| /* |
| * linux/arch/arm/mm/init.c |
| * |
| * Copyright (C) 1995-2005 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/ptrace.h> |
| #include <linux/swap.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/mman.h> |
| #include <linux/nodemask.h> |
| #include <linux/initrd.h> |
| |
| #include <asm/mach-types.h> |
| #include <asm/setup.h> |
| #include <asm/sizes.h> |
| #include <asm/tlb.h> |
| |
| #include <asm/mach/arch.h> |
| #include <asm/mach/map.h> |
| |
| #include "mm.h" |
| |
| DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end; |
| extern unsigned long phys_initrd_start; |
| extern unsigned long phys_initrd_size; |
| |
| /* |
| * The sole use of this is to pass memory configuration |
| * data from paging_init to mem_init. |
| */ |
| static struct meminfo meminfo __initdata = { 0, }; |
| |
| /* |
| * empty_zero_page is a special page that is used for |
| * zero-initialized data and COW. |
| */ |
| struct page *empty_zero_page; |
| |
| /* |
| * The pmd table for the upper-most set of pages. |
| */ |
| pmd_t *top_pmd; |
| |
| void show_mem(void) |
| { |
| int free = 0, total = 0, reserved = 0; |
| int shared = 0, cached = 0, slab = 0, node; |
| |
| printk("Mem-info:\n"); |
| show_free_areas(); |
| printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| |
| for_each_online_node(node) { |
| struct page *page, *end; |
| |
| page = NODE_MEM_MAP(node); |
| end = page + NODE_DATA(node)->node_spanned_pages; |
| |
| do { |
| total++; |
| if (PageReserved(page)) |
| reserved++; |
| else if (PageSwapCache(page)) |
| cached++; |
| else if (PageSlab(page)) |
| slab++; |
| else if (!page_count(page)) |
| free++; |
| else |
| shared += page_count(page) - 1; |
| page++; |
| } while (page < end); |
| } |
| |
| printk("%d pages of RAM\n", total); |
| printk("%d free pages\n", free); |
| printk("%d reserved pages\n", reserved); |
| printk("%d slab pages\n", slab); |
| printk("%d pages shared\n", shared); |
| printk("%d pages swap cached\n", cached); |
| } |
| |
| #define for_each_nodebank(iter,mi,no) \ |
| for (iter = 0; iter < mi->nr_banks; iter++) \ |
| if (mi->bank[iter].node == no) |
| |
| /* |
| * FIXME: We really want to avoid allocating the bootmap bitmap |
| * over the top of the initrd. Hopefully, this is located towards |
| * the start of a bank, so if we allocate the bootmap bitmap at |
| * the end, we won't clash. |
| */ |
| static unsigned int __init |
| find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages) |
| { |
| unsigned int start_pfn, bank, bootmap_pfn; |
| |
| start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT; |
| bootmap_pfn = 0; |
| |
| for_each_nodebank(bank, mi, node) { |
| unsigned int start, end; |
| |
| start = mi->bank[bank].start >> PAGE_SHIFT; |
| end = (mi->bank[bank].size + |
| mi->bank[bank].start) >> PAGE_SHIFT; |
| |
| if (end < start_pfn) |
| continue; |
| |
| if (start < start_pfn) |
| start = start_pfn; |
| |
| if (end <= start) |
| continue; |
| |
| if (end - start >= bootmap_pages) { |
| bootmap_pfn = start; |
| break; |
| } |
| } |
| |
| if (bootmap_pfn == 0) |
| BUG(); |
| |
| return bootmap_pfn; |
| } |
| |
| static int __init check_initrd(struct meminfo *mi) |
| { |
| int initrd_node = -2; |
| #ifdef CONFIG_BLK_DEV_INITRD |
| unsigned long end = phys_initrd_start + phys_initrd_size; |
| |
| /* |
| * Make sure that the initrd is within a valid area of |
| * memory. |
| */ |
| if (phys_initrd_size) { |
| unsigned int i; |
| |
| initrd_node = -1; |
| |
| for (i = 0; i < mi->nr_banks; i++) { |
| unsigned long bank_end; |
| |
| bank_end = mi->bank[i].start + mi->bank[i].size; |
| |
| if (mi->bank[i].start <= phys_initrd_start && |
| end <= bank_end) |
