| /* |
| * CPU frequency scaling for Broadcom SoCs with AVS firmware that |
| * supports DVS or DVFS |
| * |
| * Copyright (c) 2016 Broadcom |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation version 2. |
| * |
| * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| * kind, whether express or implied; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| /* |
| * "AVS" is the name of a firmware developed at Broadcom. It derives |
| * its name from the technique called "Adaptive Voltage Scaling". |
| * Adaptive voltage scaling was the original purpose of this firmware. |
| * The AVS firmware still supports "AVS mode", where all it does is |
| * adaptive voltage scaling. However, on some newer Broadcom SoCs, the |
| * AVS Firmware, despite its unchanged name, also supports DFS mode and |
| * DVFS mode. |
| * |
| * In the context of this document and the related driver, "AVS" by |
| * itself always means the Broadcom firmware and never refers to the |
| * technique called "Adaptive Voltage Scaling". |
| * |
| * The Broadcom STB AVS CPUfreq driver provides voltage and frequency |
| * scaling on Broadcom SoCs using AVS firmware with support for DFS and |
| * DVFS. The AVS firmware is running on its own co-processor. The |
| * driver supports both uniprocessor (UP) and symmetric multiprocessor |
| * (SMP) systems which share clock and voltage across all CPUs. |
| * |
| * Actual voltage and frequency scaling is done solely by the AVS |
| * firmware. This driver does not change frequency or voltage itself. |
| * It provides a standard CPUfreq interface to the rest of the kernel |
| * and to userland. It interfaces with the AVS firmware to effect the |
| * requested changes and to report back the current system status in a |
| * way that is expected by existing tools. |
| */ |
| |
| #include <linux/cpufreq.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/of_address.h> |
| #include <linux/platform_device.h> |
| #include <linux/semaphore.h> |
| |
| #ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG |
| #include <linux/ctype.h> |
| #include <linux/debugfs.h> |
| #include <linux/slab.h> |
| #include <linux/uaccess.h> |
| #endif |
| |
| /* Max number of arguments AVS calls take */ |
| #define AVS_MAX_CMD_ARGS 4 |
| /* |
| * This macro is used to generate AVS parameter register offsets. For |
| * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory |
| * access outside of the parameter range. (Offset 0 is the first parameter.) |
| */ |
| #define AVS_PARAM_MULT(x) ((x) < AVS_MAX_CMD_ARGS ? (x) : 0) |
| |
| /* AVS Mailbox Register offsets */ |
| #define AVS_MBOX_COMMAND 0x00 |
| #define AVS_MBOX_STATUS 0x04 |
| #define AVS_MBOX_VOLTAGE0 0x08 |
| #define AVS_MBOX_TEMP0 0x0c |
| #define AVS_MBOX_PV0 0x10 |
| #define AVS_MBOX_MV0 0x14 |
| #define AVS_MBOX_PARAM(x) (0x18 + AVS_PARAM_MULT(x) * sizeof(u32)) |
| #define AVS_MBOX_REVISION 0x28 |
| #define AVS_MBOX_PSTATE 0x2c |
| #define AVS_MBOX_HEARTBEAT 0x30 |
| #define AVS_MBOX_MAGIC 0x34 |
| #define AVS_MBOX_SIGMA_HVT 0x38 |
| #define AVS_MBOX_SIGMA_SVT 0x3c |
| #define AVS_MBOX_VOLTAGE1 0x40 |
| #define AVS_MBOX_TEMP1 0x44 |
| #define AVS_MBOX_PV1 0x48 |
| #define AVS_MBOX_MV1 0x4c |
| #define AVS_MBOX_FREQUENCY 0x50 |
| |
| /* AVS Commands */ |
| #define AVS_CMD_AVAILABLE 0x00 |
| #define AVS_CMD_DISABLE 0x10 |
| #define AVS_CMD_ENABLE 0x11 |
| #define AVS_CMD_S2_ENTER 0x12 |
| #define AVS_CMD_S2_EXIT 0x13 |
| #define AVS_CMD_BBM_ENTER 0x14 |
| #define AVS_CMD_BBM_EXIT 0x15 |
| #define AVS_CMD_S3_ENTER 0x16 |
| #define AVS_CMD_S3_EXIT 0x17 |
| #define AVS_CMD_BALANCE 0x18 |
| /* PMAP and P-STATE commands */ |
| #define AVS_CMD_GET_PMAP 0x30 |
| #define AVS_CMD_SET_PMAP 0x31 |
| #define AVS_CMD_GET_PSTATE 0x40 |
| #define AVS_CMD_SET_PSTATE 0x41 |
| |
| /* Different modes AVS supports (for GET_PMAP/SET_PMAP) */ |
| #define AVS_MODE_AVS 0x0 |
