2014 Imagination Technologies Ltd. |
| * Author: Markos Chandras <markos.chandras@imgtec.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; version 2 of the License. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/compiler.h> |
| #include <linux/errno.h> |
| #include <linux/filter.h> |
| #include <linux/if_vlan.h> |
| #include <linux/kconfig.h> |
| #include <linux/moduleloader.h> |
| #include <linux/netdevice.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <asm/bitops.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cpu-features.h> |
| #include <asm/uasm.h> |
| |
| #include "bpf_jit.h" |
| |
| /* ABI |
| * |
| * s0 1st scratch register |
| * s1 2nd scratch register |
| * s2 offset register |
| * s3 BPF register A |
| * s4 BPF register X |
| * s5 *skb |
| * s6 *scratch memory |
| * |
| * On entry (*bpf_func)(*skb, *filter) |
| * a0 = MIPS_R_A0 = skb; |
| * a1 = MIPS_R_A1 = filter; |
| * |
| * Stack |
| * ... |
| * M[15] |
| * M[14] |
| * M[13] |
| * ... |
| * M[0] <-- r_M |
| * saved reg k-1 |
| * saved reg k-2 |
| * ... |
| * saved reg 0 <-- r_sp |
| * <no argument area> |
| * |
| * Packet layout |
| * |
| * <--------------------- len ------------------------> |
| * <--skb-len(r_skb_hl)-->< ----- skb->data_len ------> |
| * ---------------------------------------------------- |
| * | skb->data | |
| * ---------------------------------------------------- |
| */ |
| |
| #define RSIZE (sizeof(unsigned long)) |
| #define ptr typeof(unsigned long) |
| |
| /* ABI specific return values */ |
| #ifdef CONFIG_32BIT /* O32 */ |
| #ifdef CONFIG_CPU_LITTLE_ENDIAN |
| #define r_err MIPS_R_V1 |
| #define r_val MIPS_R_V0 |
| #else /* CONFIG_CPU_LITTLE_ENDIAN */ |
| #define r_err MIPS_R_V0 |
| #define r_val MIPS_R_V1 |
| #endif |
| #else /* N64 */ |
| #define r_err MIPS_R_V0 |
| #define r_val MIPS_R_V0 |
| #endif |
| |
| #define r_ret MIPS_R_V0 |
| |
| /* |
| * Use 2 scratch registers to avoid pipeline interlocks. |
| * There is no overhead during epilogue and prologue since |
| * any of the $s0-$s6 registers will only be preserved if |
| * they are going to actually be used. |
| */ |
| #define r_s0 MIPS_R_S0 /* scratch reg 1 */ |
| #define r_s1 MIPS_R_S1 /* scratch reg 2 */ |
| #define r_off MIPS_R_S2 |
| #define r_A MIPS_R_S3 |
| #define r_X MIPS_R_S4 |
| #define r_skb MIPS_R_S5 |
| #define r_M MIPS_R_S6 |
| #define r_tmp_imm MIPS_R_T6 /* No need to preserve this */ |
| #define r_tmp MIPS_R_T7 /* No need to preserve this */ |
| #define r_zero MIPS_R_ZERO |
| #define r_sp MIPS_R_SP |
| #define r_ra MIPS_R_RA |
| |
| #define SCRATCH_OFF(k) (4 * (k)) |
| |
| /* JIT flags */ |
| #define SEEN_CALL (1 << BPF_MEMWORDS) |
| #define SEEN_SREG_SFT (BPF_MEMWORDS + 1) |
| #define SEEN_SREG_BASE (1 << SEEN_SREG_SFT) |
| #define SEEN_SREG(x) (SEEN_SREG_BASE << (x)) |
| #define SEEN_S0 SEEN_SREG(0) |
| #define SEEN_S1 SEEN_SREG(1) |
| #define SEEN_OFF SEEN_SREG(2) |
| #define SEEN_A SEEN_SREG(3) |
| #define SEEN_X SEEN_SREG(4) |
| #define SEEN_SKB SEEN_SREG(5) |
| #define SEEN_MEM SEEN_SREG(6) |
| |
| /* Arguments used by JIT */ |
| #define ARGS_USED_BY_JIT 2 /* only applicable to 64-bit */ |
| |
| #define SBIT(x) (1 << (x)) /* Signed version of BIT() */ |
| |
| /** |
| * struct jit_ctx - JIT context |
| * @skf: The sk_filter |
| * @prologue_bytes: Number of bytes for prologue |
| * @idx: Instruction index |
| * @flags: JIT flags |
| * @offsets: Instruction offsets |
| * @target: Memory location for the compiled filter |
| */ |
| struct jit_ctx { |
| const struct bpf_prog *skf; |
| unsigned int prologue_bytes; |
| u32 idx; |
| u32 flags; |
| u32 *offsets; |
| u32 *target; |
| }; |
| |
| |
| static inline int optimize_div(u32 *k) |
| { |
| /* power of 2 divides can be implemented with right shift */ |
| if (!(*k & (*k-1))) { |
| *k = ilog2(*k); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx); |
| |
| /* Simply emit the instruction if the JIT memory space has been allocated */ |
| #define emit_instr(ctx, func, ...) \ |
| do { \ |
| if ((ctx)->target != NULL) { \ |
| u32 *p = &(ctx)->target[ctx->idx]; \ |
| uasm_i_##func(&p, ##__VA_ARGS__); \ |
| } \ |
| (ctx)->idx++; \ |
| } while (0) |
| |
| /* |
| * Similar to emit_instr but it must be used when we need to emit |
| * 32-bit or 64-bit instructions |
| */ |
| #define emit_long_instr(ctx, func, ...) \ |
| do { \ |
| if ((ctx)->target != NULL) { \ |
| u32 *p = &(ctx)->target[ctx->idx]; \ |
| UASM_i_##func(&p, ##__VA_ARGS__); \ |
| } \ |
| (ctx)->idx++; \ |
| } while (0) |
| |
| /* Determine if immediate is within the 16-bit signed range */ |
| static inline bool is_range16(s32 imm) |
| { |
| return !(imm >= SBIT(15) || imm < -SBIT(15)); |
| } |
| |
| static inline void emit_addu(unsigned int dst, unsigned int src1, |
| unsigned int src2, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, addu, dst, src1, src2); |