| initrd_node = mi->bank[i].node; |
| } |
| } |
| |
| if (initrd_node == -1) { |
| printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond " |
| "physical memory - disabling initrd\n", |
| phys_initrd_start, end); |
| phys_initrd_start = phys_initrd_size = 0; |
| } |
| #endif |
| |
| return initrd_node; |
| } |
| |
| /* |
| * Reserve the various regions of node 0 |
| */ |
| static __init void reserve_node_zero(pg_data_t *pgdat) |
| { |
| unsigned long res_size = 0; |
| |
| /* |
| * Register the kernel text and data with bootmem. |
| * Note that this can only be in node 0. |
| */ |
| #ifdef CONFIG_XIP_KERNEL |
| reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start); |
| #else |
| reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext); |
| #endif |
| |
| /* |
| * Reserve the page tables. These are already in use, |
| * and can only be in node 0. |
| */ |
| reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), |
| PTRS_PER_PGD * sizeof(pgd_t)); |
| |
| /* |
| * Hmm... This should go elsewhere, but we really really need to |
| * stop things allocating the low memory; ideally we need a better |
| * implementation of GFP_DMA which does not assume that DMA-able |
| * memory starts at zero. |
| */ |
| if (machine_is_integrator() || machine_is_cintegrator()) |
| res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; |
| |
| /* |
| * These should likewise go elsewhere. They pre-reserve the |
| * screen memory region at the start of main system memory. |
| */ |
| if (machine_is_edb7211()) |
| res_size = 0x00020000; |
| if (machine_is_p720t()) |
| res_size = 0x00014000; |
| |
| #ifdef CONFIG_SA1111 |
| /* |
| * Because of the SA1111 DMA bug, we want to preserve our |
| * precious DMA-able memory... |
| */ |
| res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; |
| #endif |
| if (res_size) |
| reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size); |
| } |
| |
| static unsigned long __init |
| bootmem_init_node(int node, int initrd_node, struct meminfo *mi) |
| { |
| unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; |
| unsigned long start_pfn, end_pfn, boot_pfn; |
| unsigned int boot_pages; |
| pg_data_t *pgdat; |
| int i; |
| |
| start_pfn = -1UL; |
| end_pfn = 0; |
| |
| /* |
| * Calculate the pfn range, and map the memory banks for this node. |
| */ |
| for_each_nodebank(i, mi, node) { |
| unsigned long start, end; |
| struct map_desc map; |
| |
| start = mi->bank[i].start >> PAGE_SHIFT; |
| end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT; |
| |
| if (start_pfn > start) |
| start_pfn = start; |
| if (end_pfn < end) |
| end_pfn = end; |
| |
| map.pfn = __phys_to_pfn(mi->bank[i].start); |
| map.virtual = __phys_to_virt(mi->bank[i].start); |
| map.length = mi->bank[i].size; |
| map.type = MT_MEMORY; |
| |
| create_mapping(&map); |
| } |
| |
| /* |
| * If there is no memory in this node, ignore it. |
| */ |
| if (end_pfn == 0) |
| return end_pfn; |
| |
| /* |
| * Allocate the bootmem bitmap page. |
| */ |
| boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn); |
| boot_pfn = find_bootmap_pfn(node, mi, boot_pages); |
| |
| /* |
| * Initialise the bootmem allocator for this node, handing the |
| * memory banks over to bootmem. |
| */ |
| node_set_online(node); |
| pgdat = NODE_DATA(node); |
| init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn); |
| |
| for_each_nodebank(i, mi, node) |
| free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size); |
| |
| /* |
| * Reserve the bootmem bitmap for this node. |
| */ |
| reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT, |
| boot_pages << PAGE_SHIFT); |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| /* |