| #define AVS_MODE_DFS 0x1 |
| #define AVS_MODE_DVS 0x2 |
| #define AVS_MODE_DVFS 0x3 |
| |
| /* |
| * PMAP parameter p1 |
| * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0 |
| */ |
| #define NDIV_INT_SHIFT 0 |
| #define NDIV_INT_MASK 0x3ff |
| #define PDIV_SHIFT 10 |
| #define PDIV_MASK 0xf |
| #define MDIV_P0_SHIFT 16 |
| #define MDIV_P0_MASK 0xff |
| /* |
| * PMAP parameter p2 |
| * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0 |
| */ |
| #define MDIV_P1_SHIFT 0 |
| #define MDIV_P1_MASK 0xff |
| #define MDIV_P2_SHIFT 8 |
| #define MDIV_P2_MASK 0xff |
| #define MDIV_P3_SHIFT 16 |
| #define MDIV_P3_MASK 0xff |
| #define MDIV_P4_SHIFT 24 |
| #define MDIV_P4_MASK 0xff |
| |
| /* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */ |
| #define AVS_PSTATE_P0 0x0 |
| #define AVS_PSTATE_P1 0x1 |
| #define AVS_PSTATE_P2 0x2 |
| #define AVS_PSTATE_P3 0x3 |
| #define AVS_PSTATE_P4 0x4 |
| #define AVS_PSTATE_MAX AVS_PSTATE_P4 |
| |
| /* CPU L2 Interrupt Controller Registers */ |
| #define AVS_CPU_L2_SET0 0x04 |
| #define AVS_CPU_L2_INT_MASK BIT(31) |
| |
| /* AVS Command Status Values */ |
| #define AVS_STATUS_CLEAR 0x00 |
| /* Command/notification accepted */ |
| #define AVS_STATUS_SUCCESS 0xf0 |
| /* Command/notification rejected */ |
| #define AVS_STATUS_FAILURE 0xff |
| /* Invalid command/notification (unknown) */ |
| #define AVS_STATUS_INVALID 0xf1 |
| /* Non-AVS modes are not supported */ |
| #define AVS_STATUS_NO_SUPP 0xf2 |
| /* Cannot set P-State until P-Map supplied */ |
| #define AVS_STATUS_NO_MAP 0xf3 |
| /* Cannot change P-Map after initial P-Map set */ |
| #define AVS_STATUS_MAP_SET 0xf4 |
| /* Max AVS status; higher numbers are used for debugging */ |
| #define AVS_STATUS_MAX 0xff |
| |
| /* Other AVS related constants */ |
| #define AVS_LOOP_LIMIT 10000 |
| #define AVS_TIMEOUT 300 /* in ms; expected completion is < 10ms */ |
| #define AVS_FIRMWARE_MAGIC 0xa11600d1 |
| |
| #define BRCM_AVS_CPUFREQ_PREFIX "brcmstb-avs" |
| #define BRCM_AVS_CPUFREQ_NAME BRCM_AVS_CPUFREQ_PREFIX "-cpufreq" |
| #define BRCM_AVS_CPU_DATA "brcm,avs-cpu-data-mem" |
| #define BRCM_AVS_CPU_INTR "brcm,avs-cpu-l2-intr" |
| #define BRCM_AVS_HOST_INTR "sw_intr" |
| |
| struct pmap { |
| unsigned int mode; |
| unsigned int p1; |
| unsigned int p2; |
| unsigned int state; |
| }; |
| |
| struct private_data { |
| void __iomem *base; |
| void __iomem *avs_intr_base; |
| struct device *dev; |
| #ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG |
| struct dentry *debugfs; |
| #endif |
| struct completion done; |
| struct semaphore sem; |
| struct pmap pmap; |
| }; |
| |
| #ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG |
| |
| enum debugfs_format { |
| DEBUGFS_NORMAL, |
| DEBUGFS_FLOAT, |
| DEBUGFS_REV, |
| }; |
| |
| struct debugfs_data { |
| struct debugfs_entry *entry; |
| struct private_data *priv; |
| }; |
| |
| struct debugfs_entry { |
| char *name; |
| u32 offset; |
| fmode_t mode; |
| enum debugfs_format format; |
| }; |
| |
| #define DEBUGFS_ENTRY(name, mode, format) { \ |
| #name, AVS_MBOX_##name, mode, format \ |
| } |
| |
| /* |
| * These are used for debugfs only. Otherwise we use AVS_MBOX_PARAM() directly. |
| */ |
| #define AVS_MBOX_PARAM1 AVS_MBOX_PARAM(0) |
| #define AVS_MBOX_PARAM2 AVS_MBOX_PARAM(1) |
| #define AVS_MBOX_PARAM3 AVS_MBOX_PARAM(2) |
| #define AVS_MBOX_PARAM4 AVS_MBOX_PARAM(3) |
| |
| /* |
| * This table stores the name, access permissions and offset for each hardware |
| * register and is used to generate debugfs entries. |
| */ |
| static struct debugfs_entry debugfs_entries[] = { |
| DEBUGFS_ENTRY(COMMAND, S_IWUSR, DEBUGFS_NORMAL), |
| DEBUGFS_ENTRY(STATUS, S_IWUSR, DEBUGFS_NORMAL), |
| DEBUGFS_ENTRY(VOLTAGE0, 0, DEBUGFS_FLOAT), |
| DEBUGFS_ENTRY(TEMP0, 0, DEBUGFS_FLOAT), |
| DEBUGFS_ENTRY(PV0, 0, DEBUGFS_FLOAT), |
| DEBUGFS_ENTRY(MV0, 0, DEBUGFS_FLOAT), |
| DEBUGFS_ENTRY(PARAM1, S_IWUSR, DEBUGFS_NORMAL), |