| } |
| |
| static inline void emit_nop(struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, nop); |
| } |
| |
| /* Load a u32 immediate to a register */ |
| static inline void emit_load_imm(unsigned int dst, u32 imm, struct jit_ctx *ctx) |
| { |
| if (ctx->target != NULL) { |
| /* addiu can only handle s16 */ |
| if (!is_range16(imm)) { |
| u32 *p = &ctx->target[ctx->idx]; |
| uasm_i_lui(&p, r_tmp_imm, (s32)imm >> 16); |
| p = &ctx->target[ctx->idx + 1]; |
| uasm_i_ori(&p, dst, r_tmp_imm, imm & 0xffff); |
| } else { |
| u32 *p = &ctx->target[ctx->idx]; |
| uasm_i_addiu(&p, dst, r_zero, imm); |
| } |
| } |
| ctx->idx++; |
| |
| if (!is_range16(imm)) |
| ctx->idx++; |
| } |
| |
| static inline void emit_or(unsigned int dst, unsigned int src1, |
| unsigned int src2, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, or, dst, src1, src2); |
| } |
| |
| static inline void emit_ori(unsigned int dst, unsigned src, u32 imm, |
| struct jit_ctx *ctx) |
| { |
| if (imm >= BIT(16)) { |
| emit_load_imm(r_tmp, imm, ctx); |
| emit_or(dst, src, r_tmp, ctx); |
| } else { |
| emit_instr(ctx, ori, dst, src, imm); |
| } |
| } |
| |
| static inline void emit_daddiu(unsigned int dst, unsigned int src, |
| int imm, struct jit_ctx *ctx) |
| { |
| /* |
| * Only used for stack, so the imm is relatively small |
| * and it fits in 15-bits |
| */ |
| emit_instr(ctx, daddiu, dst, src, imm); |
| } |
| |
| static inline void emit_addiu(unsigned int dst, unsigned int src, |
| u32 imm, struct jit_ctx *ctx) |
| { |
| if (!is_range16(imm)) { |
| emit_load_imm(r_tmp, imm, ctx); |
| emit_addu(dst, r_tmp, src, ctx); |
| } else { |
| emit_instr(ctx, addiu, dst, src, imm); |
| } |
| } |
| |
| static inline void emit_and(unsigned int dst, unsigned int src1, |
| unsigned int src2, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, and, dst, src1, src2); |
| } |
| |
| static inline void emit_andi(unsigned int dst, unsigned int src, |
| u32 imm, struct jit_ctx *ctx) |
| { |
| /* If imm does not fit in u16 then load it to register */ |
| if (imm >= BIT(16)) { |
| emit_load_imm(r_tmp, imm, ctx); |
| emit_and(dst, src, r_tmp, ctx); |
| } else { |
| emit_instr(ctx, andi, dst, src, imm); |
| } |
| } |
| |
| static inline void emit_xor(unsigned int dst, unsigned int src1, |
| unsigned int src2, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, xor, dst, src1, src2); |
| } |
| |
| static inline void emit_xori(ptr dst, ptr src, u32 imm, struct jit_ctx *ctx) |
| { |
| /* If imm does not fit in u16 then load it to register */ |
| if (imm >= BIT(16)) { |
| emit_load_imm(r_tmp, imm, ctx); |
| emit_xor(dst, src, r_tmp, ctx); |
| } else { |
| emit_instr(ctx, xori, dst, src, imm); |
| } |
| } |
| |
| static inline void emit_stack_offset(int offset, struct jit_ctx *ctx) |
| { |
| emit_long_instr(ctx, ADDIU, r_sp, r_sp, offset); |
| } |
| |
| static inline void emit_subu(unsigned int dst, unsigned int src1, |
| unsigned int src2, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, subu, dst, src1, src2); |
| } |
| |
| static inline void emit_neg(unsigned int reg, struct jit_ctx *ctx) |
| { |
| emit_subu(reg, r_zero, reg, ctx); |
| } |
| |
| static inline void emit_sllv(unsigned int dst, unsigned int src, |
| unsigned int sa, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, sllv, dst, src, sa); |
| } |
| |
| static inline void emit_sll(unsigned int dst, unsigned int src, |
| unsigned int sa, struct jit_ctx *ctx) |
| { |
| /* sa is 5-bits long */ |
| if (sa >= BIT(5)) |
| /* Shifting >= 32 results in zero */ |
| emit_jit_reg_move(dst, r_zero, ctx); |
| else |
| emit_instr(ctx, sll, dst, src, sa); |
| } |
| |
| static inline void emit_srlv(unsigned int dst, unsigned int src, |
| unsigned int sa, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, srlv, dst, src, sa); |
| } |
| |
| static inline void emit_srl(unsigned int dst, unsigned int src, |
| unsigned int sa, struct jit_ctx *ctx) |
| { |
| /* sa is 5-bits long */ |
| if (sa >= BIT(5)) |
| /* Shifting >= 32 results in zero */ |
| emit_jit_reg_move(dst, r_zero, ctx); |
| else |
| emit_instr(ctx, srl, dst, src, sa); |
| } |
| |
| static inline void emit_slt(unsigned int dst, unsigned int src1, |
| unsigned int src2, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, slt, dst, src1, src2); |
| } |
| |
| static inline void emit_sltu(unsigned int dst, unsigned int src1, |
| unsigned int src2, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, sltu, dst, src1, src2); |
| } |
| |
| static inline void emit_sltiu(unsigned dst, unsigned int src, |
| unsigned int imm, struct jit_ctx *ctx) |
| { |
| /* 16 bit immediate */ |
| if (!is_range16((s32)imm)) { |
| emit_load_imm(r_tmp, imm, ctx); |
| emit_sltu(dst, src, r_tmp, ctx); |
| } else { |
| emit_instr(ctx, sltiu, dst, src, imm); |
