| /* |
| * linux/arch/arm/kernel/ptrace.c |
| * |
| * By Ross Biro 1/23/92 |
| * edited by Linus Torvalds |
| * ARM modifications Copyright (C) 2000 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/ptrace.h> |
| #include <linux/user.h> |
| #include <linux/security.h> |
| #include <linux/init.h> |
| #include <linux/signal.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/system.h> |
| #include <asm/traps.h> |
| |
| #include "ptrace.h" |
| |
| #define REG_PC 15 |
| #define REG_PSR 16 |
| /* |
| * does not yet catch signals sent when the child dies. |
| * in exit.c or in signal.c. |
| */ |
| |
| #if 0 |
| /* |
| * Breakpoint SWI instruction: SWI &9F0001 |
| */ |
| #define BREAKINST_ARM 0xef9f0001 |
| #define BREAKINST_THUMB 0xdf00 /* fill this in later */ |
| #else |
| /* |
| * New breakpoints - use an undefined instruction. The ARM architecture |
| * reference manual guarantees that the following instruction space |
| * will produce an undefined instruction exception on all CPUs: |
| * |
| * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx |
| * Thumb: 1101 1110 xxxx xxxx |
| */ |
| #define BREAKINST_ARM 0xe7f001f0 |
| #define BREAKINST_THUMB 0xde01 |
| #endif |
| |
| /* |
| * Get the address of the live pt_regs for the specified task. |
| * These are saved onto the top kernel stack when the process |
| * is not running. |
| * |
| * Note: if a user thread is execve'd from kernel space, the |
| * kernel stack will not be empty on entry to the kernel, so |
| * ptracing these tasks will fail. |
| */ |
| static inline struct pt_regs * |
| get_user_regs(struct task_struct *task) |
| { |
| return (struct pt_regs *) |
| ((unsigned long)task->thread_info + THREAD_SIZE - |
| 8 - sizeof(struct pt_regs)); |
| } |
| |
| /* |
| * this routine will get a word off of the processes privileged stack. |
| * the offset is how far from the base addr as stored in the THREAD. |
| * this routine assumes that all the privileged stacks are in our |
| * data space. |
| */ |
| static inline long get_user_reg(struct task_struct *task, int offset) |
| { |
| return get_user_regs(task)->uregs[offset]; |
| } |
| |
| /* |
| * this routine will put a word on the processes privileged stack. |
| * the offset is how far from the base addr as stored in the THREAD. |
| * this routine assumes that all the privileged stacks are in our |
| * data space. |
| */ |
| static inline int |
| put_user_reg(struct task_struct *task, int offset, long data) |
| { |
| struct pt_regs newregs, *regs = get_user_regs(task); |
| int ret = -EINVAL; |
| |
| newregs = *regs; |
| newregs.uregs[offset] = data; |
| |
| if (valid_user_regs(&newregs)) { |
| regs->uregs[offset] = data; |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static inline int |
| read_u32(struct task_struct *task, unsigned long addr, u32 *res) |
| { |
| int ret; |
| |
| ret = access_process_vm(task, addr, res, sizeof(*res), 0); |
| |
| return ret == sizeof(*res) ? 0 : -EIO; |
| } |
| |
| static inline int |
| read_instr(struct task_struct *task, unsigned long addr, u32 *res) |
| { |
| int ret; |
| |
| if (addr & 1) { |
| u16 val; |
| ret = access_process_vm(task, addr & ~1, &val, sizeof(val), 0); |
| ret = ret == sizeof(val) ? 0 : -EIO; |
| *res = val; |
| } else { |
| u32 val; |
| ret = access_process_vm(task, addr & ~3, &val, sizeof(val), 0); |
| ret = ret == sizeof(val) ? 0 : -EIO; |
| *res = val; |