| DEBUGFS_ENTRY(PARAM2, S_IWUSR, DEBUGFS_NORMAL), |
| DEBUGFS_ENTRY(PARAM3, S_IWUSR, DEBUGFS_NORMAL), |
| DEBUGFS_ENTRY(PARAM4, S_IWUSR, DEBUGFS_NORMAL), |
| DEBUGFS_ENTRY(REVISION, 0, DEBUGFS_REV), |
| DEBUGFS_ENTRY(PSTATE, 0, DEBUGFS_NORMAL), |
| DEBUGFS_ENTRY(HEARTBEAT, 0, DEBUGFS_NORMAL), |
| DEBUGFS_ENTRY(MAGIC, S_IWUSR, DEBUGFS_NORMAL), |
| DEBUGFS_ENTRY(SIGMA_HVT, 0, DEBUGFS_NORMAL), |
| DEBUGFS_ENTRY(SIGMA_SVT, 0, DEBUGFS_NORMAL), |
| DEBUGFS_ENTRY(VOLTAGE1, 0, DEBUGFS_FLOAT), |
| DEBUGFS_ENTRY(TEMP1, 0, DEBUGFS_FLOAT), |
| DEBUGFS_ENTRY(PV1, 0, DEBUGFS_FLOAT), |
| DEBUGFS_ENTRY(MV1, 0, DEBUGFS_FLOAT), |
| DEBUGFS_ENTRY(FREQUENCY, 0, DEBUGFS_NORMAL), |
| }; |
| |
| static int brcm_avs_target_index(struct cpufreq_policy *, unsigned int); |
| |
| static char *__strtolower(char *s) |
| { |
| char *p; |
| |
| for (p = s; *p; p++) |
| *p = tolower(*p); |
| |
| return s; |
| } |
| |
| #endif /* CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG */ |
| |
| static void __iomem *__map_region(const char *name) |
| { |
| struct device_node *np; |
| void __iomem *ptr; |
| |
| np = of_find_compatible_node(NULL, NULL, name); |
| if (!np) |
| return NULL; |
| |
| ptr = of_iomap(np, 0); |
| of_node_put(np); |
| |
| return ptr; |
| } |
| |
| static int __issue_avs_command(struct private_data *priv, int cmd, bool is_send, |
| u32 args[]) |
| { |
| unsigned long time_left = msecs_to_jiffies(AVS_TIMEOUT); |
| void __iomem *base = priv->base; |
| unsigned int i; |
| int ret; |
| u32 val; |
| |
| ret = down_interruptible(&priv->sem); |
| if (ret) |
| return ret; |
| |
| /* |
| * Make sure no other command is currently running: cmd is 0 if AVS |
| * co-processor is idle. Due to the guard above, we should almost never |
| * have to wait here. |
| */ |
| for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++) |
| val = readl(base + AVS_MBOX_COMMAND); |
| |
| /* Give the caller a chance to retry if AVS is busy. */ |
| if (i == AVS_LOOP_LIMIT) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| /* Clear status before we begin. */ |
| writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS); |
| |
| /* We need to send arguments for this command. */ |
| if (args && is_send) { |
| for (i = 0; i < AVS_MAX_CMD_ARGS; i++) |
| writel(args[i], base + AVS_MBOX_PARAM(i)); |
| } |
| |
| /* Protect from spurious interrupts. */ |
| reinit_completion(&priv->done); |
| |
| /* Now issue the command & tell firmware to wake up to process it. */ |
| writel(cmd, base + AVS_MBOX_COMMAND); |
| writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0); |
| |
| /* Wait for AVS co-processor to finish processing the command. */ |
| time_left = wait_for_completion_timeout(&priv->done, time_left); |
| |
| /* |
| * If the AVS status is not in the expected range, it means AVS didn't |
| * complete our command in time, and we return an error. Also, if there |
| * is no "time left", we timed out waiting for the interrupt. |
| */ |
| val = readl(base + AVS_MBOX_STATUS); |
| if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) { |
| dev_err(priv->dev, "AVS command %#x didn't complete in time\n", |
| cmd); |
| dev_err(priv->dev, " Time left: %u ms, AVS status: %#x\n", |
| jiffies_to_msecs(time_left), val); |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| |
| /* This command returned arguments, so we read them back. */ |
| if (args && !is_send) { |
| for (i = 0; i < AVS_MAX_CMD_ARGS; i++) |
| args[i] = readl(base + AVS_MBOX_PARAM(i)); |
| } |
| |
| /* Clear status to tell AVS co-processor we are done. */ |
| writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS); |
| |
| /* Convert firmware errors to errno's as much as possible. */ |
| switch (val) { |
| case AVS_STATUS_INVALID: |
| ret = -EINVAL; |
| break; |
| case AVS_STATUS_NO_SUPP: |
| ret = -ENOTSUPP; |
| break; |
| case AVS_STATUS_NO_MAP: |
| ret = -ENOENT; |
