| /** |
| * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project. |
| * |
| * Copyright (c) 2001-2005 Anton Altaparmakov |
| * |
| * This program/include file is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as published |
| * by the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program/include file is distributed in the hope that it will be |
| * useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program (in the main directory of the Linux-NTFS |
| * distribution in the file COPYING); if not, write to the Free Software |
| * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/pagemap.h> |
| #include <linux/buffer_head.h> |
| #include <linux/smp_lock.h> |
| #include <linux/quotaops.h> |
| #include <linux/mount.h> |
| |
| #include "aops.h" |
| #include "dir.h" |
| #include "debug.h" |
| #include "inode.h" |
| #include "attrib.h" |
| #include "malloc.h" |
| #include "mft.h" |
| #include "time.h" |
| #include "ntfs.h" |
| |
| /** |
| * ntfs_test_inode - compare two (possibly fake) inodes for equality |
| * @vi: vfs inode which to test |
| * @na: ntfs attribute which is being tested with |
| * |
| * Compare the ntfs attribute embedded in the ntfs specific part of the vfs |
| * inode @vi for equality with the ntfs attribute @na. |
| * |
| * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. |
| * @na->name and @na->name_len are then ignored. |
| * |
| * Return 1 if the attributes match and 0 if not. |
| * |
| * NOTE: This function runs with the inode_lock spin lock held so it is not |
| * allowed to sleep. |
| */ |
| int ntfs_test_inode(struct inode *vi, ntfs_attr *na) |
| { |
| ntfs_inode *ni; |
| |
| if (vi->i_ino != na->mft_no) |
| return 0; |
| ni = NTFS_I(vi); |
| /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ |
| if (likely(!NInoAttr(ni))) { |
| /* If not looking for a normal inode this is a mismatch. */ |
| if (unlikely(na->type != AT_UNUSED)) |
| return 0; |
| } else { |
| /* A fake inode describing an attribute. */ |
| if (ni->type != na->type) |
| return 0; |
| if (ni->name_len != na->name_len) |
| return 0; |
| if (na->name_len && memcmp(ni->name, na->name, |
| na->name_len * sizeof(ntfschar))) |
| return 0; |
| } |
| /* Match! */ |
| return 1; |
| } |
| |
| /** |
| * ntfs_init_locked_inode - initialize an inode |
| * @vi: vfs inode to initialize |
| * @na: ntfs attribute which to initialize @vi to |
| * |
| * Initialize the vfs inode @vi with the values from the ntfs attribute @na in |
| * order to enable ntfs_test_inode() to do its work. |
| * |
| * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. |
| * In that case, @na->name and @na->name_len should be set to NULL and 0, |
| * respectively. Although that is not strictly necessary as |
| * ntfs_read_inode_locked() will fill them in later. |
| * |
| * Return 0 on success and -errno on error. |
| * |
| * NOTE: This function runs with the inode_lock spin lock held so it is not |
| * allowed to sleep. (Hence the GFP_ATOMIC allocation.) |
| */ |
| static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) |
| { |
| ntfs_inode *ni = NTFS_I(vi); |
| |
| vi->i_ino = na->mft_no; |
| |
| ni->type = na->type; |
| if (na->type == AT_INDEX_ALLOCATION) |
| NInoSetMstProtected(ni); |
| |
| ni->name = na->name; |
| ni->name_len = na->name_len; |
| |
| /* If initializing a normal inode, we are done. */ |
| if (likely(na->type == AT_UNUSED)) { |
| BUG_ON(na->name); |
| BUG_ON(na->name_len); |
| return 0; |
| } |
| |
| /* It is a fake inode. */ |
| NInoSetAttr(ni); |
| |
| /* |
| * We have I30 global constant as an optimization as it is the name |
| * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC |
| * allocation but that is ok. And most attributes are unnamed anyway, |
| * thus the fraction of named attributes with name != I30 is actually |
| * absolutely tiny. |
| */ |
| if (na->name_len && na->name != I30) { |
| unsigned int i; |
| |
| BUG_ON(!na->name); |
| i = na->name_len * sizeof(ntfschar); |