| * If the initrd is in this node, reserve its memory. |
| */ |
| if (node == initrd_node) { |
| reserve_bootmem_node(pgdat, phys_initrd_start, |
| phys_initrd_size); |
| initrd_start = __phys_to_virt(phys_initrd_start); |
| initrd_end = initrd_start + phys_initrd_size; |
| } |
| #endif |
| |
| /* |
| * Finally, reserve any node zero regions. |
| */ |
| if (node == 0) |
| reserve_node_zero(pgdat); |
| |
| /* |
| * initialise the zones within this node. |
| */ |
| memset(zone_size, 0, sizeof(zone_size)); |
| memset(zhole_size, 0, sizeof(zhole_size)); |
| |
| /* |
| * The size of this node has already been determined. If we need |
| * to do anything fancy with the allocation of this memory to the |
| * zones, now is the time to do it. |
| */ |
| zone_size[0] = end_pfn - start_pfn; |
| |
| /* |
| * For each bank in this node, calculate the size of the holes. |
| * holes = node_size - sum(bank_sizes_in_node) |
| */ |
| zhole_size[0] = zone_size[0]; |
| for_each_nodebank(i, mi, node) |
| zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT; |
| |
| /* |
| * Adjust the sizes according to any special requirements for |
| * this machine type. |
| */ |
| arch_adjust_zones(node, zone_size, zhole_size); |
| |
| free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size); |
| |
| return end_pfn; |
| } |
| |
| static void __init bootmem_init(struct meminfo *mi) |
| { |
| unsigned long addr, memend_pfn = 0; |
| int node, initrd_node, i; |
| |
| /* |
| * Invalidate the node number for empty or invalid memory banks |
| */ |
| for (i = 0; i < mi->nr_banks; i++) |
| if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES) |
| mi->bank[i].node = -1; |
| |
| memcpy(&meminfo, mi, sizeof(meminfo)); |
| |
| /* |
| * Clear out all the mappings below the kernel image. |
| */ |
| for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| #ifdef CONFIG_XIP_KERNEL |
| /* The XIP kernel is mapped in the module area -- skip over it */ |
| addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK; |
| #endif |
| for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| |
| /* |
| * Clear out all the kernel space mappings, except for the first |
| * memory bank, up to the end of the vmalloc region. |
| */ |
| for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size); |
| addr < VMALLOC_END; addr += PGDIR_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| |
| /* |
| * Locate which node contains the ramdisk image, if any. |
| */ |
| initrd_node = check_initrd(mi); |
| |
| /* |
| * Run through each node initialising the bootmem allocator. |
| */ |
| for_each_node(node) { |
| unsigned long end_pfn; |
| |
| end_pfn = bootmem_init_node(node, initrd_node, mi); |
| |
| /* |
| * Remember the highest memory PFN. |
| */ |
| if (end_pfn > memend_pfn) |
| memend_pfn = end_pfn; |
| } |
| |
| high_memory = __va(memend_pfn << PAGE_SHIFT); |
| |
| /* |
| * This doesn't seem to be used by the Linux memory manager any |
| * more, but is used by ll_rw_block. If we can get rid of it, we |
| * also get rid of some of the stuff above as well. |
| * |
| * Note: max_low_pfn and max_pfn reflect the number of _pages_ in |
| * the system, not the maximum PFN. |
| */ |
| max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET; |
| } |
| |
| /* |
| * Set up device the mappings. Since we clear out the page tables for all |
| * mappings above VMALLOC_END, we will remove any debug device mappings. |
| * This means you have to be careful how you debug this function, or any |
| * called function. This means you can't use any function or debugging |
| * method which may touch any device, otherwise the kernel _will_ crash. |
| */ |