| break; |
| case AVS_STATUS_MAP_SET: |
| ret = -EEXIST; |
| break; |
| case AVS_STATUS_FAILURE: |
| ret = -EIO; |
| break; |
| } |
| |
| out: |
| up(&priv->sem); |
| |
| return ret; |
| } |
| |
| static irqreturn_t irq_handler(int irq, void *data) |
| { |
| struct private_data *priv = data; |
| |
| /* AVS command completed execution. Wake up __issue_avs_command(). */ |
| complete(&priv->done); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static char *brcm_avs_mode_to_string(unsigned int mode) |
| { |
| switch (mode) { |
| case AVS_MODE_AVS: |
| return "AVS"; |
| case AVS_MODE_DFS: |
| return "DFS"; |
| case AVS_MODE_DVS: |
| return "DVS"; |
| case AVS_MODE_DVFS: |
| return "DVFS"; |
| } |
| return NULL; |
| } |
| |
| static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv, |
| unsigned int *ndiv) |
| { |
| *mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK; |
| *pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK; |
| *ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK; |
| } |
| |
| static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1, |
| unsigned int *mdiv_p2, unsigned int *mdiv_p3, |
| unsigned int *mdiv_p4) |
| { |
| *mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK; |
| *mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK; |
| *mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK; |
| *mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK; |
| } |
| |
| static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap) |
| { |
| u32 args[AVS_MAX_CMD_ARGS]; |
| int ret; |
| |
| ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, false, args); |
| if (ret || !pmap) |
| return ret; |
| |
| pmap->mode = args[0]; |
| pmap->p1 = args[1]; |
| pmap->p2 = args[2]; |
| pmap->state = args[3]; |
| |
| return 0; |
| } |
| |
| static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap) |
| { |
| u32 args[AVS_MAX_CMD_ARGS]; |
| |
| args[0] = pmap->mode; |
| args[1] = pmap->p1; |
| args[2] = pmap->p2; |
| args[3] = pmap->state; |
| |
| return __issue_avs_command(priv, AVS_CMD_SET_PMAP, true, args); |
| } |
| |
| static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate) |
| { |
| u32 args[AVS_MAX_CMD_ARGS]; |
| int ret; |
| |
| ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, false, args); |
| if (ret) |
| return ret; |
| *pstate = args[0]; |
| |
| return 0; |
| } |
| |
| static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate) |
| { |
| u32 args[AVS_MAX_CMD_ARGS]; |
| |
| args[0] = pstate; |
| |
| return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, true, args); |
| } |
| |
| static u32 brcm_avs_get_voltage(void __iomem *base) |
| { |
| return readl(base + AVS_MBOX_VOLTAGE1); |
| } |
| |
| static u32 brcm_avs_get_frequency(void __iomem *base) |
| { |
| return readl(base + AVS_MBOX_FREQUENCY) * 1000; /* in kHz */ |
| } |
| |
| /* |
| * We determine which frequencies are supported by cycling through all P-states |
| * and reading back what frequency we are running at for each P-state. |
| */ |
| static struct cpufreq_frequency_table * |
| brcm_avs_get_freq_table(struct device *dev, struct private_data *priv) |
| { |
| struct cpufreq_frequency_table *table; |
| unsigned int pstate; |
| int i, ret; |
| |
| /* Remember P-state for later */ |
| ret = brcm_avs_get_pstate(priv, &pstate); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| table = devm_kzalloc(dev, (AVS_PSTATE_MAX + 1) * sizeof(*table), |
| GFP_KERNEL); |
| if (!table) |
| return ERR_PTR(-ENOMEM); |
| |
| for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) { |
| ret = brcm_avs_set_pstate(priv, i); |
| if (ret) |
| return ERR_PTR(ret); |
| table[i].frequency = brcm_avs_get_frequency(priv->base); |
| table[i].driver_data = i; |
| } |
| table[i].frequency = CPUFREQ_TABLE_END; |
| |
| /* Restore P-state */ |
| ret = brcm_avs_set_pstate(priv, pstate); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return table; |