| } |
| |
| } |
| |
| /* Store register on the stack */ |
| static inline void emit_store_stack_reg(ptr reg, ptr base, |
| unsigned int offset, |
| struct jit_ctx *ctx) |
| { |
| emit_long_instr(ctx, SW, reg, offset, base); |
| } |
| |
| static inline void emit_store(ptr reg, ptr base, unsigned int offset, |
| struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, sw, reg, offset, base); |
| } |
| |
| static inline void emit_load_stack_reg(ptr reg, ptr base, |
| unsigned int offset, |
| struct jit_ctx *ctx) |
| { |
| emit_long_instr(ctx, LW, reg, offset, base); |
| } |
| |
| static inline void emit_load(unsigned int reg, unsigned int base, |
| unsigned int offset, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, lw, reg, offset, base); |
| } |
| |
| static inline void emit_load_byte(unsigned int reg, unsigned int base, |
| unsigned int offset, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, lb, reg, offset, base); |
| } |
| |
| static inline void emit_half_load(unsigned int reg, unsigned int base, |
| unsigned int offset, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, lh, reg, offset, base); |
| } |
| |
| static inline void emit_mul(unsigned int dst, unsigned int src1, |
| unsigned int src2, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, mul, dst, src1, src2); |
| } |
| |
| static inline void emit_div(unsigned int dst, unsigned int src, |
| struct jit_ctx *ctx) |
| { |
| if (ctx->target != NULL) { |
| u32 *p = &ctx->target[ctx->idx]; |
| uasm_i_divu(&p, dst, src); |
| p = &ctx->target[ctx->idx + 1]; |
| uasm_i_mflo(&p, dst); |
| } |
| ctx->idx += 2; /* 2 insts */ |
| } |
| |
| static inline void emit_mod(unsigned int dst, unsigned int src, |
| struct jit_ctx *ctx) |
| { |
| if (ctx->target != NULL) { |
| u32 *p = &ctx->target[ctx->idx]; |
| uasm_i_divu(&p, dst, src); |
| p = &ctx->target[ctx->idx + 1]; |
| uasm_i_mflo(&p, dst); |
| } |
| ctx->idx += 2; /* 2 insts */ |
| } |
| |
| static inline void emit_dsll(unsigned int dst, unsigned int src, |
| unsigned int sa, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, dsll, dst, src, sa); |
| } |
| |
| static inline void emit_dsrl32(unsigned int dst, unsigned int src, |
| unsigned int sa, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, dsrl32, dst, src, sa); |
| } |
| |
| static inline void emit_wsbh(unsigned int dst, unsigned int src, |
| struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, wsbh, dst, src); |
| } |
| |
| /* load pointer to register */ |
| static inline void emit_load_ptr(unsigned int dst, unsigned int src, |
| int imm, struct jit_ctx *ctx) |
| { |
| /* src contains the base addr of the 32/64-pointer */ |
| emit_long_instr(ctx, LW, dst, imm, src); |
| } |
| |
| /* load a function pointer to register */ |
| static inline void emit_load_func(unsigned int reg, ptr imm, |
| struct jit_ctx *ctx) |
| { |
| if (config_enabled(CONFIG_64BIT)) { |
| /* At this point imm is always 64-bit */ |
| emit_load_imm(r_tmp, (u64)imm >> 32, ctx); |
| emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */ |
| emit_ori(r_tmp, r_tmp_imm, (imm >> 16) & 0xffff, ctx); |
| emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */ |
| emit_ori(reg, r_tmp_imm, imm & 0xffff, ctx); |
| } else { |
| emit_load_imm(reg, imm, ctx); |
| } |
| } |
| |
| /* Move to real MIPS register */ |
| static inline void emit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx) |
| { |
| emit_long_instr(ctx, ADDU, dst, src, r_zero); |
| } |
| |
| /* Move to JIT (32-bit) register */ |
| static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx) |
| { |
| emit_addu(dst, src, r_zero, ctx); |
| } |
| |
| /* Compute the immediate value for PC-relative branches. */ |
| static inline u32 b_imm(unsigned int tgt, struct jit_ctx *ctx) |
| { |
| if (ctx->target == NULL) |
| return 0; |
| |
| /* |
| * We want a pc-relative branch. We only do forward branches |
| * so tgt is always after pc. tgt is the instruction offset |
| * we want to jump to. |
| |
| * Branch on MIPS: |
| * I: target_offset <- sign_extend(offset) |
| * I+1: PC += target_offset (delay slot) |
| * |
| * ctx->idx currently points to the branch instruction |
| * but the offset is added to the delay slot so we need |
| * to subtract 4. |
| */ |
| return ctx->offsets[tgt] - |
| (ctx->idx * 4 - ctx->prologue_bytes) - 4; |
| } |
| |
| static inline void emit_bcond(int cond, unsigned int reg1, unsigned int reg2, |
| unsigned int imm, struct jit_ctx *ctx) |
| { |
| if (ctx->target != NULL) { |
| u32 *p = &ctx->target[ctx->idx]; |
| |
| switch (cond) { |
| case MIPS_COND_EQ: |
| uasm_i_beq(&p, reg1, reg2, imm); |
| break; |
| case MIPS_COND_NE: |
| uasm_i_bne(&p, reg1, reg2, imm); |
| break; |
| case MIPS_COND_ALL: |
| uasm_i_b(&p, imm); |
| break; |
| default: |
| pr_warn("%s: Unhandled branch conditional: %d\n", |