| } |
| return ret; |
| } |
| |
| /* |
| * Get value of register `rn' (in the instruction) |
| */ |
| static unsigned long |
| ptrace_getrn(struct task_struct *child, unsigned long insn) |
| { |
| unsigned int reg = (insn >> 16) & 15; |
| unsigned long val; |
| |
| val = get_user_reg(child, reg); |
| if (reg == 15) |
| val = pc_pointer(val + 8); |
| |
| return val; |
| } |
| |
| /* |
| * Get value of operand 2 (in an ALU instruction) |
| */ |
| static unsigned long |
| ptrace_getaluop2(struct task_struct *child, unsigned long insn) |
| { |
| unsigned long val; |
| int shift; |
| int type; |
| |
| if (insn & 1 << 25) { |
| val = insn & 255; |
| shift = (insn >> 8) & 15; |
| type = 3; |
| } else { |
| val = get_user_reg (child, insn & 15); |
| |
| if (insn & (1 << 4)) |
| shift = (int)get_user_reg (child, (insn >> 8) & 15); |
| else |
| shift = (insn >> 7) & 31; |
| |
| type = (insn >> 5) & 3; |
| } |
| |
| switch (type) { |
| case 0: val <<= shift; break; |
| case 1: val >>= shift; break; |
| case 2: |
| val = (((signed long)val) >> shift); |
| break; |
| case 3: |
| val = (val >> shift) | (val << (32 - shift)); |
| break; |
| } |
| return val; |
| } |
| |
| /* |
| * Get value of operand 2 (in a LDR instruction) |
| */ |
| static unsigned long |
| ptrace_getldrop2(struct task_struct *child, unsigned long insn) |
| { |
| unsigned long val; |
| int shift; |
| int type; |
| |
| val = get_user_reg(child, insn & 15); |
| shift = (insn >> 7) & 31; |
| type = (insn >> 5) & 3; |
| |
| switch (type) { |
| case 0: val <<= shift; break; |
| case 1: val >>= shift; break; |
| case 2: |
| val = (((signed long)val) >> shift); |
| break; |
| case 3: |
| val = (val >> shift) | (val << (32 - shift)); |
| break; |
| } |
| return val; |
| } |
| |
| #define OP_MASK 0x01e00000 |
| #define OP_AND 0x00000000 |
| #define OP_EOR 0x00200000 |
| #define OP_SUB 0x00400000 |
| #define OP_RSB 0x00600000 |
| #define OP_ADD 0x00800000 |
| #define OP_ADC 0x00a00000 |
| #define OP_SBC 0x00c00000 |
| #define OP_RSC 0x00e00000 |
| #define OP_ORR 0x01800000 |
| #define OP_MOV 0x01a00000 |
| #define OP_BIC 0x01c00000 |
| #define OP_MVN 0x01e00000 |
| |
| static unsigned long |
| get_branch_address(struct task_struct *child, unsigned long pc, unsigned long insn) |
| { |
| u32 alt = 0; |
| |
| switch (insn & 0x0e000000) { |
| case 0x00000000: |
| case 0x02000000: { |
| /* |
| * data processing |
| */ |
| long aluop1, aluop2, ccbit; |
| |
| if ((insn & 0x0fffffd0) == 0x012fff10) { |
| /* |
| * bx or blx |
| */ |
| alt = get_user_reg(child, insn & 15); |
| break; |
| } |
| |
| |
| if ((insn & 0xf000) != 0xf000) |
| break; |
| |
| aluop1 = ptrace_getrn(child, insn); |
| aluop2 = ptrace_getaluop2(child, insn); |
| ccbit = get_user_reg(child, REG_PSR) & PSR_C_BIT ? 1 : 0; |
| |
| switch (insn & OP_MASK) { |
| case OP_AND: alt = aluop1 & aluop2; break; |
| case OP_EOR: alt = aluop1 ^ aluop2; break; |
| case OP_SUB: alt = aluop1 - aluop2; break; |
| case OP_RSB: alt = aluop2 - aluop1; break; |
| case OP_ADD: alt = aluop1 + aluop2; break; |
| case OP_ADC: alt = aluop1 + aluop2 + ccbit; break; |
| case OP_SBC: alt = aluop1 - aluop2 + ccbit; break; |
| case OP_RSC: alt = aluop2 - aluop1 + ccbit; break; |
| case OP_ORR: alt = aluop1 | aluop2; break; |
| case OP_MOV: alt = aluop2; break; |
| case OP_BIC: alt = aluop1 & ~aluop2; break; |
| case OP_MVN: alt = ~aluop2; break; |