| } |
| |
| #ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG |
| |
| #define MANT(x) (unsigned int)(abs((x)) / 1000) |
| #define FRAC(x) (unsigned int)(abs((x)) - abs((x)) / 1000 * 1000) |
| |
| static int brcm_avs_debug_show(struct seq_file *s, void *data) |
| { |
| struct debugfs_data *dbgfs = s->private; |
| void __iomem *base; |
| u32 val, offset; |
| |
| if (!dbgfs) { |
| seq_puts(s, "No device pointer\n"); |
| return 0; |
| } |
| |
| base = dbgfs->priv->base; |
| offset = dbgfs->entry->offset; |
| val = readl(base + offset); |
| switch (dbgfs->entry->format) { |
| case DEBUGFS_NORMAL: |
| seq_printf(s, "%u\n", val); |
| break; |
| case DEBUGFS_FLOAT: |
| seq_printf(s, "%d.%03d\n", MANT(val), FRAC(val)); |
| break; |
| case DEBUGFS_REV: |
| seq_printf(s, "%c.%c.%c.%c\n", (val >> 24 & 0xff), |
| (val >> 16 & 0xff), (val >> 8 & 0xff), |
| val & 0xff); |
| break; |
| } |
| seq_printf(s, "0x%08x\n", val); |
| |
| return 0; |
| } |
| |
| #undef MANT |
| #undef FRAC |
| |
| static ssize_t brcm_avs_seq_write(struct file *file, const char __user *buf, |
| size_t size, loff_t *ppos) |
| { |
| struct seq_file *s = file->private_data; |
| struct debugfs_data *dbgfs = s->private; |
| struct private_data *priv = dbgfs->priv; |
| void __iomem *base, *avs_intr_base; |
| bool use_issue_command = false; |
| unsigned long val, offset; |
| char str[128]; |
| int ret; |
| char *str_ptr = str; |
| |
| if (size >= sizeof(str)) |
| return -E2BIG; |
| |
| memset(str, 0, sizeof(str)); |
| ret = copy_from_user(str, buf, size); |
| if (ret) |
| return ret; |
| |
| base = priv->base; |
| avs_intr_base = priv->avs_intr_base; |
| offset = dbgfs->entry->offset; |
| /* |
| * Special case writing to "command" entry only: if the string starts |
| * with a 'c', we use the driver's __issue_avs_command() function. |
| * Otherwise, we perform a raw write. This should allow testing of raw |
| * access as well as using the higher level function. (Raw access |
| * doesn't clear the firmware return status after issuing the command.) |
| */ |
| if (str_ptr[0] == 'c' && offset == AVS_MBOX_COMMAND) { |
| use_issue_command = true; |
| str_ptr++; |
| } |
| if (kstrtoul(str_ptr, 0, &val) != 0) |
| return -EINVAL; |
| |
| /* |
| * Setting the P-state is a special case. We need to update the CPU |
| * frequency we report. |
| */ |
| if (val == AVS_CMD_SET_PSTATE) { |
| struct cpufreq_policy *policy; |
| unsigned int pstate; |
| |
| policy = cpufreq_cpu_get(smp_processor_id()); |
| /* Read back the P-state we are about to set */ |
| pstate = readl(base + AVS_MBOX_PARAM(0)); |
| if (use_issue_command) { |
| ret = brcm_avs_target_index(policy, pstate); |
| return ret ? ret : size; |
| } |
| policy->cur = policy->freq_table[pstate].frequency; |
| } |
| |
| if (use_issue_command) { |
| ret = __issue_avs_command(priv, val, false, NULL); |
| } else { |
| /* Locking here is not perfect, but is only for debug. */ |
| ret = down_interruptible(&priv->sem); |
| if (ret) |
| return ret; |
| |
| writel(val, base + offset); |
| /* We have to wake up the firmware to process a command. */ |
| if (offset == AVS_MBOX_COMMAND) |
| writel(AVS_CPU_L2_INT_MASK, |
| avs_intr_base + AVS_CPU_L2_SET0); |
| up(&priv->sem); |
| } |
| |
| return ret ? ret : size; |
| } |
| |
| static struct debugfs_entry *__find_debugfs_entry(const char *name) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(debugfs_entries); i++) |
| if (strcasecmp(debugfs_entries[i].name, name) == 0) |
| return &debugfs_entries[i]; |
| |
| return NULL; |
| } |
| |
| static int brcm_avs_debug_open(struct inode *inode, struct file *file) |
| { |
| struct debugfs_data *data; |
| fmode_t fmode; |
| int ret; |
| |
| /* |
| * seq_open(), which is called by single_open(), clears "write" access. |
| * We need write access to some files, so we preserve our access mode |