| __func__, cond); |
| } |
| } |
| ctx->idx++; |
| } |
| |
| static inline void emit_b(unsigned int imm, struct jit_ctx *ctx) |
| { |
| emit_bcond(MIPS_COND_ALL, r_zero, r_zero, imm, ctx); |
| } |
| |
| static inline void emit_jalr(unsigned int link, unsigned int reg, |
| struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, jalr, link, reg); |
| } |
| |
| static inline void emit_jr(unsigned int reg, struct jit_ctx *ctx) |
| { |
| emit_instr(ctx, jr, reg); |
| } |
| |
| static inline u16 align_sp(unsigned int num) |
| { |
| /* Double word alignment for 32-bit, quadword for 64-bit */ |
| unsigned int align = config_enabled(CONFIG_64BIT) ? 16 : 8; |
| num = (num + (align - 1)) & -align; |
| return num; |
| } |
| |
| static bool is_load_to_a(u16 inst) |
| { |
| switch (inst) { |
| case BPF_LD | BPF_W | BPF_LEN: |
| case BPF_LD | BPF_W | BPF_ABS: |
| case BPF_LD | BPF_H | BPF_ABS: |
| case BPF_LD | BPF_B | BPF_ABS: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static void save_bpf_jit_regs(struct jit_ctx *ctx, unsigned offset) |
| { |
| int i = 0, real_off = 0; |
| u32 sflags, tmp_flags; |
| |
| /* Adjust the stack pointer */ |
| emit_stack_offset(-align_sp(offset), ctx); |
| |
| if (ctx->flags & SEEN_CALL) { |
| /* Argument save area */ |
| if (config_enabled(CONFIG_64BIT)) |
| /* Bottom of current frame */ |
| real_off = align_sp(offset) - RSIZE; |
| else |
| /* Top of previous frame */ |
| real_off = align_sp(offset) + RSIZE; |
| emit_store_stack_reg(MIPS_R_A0, r_sp, real_off, ctx); |
| emit_store_stack_reg(MIPS_R_A1, r_sp, real_off + RSIZE, ctx); |
| |
| real_off = 0; |
| } |
| |
| tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT; |
| /* sflags is essentially a bitmap */ |
| while (tmp_flags) { |
| if ((sflags >> i) & 0x1) { |
| emit_store_stack_reg(MIPS_R_S0 + i, r_sp, real_off, |
| ctx); |
| real_off += RSIZE; |
| } |
| i++; |
| tmp_flags >>= 1; |
| } |
| |
| /* save return address */ |
| if (ctx->flags & SEEN_CALL) { |
| emit_store_stack_reg(r_ra, r_sp, real_off, ctx); |
| real_off += RSIZE; |
| } |
| |
| /* Setup r_M leaving the alignment gap if necessary */ |
| if (ctx->flags & SEEN_MEM) { |
| if (real_off % (RSIZE * 2)) |
| real_off += RSIZE; |
| emit_long_instr(ctx, ADDIU, r_M, r_sp, real_off); |
| } |
| } |
| |
| static void restore_bpf_jit_regs(struct jit_ctx *ctx, |
| unsigned int offset) |
| { |
| int i, real_off = 0; |
| u32 sflags, tmp_flags; |
| |
| if (ctx->flags & SEEN_CALL) { |
| if (config_enabled(CONFIG_64BIT)) |
| /* Bottom of current frame */ |
| real_off = align_sp(offset) - RSIZE; |
| else |
| /* Top of previous frame */ |
| real_off = align_sp(offset) + RSIZE; |
| emit_load_stack_reg(MIPS_R_A0, r_sp, real_off, ctx); |
| emit_load_stack_reg(MIPS_R_A1, r_sp, real_off + RSIZE, ctx); |
| |
| real_off = 0; |
| } |
| |
| tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT; |
| /* sflags is a bitmap */ |
| i = 0; |
| while (tmp_flags) { |
| if ((sflags >> i) & 0x1) { |
| emit_load_stack_reg(MIPS_R_S0 + i, r_sp, real_off, |
| ctx); |
| real_off += RSIZE; |
| } |
| i++; |
| tmp_flags >>= 1; |
| } |
| |
| /* restore return address */ |
| if (ctx->flags & SEEN_CALL) |
| emit_load_stack_reg(r_ra, r_sp, real_off, ctx); |
| |
| /* Restore the sp and discard the scrach memory */ |
| emit_stack_offset(align_sp(offset), ctx); |
| } |
| |
| static unsigned int get_stack_depth(struct jit_ctx *ctx) |
| { |
| int sp_off = 0; |
| |
| |
| /* How may s* regs do we need to preserved? */ |
| sp_off += hweight32(ctx->flags >> SEEN_SREG_SFT) * RSIZE; |
| |
| if (ctx->flags & SEEN_MEM) |
| sp_off += 4 * BPF_MEMWORDS; /* BPF_MEMWORDS are 32-bit */ |
| |
| if (ctx->flags & SEEN_CALL) |
| /* |
| * The JIT code make calls to external functions using 2 |
| * arguments. Therefore, for o32 we don't need to allocate |
| * space because we don't care if the argumetns are lost |
| * across calls. We do need however to preserve incoming |
| * arguments but the space is already allocated for us by |
| * the caller. On the other hand, for n64, we need to allocate |
| * this space ourselves. We need to preserve $ra as well. |
| */ |
| sp_off += config_enabled(CONFIG_64BIT) ? |
| (ARGS_USED_BY_JIT + 1) * RSIZE : RSIZE; |
| |
| /* |
| * Subtract the bytes for the last registers since we only care about |
| * the location on the stack pointer. |
| */ |
| return sp_off - RSIZE; |
| } |
| |
| static void build_prologue(struct jit_ctx *ctx) |
| { |
| u16 first_inst = ctx->skf->insns[0].code; |
| int sp_off; |
| |
| /* Calculate the total offset for the stack pointer */ |
| sp_off = get_stack_depth(ctx); |
| save_bpf_jit_regs(ctx, sp_off); |
| |
| if (ctx->flags & SEEN_SKB) |
| emit_reg_move(r_skb, MIPS_R_A0, ctx); |
| |
| if (ctx->flags & SEEN_X) |
| emit_jit_reg_move(r_X, r_zero, ctx); |
| |
| /* Do not leak kernel data to userspace */ |