| ni->name = (ntfschar*)kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); |
| if (!ni->name) |
| return -ENOMEM; |
| memcpy(ni->name, na->name, i); |
| ni->name[i] = 0; |
| } |
| return 0; |
| } |
| |
| typedef int (*set_t)(struct inode *, void *); |
| static int ntfs_read_locked_inode(struct inode *vi); |
| static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); |
| static int ntfs_read_locked_index_inode(struct inode *base_vi, |
| struct inode *vi); |
| |
| /** |
| * ntfs_iget - obtain a struct inode corresponding to a specific normal inode |
| * @sb: super block of mounted volume |
| * @mft_no: mft record number / inode number to obtain |
| * |
| * Obtain the struct inode corresponding to a specific normal inode (i.e. a |
| * file or directory). |
| * |
| * If the inode is in the cache, it is just returned with an increased |
| * reference count. Otherwise, a new struct inode is allocated and initialized, |
| * and finally ntfs_read_locked_inode() is called to read in the inode and |
| * fill in the remainder of the inode structure. |
| * |
| * Return the struct inode on success. Check the return value with IS_ERR() and |
| * if true, the function failed and the error code is obtained from PTR_ERR(). |
| */ |
| struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) |
| { |
| struct inode *vi; |
| ntfs_attr na; |
| int err; |
| |
| na.mft_no = mft_no; |
| na.type = AT_UNUSED; |
| na.name = NULL; |
| na.name_len = 0; |
| |
| vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, |
| (set_t)ntfs_init_locked_inode, &na); |
| if (unlikely(!vi)) |
| return ERR_PTR(-ENOMEM); |
| |
| err = 0; |
| |
| /* If this is a freshly allocated inode, need to read it now. */ |
| if (vi->i_state & I_NEW) { |
| err = ntfs_read_locked_inode(vi); |
| unlock_new_inode(vi); |
| } |
| /* |
| * There is no point in keeping bad inodes around if the failure was |
| * due to ENOMEM. We want to be able to retry again later. |
| */ |
| if (unlikely(err == -ENOMEM)) { |
| iput(vi); |
| vi = ERR_PTR(err); |
| } |
| return vi; |
| } |
| |
| /** |
| * ntfs_attr_iget - obtain a struct inode corresponding to an attribute |
| * @base_vi: vfs base inode containing the attribute |
| * @type: attribute type |
| * @name: Unicode name of the attribute (NULL if unnamed) |
| * @name_len: length of @name in Unicode characters (0 if unnamed) |
| * |
| * Obtain the (fake) struct inode corresponding to the attribute specified by |
| * @type, @name, and @name_len, which is present in the base mft record |
| * specified by the vfs inode @base_vi. |
| * |
| * If the attribute inode is in the cache, it is just returned with an |
| * increased reference count. Otherwise, a new struct inode is allocated and |
| * initialized, and finally ntfs_read_locked_attr_inode() is called to read the |
| * attribute and fill in the inode structure. |
| * |
| * Note, for index allocation attributes, you need to use ntfs_index_iget() |
| * instead of ntfs_attr_iget() as working with indices is a lot more complex. |
| * |
| * Return the struct inode of the attribute inode on success. Check the return |
| * value with IS_ERR() and if true, the function failed and the error code is |
| * obtained from PTR_ERR(). |
| */ |
| struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, |
| ntfschar *name, u32 name_len) |
| { |
| struct inode *vi; |
| ntfs_attr na; |
| int err; |
| |
| /* Make sure no one calls ntfs_attr_iget() for indices. */ |
| BUG_ON(type == AT_INDEX_ALLOCATION); |
| |
| na.mft_no = base_vi->i_ino; |
| na.type = type; |
| na.name = name; |
| na.name_len = name_len; |
| |
| vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, |
| (set_t)ntfs_init_locked_inode, &na); |
| if (unlikely(!vi)) |
| return ERR_PTR(-ENOMEM); |
| |
| err = 0; |
| |
| /* If this is a freshly allocated inode, need to read it now. */ |
| if (vi->i_state & I_NEW) { |
| err = ntfs_read_locked_attr_inode(base_vi, vi); |
| unlock_new_inode(vi); |
| } |
| /* |
| * There is no point in keeping bad attribute inodes around. This also |