| } |
| break; |
| } |
| |
| case 0x04000000: |
| case 0x06000000: |
| /* |
| * ldr |
| */ |
| if ((insn & 0x0010f000) == 0x0010f000) { |
| unsigned long base; |
| |
| base = ptrace_getrn(child, insn); |
| if (insn & 1 << 24) { |
| long aluop2; |
| |
| if (insn & 0x02000000) |
| aluop2 = ptrace_getldrop2(child, insn); |
| else |
| aluop2 = insn & 0xfff; |
| |
| if (insn & 1 << 23) |
| base += aluop2; |
| else |
| base -= aluop2; |
| } |
| if (read_u32(child, base, &alt) == 0) |
| alt = pc_pointer(alt); |
| } |
| break; |
| |
| case 0x08000000: |
| /* |
| * ldm |
| */ |
| if ((insn & 0x00108000) == 0x00108000) { |
| unsigned long base; |
| unsigned int nr_regs; |
| |
| if (insn & (1 << 23)) { |
| nr_regs = hweight16(insn & 65535) << 2; |
| |
| if (!(insn & (1 << 24))) |
| nr_regs -= 4; |
| } else { |
| if (insn & (1 << 24)) |
| nr_regs = -4; |
| else |
| nr_regs = 0; |
| } |
| |
| base = ptrace_getrn(child, insn); |
| |
| if (read_u32(child, base + nr_regs, &alt) == 0) |
| alt = pc_pointer(alt); |
| break; |
| } |
| break; |
| |
| case 0x0a000000: { |
| /* |
| * bl or b |
| */ |
| signed long displ; |
| /* It's a branch/branch link: instead of trying to |
| * figure out whether the branch will be taken or not, |
| * we'll put a breakpoint at both locations. This is |
| * simpler, more reliable, and probably not a whole lot |
| * slower than the alternative approach of emulating the |
| * branch. |
| */ |
| displ = (insn & 0x00ffffff) << 8; |
| displ = (displ >> 6) + 8; |
| if (displ != 0 && displ != 4) |
| alt = pc + displ; |
| } |
| break; |
| } |
| |
| return alt; |
| } |
| |
| static int |
| swap_insn(struct task_struct *task, unsigned long addr, |
| void *old_insn, void *new_insn, int size) |
| { |
| int ret; |
| |
| ret = access_process_vm(task, addr, old_insn, size, 0); |
| if (ret == size) |
| ret = access_process_vm(task, addr, new_insn, size, 1); |
| return ret; |
| } |
| |
| static void |
| add_breakpoint(struct task_struct *task, struct debug_info *dbg, unsigned long addr) |
| { |
| int nr = dbg->nsaved; |
| |
| if (nr < 2) { |
| u32 new_insn = BREAKINST_ARM; |
| int res; |
| |
| res = swap_insn(task, addr, &dbg->bp[nr].insn, &new_insn, 4); |
| |
| if (res == 4) { |
| dbg->bp[nr].address = addr; |
| dbg->nsaved += 1; |
| } |
| } else |
| printk(KERN_ERR "ptrace: too many breakpoints\n"); |
| } |
| |
| /* |
| * Clear one breakpoint in the user program. We copy what the hardware |
| * does and use bit 0 of the address to indicate whether this is a Thumb |
| * breakpoint or an ARM breakpoint. |
| */ |
| static void clear_breakpoint(struct task_struct *task, struct debug_entry *bp) |
| { |
| unsigned long addr = bp->address; |
| union debug_insn old_insn; |
| int ret; |
| |
| if (addr & 1) { |
| ret = swap_insn(task, addr & ~1, &old_insn.thumb, |
| &bp->insn.thumb, 2); |
| |
| if (ret != 2 || old_insn.thumb != BREAKINST_THUMB) |
| printk(KERN_ERR "%s:%d: corrupted Thumb breakpoint at " |
| "0x%08lx (0x%04x)\n", task->comm, task->pid, |
| addr, old_insn.thumb); |
| } else { |
| ret = swap_insn(task, addr & ~3, &old_insn.arm, |
| &bp->insn.arm, 4); |
| |
| if (ret != 4 || old_insn.arm != BREAKINST_ARM) |
| printk(KERN_ERR "%s:%d: corrupted ARM breakpoint at " |
| "0x%08lx (0x%08x)\n", task->comm, task->pid, |
| addr, old_insn.arm); |
| } |
| } |
| |
| void ptrace_set_bpt(struct task_struct *child) |
| { |