| * and restore it. |
| */ |
| fmode = file->f_mode; |
| /* |
| * Check access permissions even for root. We don't want to be writing |
| * to read-only registers. Access for regular users has already been |
| * checked by the VFS layer. |
| */ |
| if ((fmode & FMODE_WRITER) && !(inode->i_mode & S_IWUSR)) |
| return -EACCES; |
| |
| data = kmalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| /* |
| * We use the same file system operations for all our debug files. To |
| * produce specific output, we look up the file name upon opening a |
| * debugfs entry and map it to a memory offset. This offset is then used |
| * in the generic "show" function to read a specific register. |
| */ |
| data->entry = __find_debugfs_entry(file->f_path.dentry->d_iname); |
| data->priv = inode->i_private; |
| |
| ret = single_open(file, brcm_avs_debug_show, data); |
| if (ret) |
| kfree(data); |
| file->f_mode = fmode; |
| |
| return ret; |
| } |
| |
| static int brcm_avs_debug_release(struct inode *inode, struct file *file) |
| { |
| struct seq_file *seq_priv = file->private_data; |
| struct debugfs_data *data = seq_priv->private; |
| |
| kfree(data); |
| return single_release(inode, file); |
| } |
| |
| static const struct file_operations brcm_avs_debug_ops = { |
| .open = brcm_avs_debug_open, |
| .read = seq_read, |
| .write = brcm_avs_seq_write, |
| .llseek = seq_lseek, |
| .release = brcm_avs_debug_release, |
| }; |
| |
| static void brcm_avs_cpufreq_debug_init(struct platform_device *pdev) |
| { |
| struct private_data *priv = platform_get_drvdata(pdev); |
| struct dentry *dir; |
| int i; |
| |
| if (!priv) |
| return; |
| |
| dir = debugfs_create_dir(BRCM_AVS_CPUFREQ_NAME, NULL); |
| if (IS_ERR_OR_NULL(dir)) |
| return; |
| priv->debugfs = dir; |
| |
| for (i = 0; i < ARRAY_SIZE(debugfs_entries); i++) { |
| /* |
| * The DEBUGFS_ENTRY macro generates uppercase strings. We |
| * convert them to lowercase before creating the debugfs |
| * entries. |
| */ |
| char *entry = __strtolower(debugfs_entries[i].name); |
| fmode_t mode = debugfs_entries[i].mode; |
| |
| if (!debugfs_create_file(entry, S_IFREG | S_IRUGO | mode, |
| dir, priv, &brcm_avs_debug_ops)) { |
| priv->debugfs = NULL; |
| debugfs_remove_recursive(dir); |
| break; |
| } |
| } |
| } |
| |
| static void brcm_avs_cpufreq_debug_exit(struct platform_device *pdev) |
| { |
| struct private_data *priv = platform_get_drvdata(pdev); |
| |
| if (priv && priv->debugfs) { |
| debugfs_remove_recursive(priv->debugfs); |
| priv->debugfs = NULL; |
| } |
| } |
| |
| #else |
| |
| static void brcm_avs_cpufreq_debug_init(struct platform_device *pdev) {} |
| static void brcm_avs_cpufreq_debug_exit(struct platform_device *pdev) {} |
| |
| #endif /* CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG */ |
| |
| /* |
| * To ensure the right firmware is running we need to |
| * - check the MAGIC matches what we expect |
| * - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL |
| * We need to set up our interrupt handling before calling brcm_avs_get_pmap()! |
| */ |
| static bool brcm_avs_is_firmware_loaded(struct private_data *priv) |
| { |
| u32 magic; |
| int rc; |
| |
| rc = brcm_avs_get_pmap(priv, NULL); |
| magic = readl(priv->base + AVS_MBOX_MAGIC); |
| |
| return (magic == AVS_FIRMWARE_MAGIC) && ((rc != -ENOTSUPP) || |
| (rc != -EINVAL)); |
| } |
| |
| static unsigned int brcm_avs_cpufreq_get(unsigned int cpu) |
| { |
| struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); |
| struct private_data *priv = policy->driver_data; |
| |
| return brcm_avs_get_frequency(priv->base); |
| } |
| |
| static int brcm_avs_target_index(struct cpufreq_policy *policy, |
| unsigned int index) |
| { |
| return brcm_avs_set_pstate(policy->driver_data, |
| policy->freq_table[index].driver_data); |
| } |
| |
| static int brcm_avs_suspend(struct cpufreq_policy *policy) |
| { |