| * simplifies things in that we never need to check for bad attribute |
| * inodes elsewhere. |
| */ |
| if (unlikely(err)) { |
| iput(vi); |
| vi = ERR_PTR(err); |
| } |
| return vi; |
| } |
| |
| /** |
| * ntfs_index_iget - obtain a struct inode corresponding to an index |
| * @base_vi: vfs base inode containing the index related attributes |
| * @name: Unicode name of the index |
| * @name_len: length of @name in Unicode characters |
| * |
| * Obtain the (fake) struct inode corresponding to the index specified by @name |
| * and @name_len, which is present in the base mft record specified by the vfs |
| * inode @base_vi. |
| * |
| * If the index inode is in the cache, it is just returned with an increased |
| * reference count. Otherwise, a new struct inode is allocated and |
| * initialized, and finally ntfs_read_locked_index_inode() is called to read |
| * the index related attributes and fill in the inode structure. |
| * |
| * Return the struct inode of the index inode on success. Check the return |
| * value with IS_ERR() and if true, the function failed and the error code is |
| * obtained from PTR_ERR(). |
| */ |
| struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, |
| u32 name_len) |
| { |
| struct inode *vi; |
| ntfs_attr na; |
| int err; |
| |
| na.mft_no = base_vi->i_ino; |
| na.type = AT_INDEX_ALLOCATION; |
| na.name = name; |
| na.name_len = name_len; |
| |
| vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, |
| (set_t)ntfs_init_locked_inode, &na); |
| if (unlikely(!vi)) |
| return ERR_PTR(-ENOMEM); |
| |
| err = 0; |
| |
| /* If this is a freshly allocated inode, need to read it now. */ |
| if (vi->i_state & I_NEW) { |
| err = ntfs_read_locked_index_inode(base_vi, vi); |
| unlock_new_inode(vi); |
| } |
| /* |
| * There is no point in keeping bad index inodes around. This also |
| * simplifies things in that we never need to check for bad index |
| * inodes elsewhere. |
| */ |
| if (unlikely(err)) { |
| iput(vi); |
| vi = ERR_PTR(err); |
| } |
| return vi; |
| } |
| |
| struct inode *ntfs_alloc_big_inode(struct super_block *sb) |
| { |
| ntfs_inode *ni; |
| |
| ntfs_debug("Entering."); |
| ni = (ntfs_inode *)kmem_cache_alloc(ntfs_big_inode_cache, |
| SLAB_NOFS); |
| if (likely(ni != NULL)) { |
| ni->state = 0; |
| return VFS_I(ni); |
| } |
| ntfs_error(sb, "Allocation of NTFS big inode structure failed."); |
| return NULL; |
| } |
| |
| void ntfs_destroy_big_inode(struct inode *inode) |
| { |
| ntfs_inode *ni = NTFS_I(inode); |
| |
| ntfs_debug("Entering."); |
| BUG_ON(ni->page); |
| if (!atomic_dec_and_test(&ni->count)) |
| BUG(); |
| kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); |
| } |
| |
| static inline ntfs_inode *ntfs_alloc_extent_inode(void) |
| { |
| ntfs_inode *ni; |
| |
| ntfs_debug("Entering."); |
| ni = (ntfs_inode *)kmem_cache_alloc(ntfs_inode_cache, SLAB_NOFS); |
| if (likely(ni != NULL)) { |
| ni->state = 0; |
| return ni; |
| } |
| ntfs_error(NULL, "Allocation of NTFS inode structure failed."); |
| return NULL; |
| } |
| |
| static void ntfs_destroy_extent_inode(ntfs_inode *ni) |
| { |
| ntfs_debug("Entering."); |
| BUG_ON(ni->page); |
| if (!atomic_dec_and_test(&ni->count)) |
| BUG(); |
| kmem_cache_free(ntfs_inode_cache, ni); |
| } |
| |
| /** |
| * __ntfs_init_inode - initialize ntfs specific part of an inode |
| * @sb: super block of mounted volume |
| * @ni: freshly allocated ntfs inode which to initialize |
| * |
| * Initialize an ntfs inode to defaults. |
| * |
| * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left |
| * untouched. Make sure to initialize them elsewhere. |
| * |
| * Return zero on success and -ENOMEM on error. |
| */ |
| void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) |
| { |
| ntfs_debug("Entering."); |
| rwlock_init(&ni->size_lock); |
| ni->initialized_size = ni->allocated_size = 0; |
| ni->seq_no = 0; |
| atomic_set(&ni->count, 1); |
| ni->vol = NTFS_SB(sb); |
| ntfs_init_runlist(&ni->runlist); |