| struct pt_regs *regs; |
| unsigned long pc; |
| u32 insn; |
| int res; |
| |
| regs = get_user_regs(child); |
| pc = instruction_pointer(regs); |
| |
| if (thumb_mode(regs)) { |
| printk(KERN_WARNING "ptrace: can't handle thumb mode\n"); |
| return; |
| } |
| |
| res = read_instr(child, pc, &insn); |
| if (!res) { |
| struct debug_info *dbg = &child->thread.debug; |
| unsigned long alt; |
| |
| dbg->nsaved = 0; |
| |
| alt = get_branch_address(child, pc, insn); |
| if (alt) |
| add_breakpoint(child, dbg, alt); |
| |
| /* |
| * Note that we ignore the result of setting the above |
| * breakpoint since it may fail. When it does, this is |
| * not so much an error, but a forewarning that we may |
| * be receiving a prefetch abort shortly. |
| * |
| * If we don't set this breakpoint here, then we can |
| * lose control of the thread during single stepping. |
| */ |
| if (!alt || predicate(insn) != PREDICATE_ALWAYS) |
| add_breakpoint(child, dbg, pc + 4); |
| } |
| } |
| |
| /* |
| * Ensure no single-step breakpoint is pending. Returns non-zero |
| * value if child was being single-stepped. |
| */ |
| void ptrace_cancel_bpt(struct task_struct *child) |
| { |
| int i, nsaved = child->thread.debug.nsaved; |
| |
| child->thread.debug.nsaved = 0; |
| |
| if (nsaved > 2) { |
| printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved); |
| nsaved = 2; |
| } |
| |
| for (i = 0; i < nsaved; i++) |
| clear_breakpoint(child, &child->thread.debug.bp[i]); |
| } |
| |
| /* |
| * Called by kernel/ptrace.c when detaching.. |
| * |
| * Make sure the single step bit is not set. |
| */ |
| void ptrace_disable(struct task_struct *child) |
| { |
| child->ptrace &= ~PT_SINGLESTEP; |
| ptrace_cancel_bpt(child); |
| } |
| |
| /* |
| * Handle hitting a breakpoint. |
| */ |
| void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) |
| { |
| siginfo_t info; |
| |
| ptrace_cancel_bpt(tsk); |
| |
| info.si_signo = SIGTRAP; |
| info.si_errno = 0; |
| info.si_code = TRAP_BRKPT; |
| info.si_addr = (void __user *)instruction_pointer(regs); |
| |
| force_sig_info(SIGTRAP, &info, tsk); |
| } |
| |
| static int break_trap(struct pt_regs *regs, unsigned int instr) |
| { |
| ptrace_break(current, regs); |
| return 0; |
| } |
| |
| static struct undef_hook arm_break_hook = { |
| .instr_mask = 0x0fffffff, |
| .instr_val = 0x07f001f0, |
| .cpsr_mask = PSR_T_BIT, |
| .cpsr_val = 0, |
| .fn = break_trap, |
| }; |
| |
| static struct undef_hook thumb_break_hook = { |
| .instr_mask = 0xffff, |
| .instr_val = 0xde01, |
| .cpsr_mask = PSR_T_BIT, |
| .cpsr_val = PSR_T_BIT, |
| .fn = break_trap, |
| }; |
| |
| static int __init ptrace_break_init(void) |
| { |
| register_undef_hook(&arm_break_hook); |
| register_undef_hook(&thumb_break_hook); |
| return 0; |
| } |
| |
| core_initcall(ptrace_break_init); |
| |
| /* |
| * Read the word at offset "off" into the "struct user". We |
| * actually access the pt_regs stored on the kernel stack. |
| */ |
| static int ptrace_read_user(struct task_struct *tsk, unsigned long off, |
| unsigned long __user *ret) |
| { |
| unsigned long tmp; |
| |
| if (off & 3 || off >= sizeof(struct user)) |
| return -EIO; |
| |
| tmp = 0; |
| if (off < sizeof(struct pt_regs)) |
| tmp = get_user_reg(tsk, off >> 2); |
| |
| return put_user(tmp, ret); |
| } |
| |
| /* |
| * Write the word at offset "off" into "struct user". We |