| if ((first_inst != (BPF_RET | BPF_K)) && !(is_load_to_a(first_inst))) |
| emit_jit_reg_move(r_A, r_zero, ctx); |
| } |
| |
| static void build_epilogue(struct jit_ctx *ctx) |
| { |
| unsigned int sp_off; |
| |
| /* Calculate the total offset for the stack pointer */ |
| |
| sp_off = get_stack_depth(ctx); |
| restore_bpf_jit_regs(ctx, sp_off); |
| |
| /* Return */ |
| emit_jr(r_ra, ctx); |
| emit_nop(ctx); |
| } |
| |
| static u64 jit_get_skb_b(struct sk_buff *skb, unsigned offset) |
| { |
| u8 ret; |
| int err; |
| |
| err = skb_copy_bits(skb, offset, &ret, 1); |
| |
| return (u64)err << 32 | ret; |
| } |
| |
| static u64 jit_get_skb_h(struct sk_buff *skb, unsigned offset) |
| { |
| u16 ret; |
| int err; |
| |
| err = skb_copy_bits(skb, offset, &ret, 2); |
| |
| return (u64)err << 32 | ntohs(ret); |
| } |
| |
| static u64 jit_get_skb_w(struct sk_buff *skb, unsigned offset) |
| { |
| u32 ret; |
| int err; |
| |
| err = skb_copy_bits(skb, offset, &ret, 4); |
| |
| return (u64)err << 32 | ntohl(ret); |
| } |
| |
| static int build_body(struct jit_ctx *ctx) |
| { |
| void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w}; |
| const struct bpf_prog *prog = ctx->skf; |
| const struct sock_filter *inst; |
| unsigned int i, off, load_order, condt; |
| u32 k, b_off __maybe_unused; |
| |
| for (i = 0; i < prog->len; i++) { |
| u16 code; |
| |
| inst = &(prog->insns[i]); |
| pr_debug("%s: code->0x%02x, jt->0x%x, jf->0x%x, k->0x%x\n", |
| __func__, inst->code, inst->jt, inst->jf, inst->k); |
| k = inst->k; |
| code = bpf_anc_helper(inst); |
| |
| if (ctx->target == NULL) |
| ctx->offsets[i] = ctx->idx * 4; |
| |
| switch (code) { |
| case BPF_LD | BPF_IMM: |
| /* A <- k ==> li r_A, k */ |
| ctx->flags |= SEEN_A; |
| emit_load_imm(r_A, k, ctx); |
| break; |
| case BPF_LD | BPF_W | BPF_LEN: |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); |
| /* A <- len ==> lw r_A, offset(skb) */ |
| ctx->flags |= SEEN_SKB | SEEN_A; |
| off = offsetof(struct sk_buff, len); |
| emit_load(r_A, r_skb, off, ctx); |
| break; |
| case BPF_LD | BPF_MEM: |
| /* A <- M[k] ==> lw r_A, offset(M) */ |
| ctx->flags |= SEEN_MEM | SEEN_A; |
| emit_load(r_A, r_M, SCRATCH_OFF(k), ctx); |
| break; |
| case BPF_LD | BPF_W | BPF_ABS: |
| /* A <- P[k:4] */ |
| load_order = 2; |
| goto load; |
| case BPF_LD | BPF_H | BPF_ABS: |
| /* A <- P[k:2] */ |
| load_order = 1; |
| goto load; |
| case BPF_LD | BPF_B | BPF_ABS: |
| /* A <- P[k:1] */ |
| load_order = 0; |
| load: |
| /* the interpreter will deal with the negative K */ |
| if ((int)k < 0) |
| return -ENOTSUPP; |
| |
| emit_load_imm(r_off, k, ctx); |
| load_common: |
| /* |
| * We may got here from the indirect loads so |
| * return if offset is negative. |
| */ |
| emit_slt(r_s0, r_off, r_zero, ctx); |
| emit_bcond(MIPS_COND_NE, r_s0, r_zero, |
| b_imm(prog->len, ctx), ctx); |
| emit_reg_move(r_ret, r_zero, ctx); |
| |
| ctx->flags |= SEEN_CALL | SEEN_OFF | SEEN_S0 | |
| SEEN_SKB | SEEN_A; |
| |
| emit_load_func(r_s0, (ptr)load_func[load_order], |
| ctx); |
| emit_reg_move(MIPS_R_A0, r_skb, ctx); |
| emit_jalr(MIPS_R_RA, r_s0, ctx); |
| /* Load second argument to delay slot */ |
| emit_reg_move(MIPS_R_A1, r_off, ctx); |
| /* Check the error value */ |
| if (config_enabled(CONFIG_64BIT)) { |
| /* Get error code from the top 32-bits */ |
| emit_dsrl32(r_s0, r_val, 0, ctx); |
| /* Branch to 3 instructions ahead */ |
| emit_bcond(MIPS_COND_NE, r_s0, r_zero, 3 << 2, |
| ctx); |
| } else { |
| /* Branch to 3 instructions ahead */ |
| emit_bcond(MIPS_COND_NE, r_err, r_zero, 3 << 2, |
| ctx); |
| } |
| emit_nop(ctx); |
| /* We are good */ |
| emit_b(b_imm(i + 1, ctx), ctx); |
| emit_jit_reg_move(r_A, r_val, ctx); |
| /* Return with error */ |
| emit_b(b_imm(prog->len, ctx), ctx); |
| emit_reg_move(r_ret, r_zero, ctx); |
| break; |
| case BPF_LD | BPF_W | BPF_IND: |
| /* A <- P[X + k:4] */ |
| load_order = 2; |
| goto load_ind; |
| case BPF_LD | BPF_H | BPF_IND: |
| /* A <- P[X + k:2] */ |
| load_order = 1; |
| goto load_ind; |
| case BPF_LD | BPF_B | BPF_IND: |
| /* A <- P[X + k:1] */ |
| load_order = 0; |
| load_ind: |
| ctx->flags |= SEEN_OFF | SEEN_X; |
| emit_addiu(r_off, r_X, k, ctx); |
| goto load_common; |
| case BPF_LDX | BPF_IMM: |
| /* X <- k */ |
| ctx->flags |= SEEN_X; |
| emit_load_imm(r_X, k, ctx); |
| break; |
| case BPF_LDX | BPF_MEM: |
| /* X <- M[k] */ |
| ctx->flags |= SEEN_X | SEEN_MEM; |
| emit_load(r_X, r_M, SCRATCH_OFF(k), ctx); |
| break; |
| case BPF_LDX | BPF_W | BPF_LEN: |
| /* X <- len */ |
| ctx->flags |= SEEN_X | SEEN_SKB; |
| off = offsetof(struct sk_buff, len); |
| emit_load(r_X, r_skb, off, ctx); |
| break; |
| case BPF_LDX | BPF_B | BPF_MSH: |
| /* the interpreter will deal with the negative K */ |
| if ((int)k < 0) |
| return -ENOTSUPP; |
| |
| /* X <- 4 * (P[k:1] & 0xf) */ |