| init_MUTEX(&ni->mrec_lock); |
| ni->page = NULL; |
| ni->page_ofs = 0; |
| ni->attr_list_size = 0; |
| ni->attr_list = NULL; |
| ntfs_init_runlist(&ni->attr_list_rl); |
| ni->itype.index.bmp_ino = NULL; |
| ni->itype.index.block_size = 0; |
| ni->itype.index.vcn_size = 0; |
| ni->itype.index.collation_rule = 0; |
| ni->itype.index.block_size_bits = 0; |
| ni->itype.index.vcn_size_bits = 0; |
| init_MUTEX(&ni->extent_lock); |
| ni->nr_extents = 0; |
| ni->ext.base_ntfs_ino = NULL; |
| } |
| |
| inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, |
| unsigned long mft_no) |
| { |
| ntfs_inode *ni = ntfs_alloc_extent_inode(); |
| |
| ntfs_debug("Entering."); |
| if (likely(ni != NULL)) { |
| __ntfs_init_inode(sb, ni); |
| ni->mft_no = mft_no; |
| ni->type = AT_UNUSED; |
| ni->name = NULL; |
| ni->name_len = 0; |
| } |
| return ni; |
| } |
| |
| /** |
| * ntfs_is_extended_system_file - check if a file is in the $Extend directory |
| * @ctx: initialized attribute search context |
| * |
| * Search all file name attributes in the inode described by the attribute |
| * search context @ctx and check if any of the names are in the $Extend system |
| * directory. |
| * |
| * Return values: |
| * 1: file is in $Extend directory |
| * 0: file is not in $Extend directory |
| * -errno: failed to determine if the file is in the $Extend directory |
| */ |
| static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) |
| { |
| int nr_links, err; |
| |
| /* Restart search. */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| |
| /* Get number of hard links. */ |
| nr_links = le16_to_cpu(ctx->mrec->link_count); |
| |
| /* Loop through all hard links. */ |
| while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, |
| ctx))) { |
| FILE_NAME_ATTR *file_name_attr; |
| ATTR_RECORD *attr = ctx->attr; |
| u8 *p, *p2; |
| |
| nr_links--; |
| /* |
| * Maximum sanity checking as we are called on an inode that |
| * we suspect might be corrupt. |
| */ |
| p = (u8*)attr + le32_to_cpu(attr->length); |
| if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + |
| le32_to_cpu(ctx->mrec->bytes_in_use)) { |
| err_corrupt_attr: |
| ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " |
| "attribute. You should run chkdsk."); |
| return -EIO; |
| } |
| if (attr->non_resident) { |
| ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " |
| "name. You should run chkdsk."); |
| return -EIO; |
| } |
| if (attr->flags) { |
| ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " |
| "invalid flags. You should run " |
| "chkdsk."); |
| return -EIO; |
| } |
| if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { |
| ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " |
| "name. You should run chkdsk."); |
| return -EIO; |
| } |
| file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + |
| le16_to_cpu(attr->data.resident.value_offset)); |
| p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); |
| if (p2 < (u8*)attr || p2 > p) |
| goto err_corrupt_attr; |
| /* This attribute is ok, but is it in the $Extend directory? */ |
| if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) |
| return 1; /* YES, it's an extended system file. */ |
| } |
| if (unlikely(err != -ENOENT)) |
| return err; |
| if (unlikely(nr_links)) { |
| ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " |
| "doesn't match number of name attributes. You " |
| "should run chkdsk."); |
| return -EIO; |
| } |
| return 0; /* NO, it is not an extended system file. */ |
| } |
| |
| /** |
| * ntfs_read_locked_inode - read an inode from its device |
| * @vi: inode to read |
| * |
| * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode |
| * described by @vi into memory from the device. |
| * |
| * The only fields in @vi that we need to/can look at when the function is |
| * called are i_sb, pointing to the mounted device's super block, and i_ino, |
| * the number of the inode to load. |
| * |
| * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino |
| * for reading and sets up the necessary @vi fields as well as initializing |
| * the ntfs inode. |
| * |
| * Q: What locks are held when the function is called? |
| * A: i_state has I_LOCK set, hence the inode is locked, also |
| * i_count is set to 1, so it is not going to go away |
| * i_flags is set to 0 and we have no business touching it. Only an ioctl() |
| * is allowed to write to them. We should of course be honouring them but |
| * we need to do that using the IS_* macros defined in include/linux/fs.h. |
| * In any case ntfs_read_locked_inode() has nothing to do with i_flags. |
| * |
| * Return 0 on success and -errno on error. In the error case, the inode will |
| * have had make_bad_inode() executed on it. |
| */ |
| static int ntfs_read_locked_inode(struct inode *vi) |
| { |
| ntfs_volume *vol = NTFS_SB(vi->i_sb); |
| ntfs_inode *ni; |
| MFT_RECORD *m; |
| STANDARD_INFORMATION *si; |
| ntfs_attr_search_ctx *ctx; |
| int err = 0; |
| |
| ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); |
| |
| /* Setup the generic vfs inode parts now. */ |
| |
| /* This is the optimal IO size (for stat), not the fs block size. */ |
| vi->i_blksize = PAGE_CACHE_SIZE; |
| /* |
| * This is for checking whether an inode has changed w.r.t. a file so |
| * that the file can be updated if necessary (compare with f_version). |
| */ |
| vi->i_version = 1; |
| |
| vi->i_uid = vol->uid; |
| vi->i_gid = vol->gid; |
| vi->i_mode = 0; |
| |
| /* |
| * Initialize the ntfs specific part of @vi special casing |
| * FILE_MFT which we need to do at mount time. |
| */ |
| if (vi->i_ino != FILE_MFT) |
| ntfs_init_big_inode(vi); |
| ni = NTFS_I(vi); |
| |
| m = map_mft_record(ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| goto err_out; |
| } |
| ctx = ntfs_attr_get_search_ctx(ni, m); |
| if (!ctx) { |
| err = -ENOMEM; |
| goto unm_err_out; |
| } |
| |
| if (!(m->flags & MFT_RECORD_IN_USE)) { |
| ntfs_error(vi->i_sb, "Inode is not in use!"); |
| goto unm_err_out; |
| } |
| if (m->base_mft_record) { |
| ntfs_error(vi->i_sb, "Inode is an extent inode!"); |
| goto unm_err_out; |
| } |
| |
| /* Transfer information from mft record into vfs and ntfs inodes. */ |
| vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); |
| |
| /* |
| * FIXME: Keep in mind that link_count is two for files which have both |
| * a long file name and a short file name as separate entries, so if |
| * we are hiding short file names this will be too high. Either we need |
| * to account for the short file names by subtracting them or we need |
| * to make sure we delete files even though i_nlink is not zero which |
| * might be tricky due to vfs interactions. Need to think about this |
| * some more when implementing the unlink command. |
| */ |
| vi->i_nlink = le16_to_cpu(m->link_count); |
| /* |
| * FIXME: Reparse points can have the directory bit set even though |
| * they would be S_IFLNK. Need to deal with this further below when we |
| * implement reparse points / symbolic links but it will do for now. |
| * Also if not a directory, it could be something else, rather than |
| * a regular file. But again, will do for now. |
| */ |
| /* Everyone gets all permissions. */ |
| vi->i_mode |= S_IRWXUGO; |
| /* If read-only, noone gets write permissions. */ |
| if (IS_RDONLY(vi)) |
| vi->i_mode &= ~S_IWUGO; |
| if (m->flags & MFT_RECORD_IS_DIRECTORY) { |
| vi->i_mode |= S_IFDIR; |
| /* |
| * Apply the directory permissions mask set in the mount |
| * options. |
| */ |
| vi->i_mode &= ~vol->dmask; |
| /* Things break without this kludge! */ |
| if (vi->i_nlink > 1) |
| vi->i_nlink = 1; |
| } else { |
| vi->i_mode |= S_IFREG; |
| /* Apply the file permissions mask set in the mount options. */ |
| vi->i_mode &= ~vol->fmask; |
| } |
| /* |
| * Find the standard information attribute in the mft record. At this |
| * stage we haven't setup the attribute list stuff yet, so this could |
| * in fact fail if the standard information is in an extent record, but |
| * I don't think this actually ever happens. |