| * actually access the pt_regs stored on the kernel stack. |
| */ |
| static int ptrace_write_user(struct task_struct *tsk, unsigned long off, |
| unsigned long val) |
| { |
| if (off & 3 || off >= sizeof(struct user)) |
| return -EIO; |
| |
| if (off >= sizeof(struct pt_regs)) |
| return 0; |
| |
| return put_user_reg(tsk, off >> 2, val); |
| } |
| |
| /* |
| * Get all user integer registers. |
| */ |
| static int ptrace_getregs(struct task_struct *tsk, void __user *uregs) |
| { |
| struct pt_regs *regs = get_user_regs(tsk); |
| |
| return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0; |
| } |
| |
| /* |
| * Set all user integer registers. |
| */ |
| static int ptrace_setregs(struct task_struct *tsk, void __user *uregs) |
| { |
| struct pt_regs newregs; |
| int ret; |
| |
| ret = -EFAULT; |
| if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) { |
| struct pt_regs *regs = get_user_regs(tsk); |
| |
| ret = -EINVAL; |
| if (valid_user_regs(&newregs)) { |
| *regs = newregs; |
| ret = 0; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Get the child FPU state. |
| */ |
| static int ptrace_getfpregs(struct task_struct *tsk, void __user *ufp) |
| { |
| return copy_to_user(ufp, &tsk->thread_info->fpstate, |
| sizeof(struct user_fp)) ? -EFAULT : 0; |
| } |
| |
| /* |
| * Set the child FPU state. |
| */ |
| static int ptrace_setfpregs(struct task_struct *tsk, void __user *ufp) |
| { |
| struct thread_info *thread = tsk->thread_info; |
| thread->used_cp[1] = thread->used_cp[2] = 1; |
| return copy_from_user(&thread->fpstate, ufp, |
| sizeof(struct user_fp)) ? -EFAULT : 0; |
| } |
| |
| #ifdef CONFIG_IWMMXT |
| |
| /* |
| * Get the child iWMMXt state. |
| */ |
| static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) |
| { |
| struct thread_info *thread = tsk->thread_info; |
| void *ptr = &thread->fpstate; |
| |
| if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) |
| return -ENODATA; |
| iwmmxt_task_disable(thread); /* force it to ram */ |
| /* The iWMMXt state is stored doubleword-aligned. */ |
| if (((long) ptr) & 4) |
| ptr += 4; |
| return copy_to_user(ufp, ptr, 0x98) ? -EFAULT : 0; |
| } |
| |
| /* |
| * Set the child iWMMXt state. |
| */ |
| static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) |
| { |
| struct thread_info *thread = tsk->thread_info; |
| void *ptr = &thread->fpstate; |
| |
| if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) |
| return -EACCES; |
| iwmmxt_task_release(thread); /* force a reload */ |
| /* The iWMMXt state is stored doubleword-aligned. */ |
| if (((long) ptr) & 4) |
| ptr += 4; |
| return copy_from_user(ptr, ufp, 0x98) ? -EFAULT : 0; |
| } |
| |
| #endif |
| |
| long arch_ptrace(struct task_struct *child, long request, long addr, long data) |
| { |
| unsigned long tmp; |
| int ret; |
| |
| switch (request) { |
| /* |
| * read word at location "addr" in the child process. |
| */ |
| case PTRACE_PEEKTEXT: |
| case PTRACE_PEEKDATA: |
| ret = access_process_vm(child, addr, &tmp, |
| sizeof(unsigned long), 0); |
| if (ret == sizeof(unsigned long)) |
| ret = put_user(tmp, (unsigned long __user *) data); |
| else |
| ret = -EIO; |
| break; |
| |
| case PTRACE_PEEKUSR: |
| ret = ptrace_read_user(child, addr, (unsigned long __user *)data); |
| break; |
| |
| /* |
| * write the word at location addr. |
| */ |
| case PTRACE_POKETEXT: |
| case PTRACE_POKEDATA: |
| ret = access_process_vm(child, addr, &data, |