| static void __init devicemaps_init(struct machine_desc *mdesc) |
| { |
| struct map_desc map; |
| unsigned long addr; |
| void *vectors; |
| |
| /* |
| * Allocate the vector page early. |
| */ |
| vectors = alloc_bootmem_low_pages(PAGE_SIZE); |
| BUG_ON(!vectors); |
| |
| for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| |
| /* |
| * Map the kernel if it is XIP. |
| * It is always first in the modulearea. |
| */ |
| #ifdef CONFIG_XIP_KERNEL |
| map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); |
| map.virtual = MODULE_START; |
| map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK; |
| map.type = MT_ROM; |
| create_mapping(&map); |
| #endif |
| |
| /* |
| * Map the cache flushing regions. |
| */ |
| #ifdef FLUSH_BASE |
| map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); |
| map.virtual = FLUSH_BASE; |
| map.length = SZ_1M; |
| map.type = MT_CACHECLEAN; |
| create_mapping(&map); |
| #endif |
| #ifdef FLUSH_BASE_MINICACHE |
| map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); |
| map.virtual = FLUSH_BASE_MINICACHE; |
| map.length = SZ_1M; |
| map.type = MT_MINICLEAN; |
| create_mapping(&map); |
| #endif |
| |
| /* |
| * Create a mapping for the machine vectors at the high-vectors |
| * location (0xffff0000). If we aren't using high-vectors, also |
| * create a mapping at the low-vectors virtual address. |
| */ |
| map.pfn = __phys_to_pfn(virt_to_phys(vectors)); |
| map.virtual = 0xffff0000; |
| map.length = PAGE_SIZE; |
| map.type = MT_HIGH_VECTORS; |
| create_mapping(&map); |
| |
| if (!vectors_high()) { |
| map.virtual = 0; |
| map.type = MT_LOW_VECTORS; |
| create_mapping(&map); |
| } |
| |
| /* |
| * Ask the machine support to map in the statically mapped devices. |
| */ |
| if (mdesc->map_io) |
| mdesc->map_io(); |
| |
| /* |
| * Finally flush the caches and tlb to ensure that we're in a |
| * consistent state wrt the writebuffer. This also ensures that |
| * any write-allocated cache lines in the vector page are written |
| * back. After this point, we can start to touch devices again. |
| */ |
| local_flush_tlb_all(); |
| flush_cache_all(); |
| } |
| |
| /* |
| * paging_init() sets up the page tables, initialises the zone memory |
| * maps, and sets up the zero page, bad page and bad page tables. |
| */ |
| void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc) |
| { |
| void *zero_page; |
| |
| build_mem_type_table(); |
| bootmem_init(mi); |
| devicemaps_init(mdesc); |
| |
| top_pmd = pmd_off_k(0xffff0000); |
| |
| /* |
| * allocate the zero page. Note that we count on this going ok. |
| */ |
| zero_page = alloc_bootmem_low_pages(PAGE_SIZE); |
| memzero(zero_page, PAGE_SIZE); |
| empty_zero_page = virt_to_page(zero_page); |
| flush_dcache_page(empty_zero_page); |
| } |
| |
| static inline void free_area(unsigned long addr, unsigned long end, char *s) |
| { |
| unsigned int size = (end - addr) >> 10; |
| |
| for (; addr < end; addr += PAGE_SIZE) { |
| struct page *page = virt_to_page(addr); |
| ClearPageReserved(page); |
| init_page_count(page); |
| free_page(addr); |
| totalram_pages++; |
| } |
| |
| if (size && s) |
| printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); |
| } |
| |
| static inline void |
| free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) |
| { |
| struct page *start_pg, *end_pg; |
| unsigned long pg, pgend; |
| |
| /* |
| * Convert start_pfn/end_pfn to a struct page pointer. |
| */ |
| start_pg = pfn_to_page(start_pfn); |
| end_pg = pfn_to_page(end_pfn); |
| |
| /* |
| * Convert to physical addresses, and |
| * round start upwards and end downwards. |
| */ |
| pg = PAGE_ALIGN(__pa(start_pg)); |
| pgend = __pa(end_pg) & PAGE_MASK; |
| |
| /* |