| ctx->flags |= SEEN_X | SEEN_CALL | SEEN_S0 | SEEN_SKB; |
| /* Load offset to a1 */ |
| emit_load_func(r_s0, (ptr)jit_get_skb_b, ctx); |
| /* |
| * This may emit two instructions so it may not fit |
| * in the delay slot. So use a0 in the delay slot. |
| */ |
| emit_load_imm(MIPS_R_A1, k, ctx); |
| emit_jalr(MIPS_R_RA, r_s0, ctx); |
| emit_reg_move(MIPS_R_A0, r_skb, ctx); /* delay slot */ |
| /* Check the error value */ |
| if (config_enabled(CONFIG_64BIT)) { |
| /* Top 32-bits of $v0 on 64-bit */ |
| emit_dsrl32(r_s0, r_val, 0, ctx); |
| emit_bcond(MIPS_COND_NE, r_s0, r_zero, |
| 3 << 2, ctx); |
| } else { |
| emit_bcond(MIPS_COND_NE, r_err, r_zero, |
| 3 << 2, ctx); |
| } |
| /* No need for delay slot */ |
| /* We are good */ |
| /* X <- P[1:K] & 0xf */ |
| emit_andi(r_X, r_val, 0xf, ctx); |
| /* X << 2 */ |
| emit_b(b_imm(i + 1, ctx), ctx); |
| emit_sll(r_X, r_X, 2, ctx); /* delay slot */ |
| /* Return with error */ |
| emit_b(b_imm(prog->len, ctx), ctx); |
| emit_load_imm(r_ret, 0, ctx); /* delay slot */ |
| break; |
| case BPF_ST: |
| /* M[k] <- A */ |
| ctx->flags |= SEEN_MEM | SEEN_A; |
| emit_store(r_A, r_M, SCRATCH_OFF(k), ctx); |
| break; |
| case BPF_STX: |
| /* M[k] <- X */ |
| ctx->flags |= SEEN_MEM | SEEN_X; |
| emit_store(r_X, r_M, SCRATCH_OFF(k), ctx); |
| break; |
| case BPF_ALU | BPF_ADD | BPF_K: |
| /* A += K */ |
| ctx->flags |= SEEN_A; |
| emit_addiu(r_A, r_A, k, ctx); |
| break; |
| case BPF_ALU | BPF_ADD | BPF_X: |
| /* A += X */ |
| ctx->flags |= SEEN_A | SEEN_X; |
| emit_addu(r_A, r_A, r_X, ctx); |
| break; |
| case BPF_ALU | BPF_SUB | BPF_K: |
| /* A -= K */ |
| ctx->flags |= SEEN_A; |
| emit_addiu(r_A, r_A, -k, ctx); |
| break; |
| case BPF_ALU | BPF_SUB | BPF_X: |
| /* A -= X */ |
| ctx->flags |= SEEN_A | SEEN_X; |
| emit_subu(r_A, r_A, r_X, ctx); |
| break; |
| case BPF_ALU | BPF_MUL | BPF_K: |
| /* A *= K */ |
| /* Load K to scratch register before MUL */ |
| ctx->flags |= SEEN_A | SEEN_S0; |
| emit_load_imm(r_s0, k, ctx); |
| emit_mul(r_A, r_A, r_s0, ctx); |
| break; |
| case BPF_ALU | BPF_MUL | BPF_X: |
| /* A *= X */ |
| ctx->flags |= SEEN_A | SEEN_X; |
| emit_mul(r_A, r_A, r_X, ctx); |
| break; |
| case BPF_ALU | BPF_DIV | BPF_K: |
| /* A /= k */ |
| if (k == 1) |
| break; |
| if (optimize_div(&k)) { |
| ctx->flags |= SEEN_A; |
| emit_srl(r_A, r_A, k, ctx); |
| break; |
| } |
| ctx->flags |= SEEN_A | SEEN_S0; |
| emit_load_imm(r_s0, k, ctx); |
| emit_div(r_A, r_s0, ctx); |
| break; |
| case BPF_ALU | BPF_MOD | BPF_K: |
| /* A %= k */ |
| if (k == 1 || optimize_div(&k)) { |
| ctx->flags |= SEEN_A; |
| emit_jit_reg_move(r_A, r_zero, ctx); |
| } else { |
| ctx->flags |= SEEN_A | SEEN_S0; |
| emit_load_imm(r_s0, k, ctx); |
| emit_mod(r_A, r_s0, ctx); |
| } |
| break; |
| case BPF_ALU | BPF_DIV | BPF_X: |
| /* A /= X */ |
| ctx->flags |= SEEN_X | SEEN_A; |
| /* Check if r_X is zero */ |
| emit_bcond(MIPS_COND_EQ, r_X, r_zero, |
| b_imm(prog->len, ctx), ctx); |
| emit_load_imm(r_val, 0, ctx); /* delay slot */ |
| emit_div(r_A, r_X, ctx); |
| break; |
| case BPF_ALU | BPF_MOD | BPF_X: |
| /* A %= X */ |
| ctx->flags |= SEEN_X | SEEN_A; |
| /* Check if r_X is zero */ |
| emit_bcond(MIPS_COND_EQ, r_X, r_zero, |
| b_imm(prog->len, ctx), ctx); |
| emit_load_imm(r_val, 0, ctx); /* delay slot */ |
| emit_mod(r_A, r_X, ctx); |
| break; |
| case BPF_ALU | BPF_OR | BPF_K: |
| /* A |= K */ |
| ctx->flags |= SEEN_A; |
| emit_ori(r_A, r_A, k, ctx); |
| break; |
| case BPF_ALU | BPF_OR | BPF_X: |
| /* A |= X */ |
| ctx->flags |= SEEN_A; |
| emit_ori(r_A, r_A, r_X, ctx); |
| break; |
| case BPF_ALU | BPF_XOR | BPF_K: |
| /* A ^= k */ |
| ctx->flags |= SEEN_A; |
| emit_xori(r_A, r_A, k, ctx); |
| break; |
| case BPF_ANC | SKF_AD_ALU_XOR_X: |
| case BPF_ALU | BPF_XOR | BPF_X: |
| /* A ^= X */ |
| ctx->flags |= SEEN_A; |
| emit_xor(r_A, r_A, r_X, ctx); |
| break; |
| case BPF_ALU | BPF_AND | BPF_K: |
| /* A &= K */ |
| ctx->flags |= SEEN_A; |
| emit_andi(r_A, r_A, k, ctx); |
| break; |
| case BPF_ALU | BPF_AND | BPF_X: |
| /* A &= X */ |
| ctx->flags |= SEEN_A | SEEN_X; |
| emit_and(r_A, r_A, r_X, ctx); |
| break; |
| case BPF_ALU | BPF_LSH | BPF_K: |
| /* A <<= K */ |
| ctx->flags |= SEEN_A; |
| emit_sll(r_A, r_A, k, ctx); |
| break; |
| case BPF_ALU | BPF_LSH | BPF_X: |
| /* A <<= X */ |
| ctx->flags |= SEEN_A | SEEN_X; |
| emit_sllv(r_A, r_A, r_X, ctx); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_K: |
| /* A >>= K */ |
| ctx->flags |= SEEN_A; |
| emit_srl(r_A, r_A, k, ctx); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_X: |
| ctx->flags |= SEEN_A | SEEN_X; |
| emit_srlv(r_A, r_A, r_X, ctx); |
| break; |
| case BPF_ALU | BPF_NEG: |
| /* A = -A */ |
| ctx->flags |= SEEN_A; |
| emit_neg(r_A, ctx); |
| break; |
| case BPF_JMP | BPF_JA: |
| /* pc += K */ |
| emit_b(b_imm(i + k + 1, ctx), ctx); |