| struct private_data *priv = policy->driver_data; |
| int ret; |
| |
| ret = brcm_avs_get_pmap(priv, &priv->pmap); |
| if (ret) |
| return ret; |
| |
| /* |
| * We can't use the P-state returned by brcm_avs_get_pmap(), since |
| * that's the initial P-state from when the P-map was downloaded to the |
| * AVS co-processor, not necessarily the P-state we are running at now. |
| * So, we get the current P-state explicitly. |
| */ |
| return brcm_avs_get_pstate(priv, &priv->pmap.state); |
| } |
| |
| static int brcm_avs_resume(struct cpufreq_policy *policy) |
| { |
| struct private_data *priv = policy->driver_data; |
| int ret; |
| |
| ret = brcm_avs_set_pmap(priv, &priv->pmap); |
| if (ret == -EEXIST) { |
| struct platform_device *pdev = cpufreq_get_driver_data(); |
| struct device *dev = &pdev->dev; |
| |
| dev_warn(dev, "PMAP was already set\n"); |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * All initialization code that we only want to execute once goes here. Setup |
| * code that can be re-tried on every core (if it failed before) can go into |
| * brcm_avs_cpufreq_init(). |
| */ |
| static int brcm_avs_prepare_init(struct platform_device *pdev) |
| { |
| struct private_data *priv; |
| struct device *dev; |
| int host_irq, ret; |
| |
| dev = &pdev->dev; |
| priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| priv->dev = dev; |
| sema_init(&priv->sem, 1); |
| init_completion(&priv->done); |
| platform_set_drvdata(pdev, priv); |
| |
| priv->base = __map_region(BRCM_AVS_CPU_DATA); |
| if (!priv->base) { |
| dev_err(dev, "Couldn't find property %s in device tree.\n", |
| BRCM_AVS_CPU_DATA); |
| return -ENOENT; |
| } |
| |
| priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR); |
| if (!priv->avs_intr_base) { |
| dev_err(dev, "Couldn't find property %s in device tree.\n", |
| BRCM_AVS_CPU_INTR); |
| ret = -ENOENT; |
| goto unmap_base; |
| } |
| |
| host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR); |
| if (host_irq < 0) { |
| dev_err(dev, "Couldn't find interrupt %s -- %d\n", |
| BRCM_AVS_HOST_INTR, host_irq); |
| ret = host_irq; |
| goto unmap_intr_base; |
| } |
| |
| ret = devm_request_irq(dev, host_irq, irq_handler, IRQF_TRIGGER_RISING, |
| BRCM_AVS_HOST_INTR, priv); |
| if (ret) { |
| dev_err(dev, "IRQ request failed: %s (%d) -- %d\n", |
| BRCM_AVS_HOST_INTR, host_irq, ret); |
| goto unmap_intr_base; |
| } |
| |
| if (brcm_avs_is_firmware_loaded(priv)) |
| return 0; |
| |
| dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n"); |
| ret = -ENODEV; |
| |
| unmap_intr_base: |
| iounmap(priv->avs_intr_base); |
| unmap_base: |
| iounmap(priv->base); |
| |
| return ret; |
| } |
| |
| static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy) |
| { |
| struct cpufreq_frequency_table *freq_table; |
| struct platform_device *pdev; |
| struct private_data *priv; |
| struct device *dev; |
| int ret; |
| |
| pdev = cpufreq_get_driver_data(); |
| priv = platform_get_drvdata(pdev); |
| policy->driver_data = priv; |
| dev = &pdev->dev; |
| |
| freq_table = brcm_avs_get_freq_table(dev, priv); |
| if (IS_ERR(freq_table)) { |
| ret = PTR_ERR(freq_table); |
| dev_err(dev, "Couldn't determine frequency table (%d).\n", ret); |
| return ret; |
| } |
| |
| ret = cpufreq_table_validate_and_show(policy, freq_table); |
| if (ret) { |
| dev_err(dev, "invalid frequency table: %d\n", ret); |
| return ret; |
| } |
| |
| /* All cores share the same clock and thus the same policy. */ |
| cpumask_setall(policy->cpus); |
| |
| ret = __issue_avs_command(priv, AVS_CMD_ENABLE, false, NULL); |
| if (!ret) { |
| unsigned int pstate; |
| |
| ret = brcm_avs_get_pstate(priv, &pstate); |
| if (!ret) { |
| policy->cur = freq_table[pstate].frequency; |
| dev_info(dev, "registered\n"); |
| return 0; |
| } |
| } |
| |
| dev_err(dev, "couldn't initialize driver (%d)\n", ret); |
| |
| return ret; |
| } |
| |