| * If there are free pages between these, |
| * free the section of the memmap array. |
| */ |
| if (pg < pgend) |
| free_bootmem_node(NODE_DATA(node), pg, pgend - pg); |
| } |
| |
| /* |
| * The mem_map array can get very big. Free the unused area of the memory map. |
| */ |
| static void __init free_unused_memmap_node(int node, struct meminfo *mi) |
| { |
| unsigned long bank_start, prev_bank_end = 0; |
| unsigned int i; |
| |
| /* |
| * [FIXME] This relies on each bank being in address order. This |
| * may not be the case, especially if the user has provided the |
| * information on the command line. |
| */ |
| for_each_nodebank(i, mi, node) { |
| bank_start = mi->bank[i].start >> PAGE_SHIFT; |
| if (bank_start < prev_bank_end) { |
| printk(KERN_ERR "MEM: unordered memory banks. " |
| "Not freeing memmap.\n"); |
| break; |
| } |
| |
| /* |
| * If we had a previous bank, and there is a space |
| * between the current bank and the previous, free it. |
| */ |
| if (prev_bank_end && prev_bank_end != bank_start) |
| free_memmap(node, prev_bank_end, bank_start); |
| |
| prev_bank_end = (mi->bank[i].start + |
| mi->bank[i].size) >> PAGE_SHIFT; |
| } |
| } |
| |
| /* |
| * mem_init() marks the free areas in the mem_map and tells us how much |
| * memory is free. This is done after various parts of the system have |
| * claimed their memory after the kernel image. |
| */ |
| void __init mem_init(void) |
| { |
| unsigned int codepages, datapages, initpages; |
| int i, node; |
| |
| codepages = &_etext - &_text; |
| datapages = &_end - &__data_start; |
| initpages = &__init_end - &__init_begin; |
| |
| #ifndef CONFIG_DISCONTIGMEM |
| max_mapnr = virt_to_page(high_memory) - mem_map; |
| #endif |
| |
| /* this will put all unused low memory onto the freelists */ |
| for_each_online_node(node) { |
| pg_data_t *pgdat = NODE_DATA(node); |
| |
| free_unused_memmap_node(node, &meminfo); |
| |
| if (pgdat->node_spanned_pages != 0) |
| totalram_pages += free_all_bootmem_node(pgdat); |
| } |
| |
| #ifdef CONFIG_SA1111 |
| /* now that our DMA memory is actually so designated, we can free it */ |
| free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL); |
| #endif |
| |
| /* |
| * Since our memory may not be contiguous, calculate the |
| * real number of pages we have in this system |
| */ |
| printk(KERN_INFO "Memory:"); |
| |
| num_physpages = 0; |
| for (i = 0; i < meminfo.nr_banks; i++) { |
| num_physpages += meminfo.bank[i].size >> PAGE_SHIFT; |
| printk(" %ldMB", meminfo.bank[i].size >> 20); |
| } |
| |
| printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); |
| printk(KERN_NOTICE "Memory: %luKB available (%dK code, " |
| "%dK data, %dK init)\n", |
| (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), |
| codepages >> 10, datapages >> 10, initpages >> 10); |
| |
| if (PAGE_SIZE >= 16384 && num_physpages <= 128) { |
| extern int sysctl_overcommit_memory; |
| /* |
| * On a machine this small we won't get |
| * anywhere without overcommit, so turn |
| * it on by default. |
| */ |
| sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; |
| } |
| } |
| |
| void free_initmem(void) |
| { |
| if (!machine_is_integrator() && !machine_is_cintegrator()) { |
| free_area((unsigned long)(&__init_begin), |
| (unsigned long)(&__init_end), |
| "init"); |
| } |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| |
| static int keep_initrd; |
| |
| void free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| if (!keep_initrd) |
| free_area(start, end, "initrd"); |
| } |
| |
| static int __init keepinitrd_setup(char *__unused) |
| { |
| keep_initrd = 1; |
| return 1; |
| } |
| |
| __setup("keepinitrd", keepinitrd_setup); |
| #endif |