| emit_nop(ctx); |
| break; |
| case BPF_JMP | BPF_JEQ | BPF_K: |
| /* pc += ( A == K ) ? pc->jt : pc->jf */ |
| condt = MIPS_COND_EQ | MIPS_COND_K; |
| goto jmp_cmp; |
| case BPF_JMP | BPF_JEQ | BPF_X: |
| ctx->flags |= SEEN_X; |
| /* pc += ( A == X ) ? pc->jt : pc->jf */ |
| condt = MIPS_COND_EQ | MIPS_COND_X; |
| goto jmp_cmp; |
| case BPF_JMP | BPF_JGE | BPF_K: |
| /* pc += ( A >= K ) ? pc->jt : pc->jf */ |
| condt = MIPS_COND_GE | MIPS_COND_K; |
| goto jmp_cmp; |
| case BPF_JMP | BPF_JGE | BPF_X: |
| ctx->flags |= SEEN_X; |
| /* pc += ( A >= X ) ? pc->jt : pc->jf */ |
| condt = MIPS_COND_GE | MIPS_COND_X; |
| goto jmp_cmp; |
| case BPF_JMP | BPF_JGT | BPF_K: |
| /* pc += ( A > K ) ? pc->jt : pc->jf */ |
| condt = MIPS_COND_GT | MIPS_COND_K; |
| goto jmp_cmp; |
| case BPF_JMP | BPF_JGT | BPF_X: |
| ctx->flags |= SEEN_X; |
| /* pc += ( A > X ) ? pc->jt : pc->jf */ |
| condt = MIPS_COND_GT | MIPS_COND_X; |
| jmp_cmp: |
| /* Greater or Equal */ |
| if ((condt & MIPS_COND_GE) || |
| (condt & MIPS_COND_GT)) { |
| if (condt & MIPS_COND_K) { /* K */ |
| ctx->flags |= SEEN_S0 | SEEN_A; |
| emit_sltiu(r_s0, r_A, k, ctx); |
| } else { /* X */ |
| ctx->flags |= SEEN_S0 | SEEN_A | |
| SEEN_X; |
| emit_sltu(r_s0, r_A, r_X, ctx); |
| } |
| /* A < (K|X) ? r_scrach = 1 */ |
| b_off = b_imm(i + inst->jf + 1, ctx); |
| emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, |
| ctx); |
| emit_nop(ctx); |
| /* A > (K|X) ? scratch = 0 */ |
| if (condt & MIPS_COND_GT) { |
| /* Checking for equality */ |
| ctx->flags |= SEEN_S0 | SEEN_A | SEEN_X; |
| if (condt & MIPS_COND_K) |
| emit_load_imm(r_s0, k, ctx); |
| else |
| emit_jit_reg_move(r_s0, r_X, |
| ctx); |
| b_off = b_imm(i + inst->jf + 1, ctx); |
| emit_bcond(MIPS_COND_EQ, r_A, r_s0, |
| b_off, ctx); |
| emit_nop(ctx); |
| /* Finally, A > K|X */ |
| b_off = b_imm(i + inst->jt + 1, ctx); |
| emit_b(b_off, ctx); |
| emit_nop(ctx); |
| } else { |
| /* A >= (K|X) so jump */ |
| b_off = b_imm(i + inst->jt + 1, ctx); |
| emit_b(b_off, ctx); |
| emit_nop(ctx); |
| } |
| } else { |
| /* A == K|X */ |
| if (condt & MIPS_COND_K) { /* K */ |
| ctx->flags |= SEEN_S0 | SEEN_A; |
| emit_load_imm(r_s0, k, ctx); |
| /* jump true */ |
| b_off = b_imm(i + inst->jt + 1, ctx); |
| emit_bcond(MIPS_COND_EQ, r_A, r_s0, |
| b_off, ctx); |
| emit_nop(ctx); |
| /* jump false */ |
| b_off = b_imm(i + inst->jf + 1, |
| ctx); |
| emit_bcond(MIPS_COND_NE, r_A, r_s0, |
| b_off, ctx); |
| emit_nop(ctx); |
| } else { /* X */ |
| /* jump true */ |
| ctx->flags |= SEEN_A | SEEN_X; |
| b_off = b_imm(i + inst->jt + 1, |
| ctx); |
| emit_bcond(MIPS_COND_EQ, r_A, r_X, |
| b_off, ctx); |
| emit_nop(ctx); |
| /* jump false */ |
| b_off = b_imm(i + inst->jf + 1, ctx); |
| emit_bcond(MIPS_COND_NE, r_A, r_X, |
| b_off, ctx); |
| emit_nop(ctx); |
| } |
| } |
| break; |
| case BPF_JMP | BPF_JSET | BPF_K: |
| ctx->flags |= SEEN_S0 | SEEN_S1 | SEEN_A; |
| /* pc += (A & K) ? pc -> jt : pc -> jf */ |
| emit_load_imm(r_s1, k, ctx); |
| emit_and(r_s0, r_A, r_s1, ctx); |
| /* jump true */ |
| b_off = b_imm(i + inst->jt + 1, ctx); |
| emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx); |
| emit_nop(ctx); |
| /* jump false */ |
| b_off = b_imm(i + inst->jf + 1, ctx); |
| emit_b(b_off, ctx); |
| emit_nop(ctx); |
| break; |
| case BPF_JMP | BPF_JSET | BPF_X: |
| ctx->flags |= SEEN_S0 | SEEN_X | SEEN_A; |
| /* pc += (A & X) ? pc -> jt : pc -> jf */ |
| emit_and(r_s0, r_A, r_X, ctx); |
| /* jump true */ |
| b_off = b_imm(i + inst->jt + 1, ctx); |
| emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx); |
| emit_nop(ctx); |
| /* jump false */ |
| b_off = b_imm(i + inst->jf + 1, ctx); |
| emit_b(b_off, ctx); |
| emit_nop(ctx); |
| break; |
| case BPF_RET | BPF_A: |
| ctx->flags |= SEEN_A; |
| if (i != prog->len - 1) |
| /* |
| * If this is not the last instruction |
| * then jump to the epilogue |
| */ |
| emit_b(b_imm(prog->len, ctx), ctx); |
| emit_reg_move(r_ret, r_A, ctx); /* delay slot */ |
| break; |
| case BPF_RET | BPF_K: |
| /* |
| * It can emit two instructions so it does not fit on |
| * the delay slot. |
| */ |
| emit_load_imm(r_ret, k, ctx); |
| if (i != prog->len - 1) { |
| /* |
| * If this is not the last instruction |
| * then jump to the epilogue |
| */ |
| emit_b(b_imm(prog->len, ctx), ctx); |
| emit_nop(ctx); |
| } |
| break; |
| case BPF_MISC | BPF_TAX: |
| /* X = A */ |
| ctx->flags |= SEEN_X | SEEN_A; |
| emit_jit_reg_move(r_X, r_A, ctx); |
| break; |
| case BPF_MISC | BPF_TXA: |
| /* A = X */ |
| ctx->flags |= SEEN_A | SEEN_X; |
| emit_jit_reg_move(r_A, r_X, ctx); |
| break; |
| /* AUX */ |
| case BPF_ANC | SKF_AD_PROTOCOL: |
| /* A = ntohs(skb->protocol */ |
| ctx->flags |= SEEN_SKB | SEEN_OFF | SEEN_A; |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, |
| protocol) != 2); |
| off = offsetof(struct sk_buff, protocol); |