| sizeof(unsigned long), 1); |
| if (ret == sizeof(unsigned long)) |
| ret = 0; |
| else |
| ret = -EIO; |
| break; |
| |
| case PTRACE_POKEUSR: |
| ret = ptrace_write_user(child, addr, data); |
| break; |
| |
| /* |
| * continue/restart and stop at next (return from) syscall |
| */ |
| case PTRACE_SYSCALL: |
| case PTRACE_CONT: |
| ret = -EIO; |
| if (!valid_signal(data)) |
| break; |
| if (request == PTRACE_SYSCALL) |
| set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| else |
| clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| child->exit_code = data; |
| /* make sure single-step breakpoint is gone. */ |
| child->ptrace &= ~PT_SINGLESTEP; |
| ptrace_cancel_bpt(child); |
| wake_up_process(child); |
| ret = 0; |
| break; |
| |
| /* |
| * make the child exit. Best I can do is send it a sigkill. |
| * perhaps it should be put in the status that it wants to |
| * exit. |
| */ |
| case PTRACE_KILL: |
| /* make sure single-step breakpoint is gone. */ |
| child->ptrace &= ~PT_SINGLESTEP; |
| ptrace_cancel_bpt(child); |
| if (child->exit_state != EXIT_ZOMBIE) { |
| child->exit_code = SIGKILL; |
| wake_up_process(child); |
| } |
| ret = 0; |
| break; |
| |
| /* |
| * execute single instruction. |
| */ |
| case PTRACE_SINGLESTEP: |
| ret = -EIO; |
| if (!valid_signal(data)) |
| break; |
| child->ptrace |= PT_SINGLESTEP; |
| clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| child->exit_code = data; |
| /* give it a chance to run. */ |
| wake_up_process(child); |
| ret = 0; |
| break; |
| |
| case PTRACE_DETACH: |
| ret = ptrace_detach(child, data); |
| break; |
| |
| case PTRACE_GETREGS: |
| ret = ptrace_getregs(child, (void __user *)data); |
| break; |
| |
| case PTRACE_SETREGS: |
| ret = ptrace_setregs(child, (void __user *)data); |
| break; |
| |
| case PTRACE_GETFPREGS: |
| ret = ptrace_getfpregs(child, (void __user *)data); |
| break; |
| |
| case PTRACE_SETFPREGS: |
| ret = ptrace_setfpregs(child, (void __user *)data); |
| break; |
| |
| #ifdef CONFIG_IWMMXT |
| case PTRACE_GETWMMXREGS: |
| ret = ptrace_getwmmxregs(child, (void __user *)data); |
| break; |
| |
| case PTRACE_SETWMMXREGS: |
| ret = ptrace_setwmmxregs(child, (void __user *)data); |
| break; |
| #endif |
| |
| case PTRACE_GET_THREAD_AREA: |
| ret = put_user(child->thread_info->tp_value, |
| (unsigned long __user *) data); |
| break; |
| |
| default: |
| ret = ptrace_request(child, request, addr, data); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| asmlinkage void syscall_trace(int why, struct pt_regs *regs) |
| { |
| unsigned long ip; |
| |
| if (!test_thread_flag(TIF_SYSCALL_TRACE)) |
| return; |
| if (!(current->ptrace & PT_PTRACED)) |
| return; |
| |
| /* |
| * Save IP. IP is used to denote syscall entry/exit: |
| * IP = 0 -> entry, = 1 -> exit |
| */ |
| ip = regs->ARM_ip; |
| regs->ARM_ip = why; |
| |
| /* the 0x80 provides a way for the tracing parent to distinguish |
| between a syscall stop and SIGTRAP delivery */ |
| ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) |
| ? 0x80 : 0)); |
| /* |
| * this isn't the same as continuing with a signal, but it will do |
| * for normal use. strace only continues with a signal if the |
| * stopping signal is not SIGTRAP. -brl |
| */ |
| if (current->exit_code) { |
| send_sig(current->exit_code, current, 1); |
| current->exit_code = 0; |
| } |
| regs->ARM_ip = ip; |
| } |