| static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf) |
| { |
| struct private_data *priv = policy->driver_data; |
| unsigned int pstate; |
| |
| if (brcm_avs_get_pstate(priv, &pstate)) |
| return sprintf(buf, "<unknown>\n"); |
| |
| return sprintf(buf, "%u\n", pstate); |
| } |
| |
| static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf) |
| { |
| struct private_data *priv = policy->driver_data; |
| struct pmap pmap; |
| |
| if (brcm_avs_get_pmap(priv, &pmap)) |
| return sprintf(buf, "<unknown>\n"); |
| |
| return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode), |
| pmap.mode); |
| } |
| |
| static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf) |
| { |
| unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4; |
| struct private_data *priv = policy->driver_data; |
| unsigned int ndiv, pdiv; |
| struct pmap pmap; |
| |
| if (brcm_avs_get_pmap(priv, &pmap)) |
| return sprintf(buf, "<unknown>\n"); |
| |
| brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv); |
| brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4); |
| |
| return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n", |
| pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2, |
| mdiv_p3, mdiv_p4, pmap.mode, pmap.state); |
| } |
| |
| static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf) |
| { |
| struct private_data *priv = policy->driver_data; |
| |
| return sprintf(buf, "0x%08x\n", brcm_avs_get_voltage(priv->base)); |
| } |
| |
| static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf) |
| { |
| struct private_data *priv = policy->driver_data; |
| |
| return sprintf(buf, "0x%08x\n", brcm_avs_get_frequency(priv->base)); |
| } |
| |
| cpufreq_freq_attr_ro(brcm_avs_pstate); |
| cpufreq_freq_attr_ro(brcm_avs_mode); |
| cpufreq_freq_attr_ro(brcm_avs_pmap); |
| cpufreq_freq_attr_ro(brcm_avs_voltage); |
| cpufreq_freq_attr_ro(brcm_avs_frequency); |
| |
| static struct freq_attr *brcm_avs_cpufreq_attr[] = { |
| &cpufreq_freq_attr_scaling_available_freqs, |
| &brcm_avs_pstate, |
| &brcm_avs_mode, |
| &brcm_avs_pmap, |
| &brcm_avs_voltage, |
| &brcm_avs_frequency, |
| NULL |
| }; |
| |
| static struct cpufreq_driver brcm_avs_driver = { |
| .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK, |
| .verify = cpufreq_generic_frequency_table_verify, |
| .target_index = brcm_avs_target_index, |
| .get = brcm_avs_cpufreq_get, |
| .suspend = brcm_avs_suspend, |
| .resume = brcm_avs_resume, |
| .init = brcm_avs_cpufreq_init, |
| .attr = brcm_avs_cpufreq_attr, |
| .name = BRCM_AVS_CPUFREQ_PREFIX, |
| }; |
| |
| static int brcm_avs_cpufreq_probe(struct platform_device *pdev) |
| { |
| int ret; |
| |
| ret = brcm_avs_prepare_init(pdev); |
| if (ret) |
| return ret; |
| |
| brcm_avs_driver.driver_data = pdev; |
| ret = cpufreq_register_driver(&brcm_avs_driver); |
| if (!ret) |
| brcm_avs_cpufreq_debug_init(pdev); |
| |
| return ret; |
| } |
| |
| static int brcm_avs_cpufreq_remove(struct platform_device *pdev) |
| { |
| struct private_data *priv; |
| int ret; |
| |
| ret = cpufreq_unregister_driver(&brcm_avs_driver); |
| if (ret) |
| return ret; |
| |
| brcm_avs_cpufreq_debug_exit(pdev); |
| |
| priv = platform_get_drvdata(pdev); |
| iounmap(priv->base); |
| iounmap(priv->avs_intr_base); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id brcm_avs_cpufreq_match[] = { |
| { .compatible = BRCM_AVS_CPU_DATA }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match); |
| |
| static struct platform_driver brcm_avs_cpufreq_platdrv = { |
| .driver = { |
| .name = BRCM_AVS_CPUFREQ_NAME, |
| .of_match_table = brcm_avs_cpufreq_match, |
| }, |
| .probe = brcm_avs_cpufreq_probe, |
| .remove = brcm_avs_cpufreq_remove, |
| }; |
| module_platform_driver(brcm_avs_cpufreq_platdrv); |
| |
| MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>"); |
| MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS"); |
| MODULE_LICENSE("GPL"); |