| emit_half_load(r_A, r_skb, off, ctx); |
| #ifdef CONFIG_CPU_LITTLE_ENDIAN |
| /* This needs little endian fixup */ |
| if (cpu_has_wsbh) { |
| /* R2 and later have the wsbh instruction */ |
| emit_wsbh(r_A, r_A, ctx); |
| } else { |
| /* Get first byte */ |
| emit_andi(r_tmp_imm, r_A, 0xff, ctx); |
| /* Shift it */ |
| emit_sll(r_tmp, r_tmp_imm, 8, ctx); |
| /* Get second byte */ |
| emit_srl(r_tmp_imm, r_A, 8, ctx); |
| emit_andi(r_tmp_imm, r_tmp_imm, 0xff, ctx); |
| /* Put everyting together in r_A */ |
| emit_or(r_A, r_tmp, r_tmp_imm, ctx); |
| } |
| #endif |
| break; |
| case BPF_ANC | SKF_AD_CPU: |
| ctx->flags |= SEEN_A | SEEN_OFF; |
| /* A = current_thread_info()->cpu */ |
| BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, |
| cpu) != 4); |
| off = offsetof(struct thread_info, cpu); |
| /* $28/gp points to the thread_info struct */ |
| emit_load(r_A, 28, off, ctx); |
| break; |
| case BPF_ANC | SKF_AD_IFINDEX: |
| /* A = skb->dev->ifindex */ |
| ctx->flags |= SEEN_SKB | SEEN_A | SEEN_S0; |
| off = offsetof(struct sk_buff, dev); |
| /* Load *dev pointer */ |
| emit_load_ptr(r_s0, r_skb, off, ctx); |
| /* error (0) in the delay slot */ |
| emit_bcond(MIPS_COND_EQ, r_s0, r_zero, |
| b_imm(prog->len, ctx), ctx); |
| emit_reg_move(r_ret, r_zero, ctx); |
| BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, |
| ifindex) != 4); |
| off = offsetof(struct net_device, ifindex); |
| emit_load(r_A, r_s0, off, ctx); |
| break; |
| case BPF_ANC | SKF_AD_MARK: |
| ctx->flags |= SEEN_SKB | SEEN_A; |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); |
| off = offsetof(struct sk_buff, mark); |
| emit_load(r_A, r_skb, off, ctx); |
| break; |
| case BPF_ANC | SKF_AD_RXHASH: |
| ctx->flags |= SEEN_SKB | SEEN_A; |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4); |
| off = offsetof(struct sk_buff, hash); |
| emit_load(r_A, r_skb, off, ctx); |
| break; |
| case BPF_ANC | SKF_AD_VLAN_TAG: |
| case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT: |
| ctx->flags |= SEEN_SKB | SEEN_S0 | SEEN_A; |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, |
| vlan_tci) != 2); |
| off = offsetof(struct sk_buff, vlan_tci); |
| emit_half_load(r_s0, r_skb, off, ctx); |
| if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) { |
| emit_andi(r_A, r_s0, (u16)~VLAN_TAG_PRESENT, ctx); |
| } else { |
| emit_andi(r_A, r_s0, VLAN_TAG_PRESENT, ctx); |
| /* return 1 if present */ |
| emit_sltu(r_A, r_zero, r_A, ctx); |
| } |
| break; |
| case BPF_ANC | SKF_AD_PKTTYPE: |
| ctx->flags |= SEEN_SKB; |
| |
| emit_load_byte(r_tmp, r_skb, PKT_TYPE_OFFSET(), ctx); |
| /* Keep only the last 3 bits */ |
| emit_andi(r_A, r_tmp, PKT_TYPE_MAX, ctx); |
| #ifdef __BIG_ENDIAN_BITFIELD |
| /* Get the actual packet type to the lower 3 bits */ |
| emit_srl(r_A, r_A, 5, ctx); |
| #endif |
| break; |
| case BPF_ANC | SKF_AD_QUEUE: |
| ctx->flags |= SEEN_SKB | SEEN_A; |
| BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, |
| queue_mapping) != 2); |
| BUILD_BUG_ON(offsetof(struct sk_buff, |
| queue_mapping) > 0xff); |
| off = offsetof(struct sk_buff, queue_mapping); |
| emit_half_load(r_A, r_skb, off, ctx); |
| break; |
| default: |
| pr_debug("%s: Unhandled opcode: 0x%02x\n", __FILE__, |
| inst->code); |
| return -1; |
| } |
| } |
| |
| /* compute offsets only during the first pass */ |
| if (ctx->target == NULL) |
| ctx->offsets[i] = ctx->idx * 4; |
| |
| return 0; |
| } |
| |
| int bpf_jit_enable __read_mostly; |
| |
| void bpf_jit_compile(struct bpf_prog *fp) |
| { |
| struct jit_ctx ctx; |
| unsigned int alloc_size, tmp_idx; |
| |
| if (!bpf_jit_enable) |
| return; |
| |
| memset(&ctx, 0, sizeof(ctx)); |
| |
| ctx.offsets = kcalloc(fp->len, sizeof(*ctx.offsets), GFP_KERNEL); |
| if (ctx.offsets == NULL) |
| return; |
| |
| ctx.skf = fp; |
| |
| if (build_body(&ctx)) |
| goto out; |
| |
| tmp_idx = ctx.idx; |
| build_prologue(&ctx); |
| ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4; |
| /* just to complete the ctx.idx count */ |
| build_epilogue(&ctx); |
| |
| alloc_size = 4 * ctx.idx; |
| ctx.target = module_alloc(alloc_size); |
| if (ctx.target == NULL) |
| goto out; |
| |
| /* Clean it */ |
| memset(ctx.target, 0, alloc_size); |
| |
| ctx.idx = 0; |
| |
| /* Generate the actual JIT code */ |
| build_prologue(&ctx); |
| build_body(&ctx); |
| build_epilogue(&ctx); |
| |
| /* Update the icache */ |
| flush_icache_range((ptr)ctx.target, (ptr)(ctx.target + ctx.idx)); |
| |
| if (bpf_jit_enable > 1) |
| /* Dump JIT code */ |
| bpf_jit_dump(fp->len, alloc_size, 2, ctx.target); |
| |
| fp->bpf_func = (void *)ctx.target; |
| fp->jited = true; |
| |
| out: |
| kfree(ctx.offsets); |
| } |
| |
| void bpf_jit_free(struct bpf_prog *fp) |
| { |
| if (fp->jited) |
| module_free(NULL, fp->bpf_func); |
| |
| bpf_prog_unlock_free(fp); |
| } |