| */ |
| err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, |
| ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) { |
| /* |
| * TODO: We should be performing a hot fix here (if the |
| * recover mount option is set) by creating a new |
| * attribute. |
| */ |
| ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " |
| "is missing."); |
| } |
| goto unm_err_out; |
| } |
| /* Get the standard information attribute value. */ |
| si = (STANDARD_INFORMATION*)((char*)ctx->attr + |
| le16_to_cpu(ctx->attr->data.resident.value_offset)); |
| |
| /* Transfer information from the standard information into vi. */ |
| /* |
| * Note: The i_?times do not quite map perfectly onto the NTFS times, |
| * but they are close enough, and in the end it doesn't really matter |
| * that much... |
| */ |
| /* |
| * mtime is the last change of the data within the file. Not changed |
| * when only metadata is changed, e.g. a rename doesn't affect mtime. |
| */ |
| vi->i_mtime = ntfs2utc(si->last_data_change_time); |
| /* |
| * ctime is the last change of the metadata of the file. This obviously |
| * always changes, when mtime is changed. ctime can be changed on its |
| * own, mtime is then not changed, e.g. when a file is renamed. |
| */ |
| vi->i_ctime = ntfs2utc(si->last_mft_change_time); |
| /* |
| * Last access to the data within the file. Not changed during a rename |
| * for example but changed whenever the file is written to. |
| */ |
| vi->i_atime = ntfs2utc(si->last_access_time); |
| |
| /* Find the attribute list attribute if present. */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); |
| if (err) { |
| if (unlikely(err != -ENOENT)) { |
| ntfs_error(vi->i_sb, "Failed to lookup attribute list " |
| "attribute."); |
| goto unm_err_out; |
| } |
| } else /* if (!err) */ { |
| if (vi->i_ino == FILE_MFT) |
| goto skip_attr_list_load; |
| ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); |
| NInoSetAttrList(ni); |
| if (ctx->attr->flags & ATTR_IS_ENCRYPTED || |
| ctx->attr->flags & ATTR_COMPRESSION_MASK || |
| ctx->attr->flags & ATTR_IS_SPARSE) { |
| ntfs_error(vi->i_sb, "Attribute list attribute is " |
| "compressed/encrypted/sparse."); |
| goto unm_err_out; |
| } |
| /* Now allocate memory for the attribute list. */ |
| ni->attr_list_size = (u32)ntfs_attr_size(ctx->attr); |
| ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); |
| if (!ni->attr_list) { |
| ntfs_error(vi->i_sb, "Not enough memory to allocate " |
| "buffer for attribute list."); |
| err = -ENOMEM; |
| goto unm_err_out; |
| } |
| if (ctx->attr->non_resident) { |
| NInoSetAttrListNonResident(ni); |
| if (ctx->attr->data.non_resident.lowest_vcn) { |
| ntfs_error(vi->i_sb, "Attribute list has non " |
| "zero lowest_vcn."); |
| goto unm_err_out; |
| } |
| /* |
| * Setup the runlist. No need for locking as we have |
| * exclusive access to the inode at this time. |
| */ |
| ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, |
| ctx->attr, NULL); |
| if (IS_ERR(ni->attr_list_rl.rl)) { |
| err = PTR_ERR(ni->attr_list_rl.rl); |
| ni->attr_list_rl.rl = NULL; |
| ntfs_error(vi->i_sb, "Mapping pairs " |
| "decompression failed."); |
| goto unm_err_out; |
| } |
| /* Now load the attribute list. */ |
| if ((err = load_attribute_list(vol, &ni->attr_list_rl, |
| ni->attr_list, ni->attr_list_size, |
| sle64_to_cpu(ctx->attr->data. |
| non_resident.initialized_size)))) { |
| ntfs_error(vi->i_sb, "Failed to load " |
| "attribute list attribute."); |
| goto unm_err_out; |
| } |
| } else /* if (!ctx.attr->non_resident) */ { |
| if ((u8*)ctx->attr + le16_to_cpu( |
| ctx->attr->data.resident.value_offset) + |
| le32_to_cpu( |
| ctx->attr->data.resident.value_length) > |
| (u8*)ctx->mrec + vol->mft_record_size) { |
| ntfs_error(vi->i_sb, "Corrupt attribute list " |
| "in inode."); |
| goto unm_err_out; |
| } |
| /* Now copy the attribute list. */ |
| memcpy(ni->attr_list, (u8*)ctx->attr + le16_to_cpu( |
| ctx->attr->data.resident.value_offset), |
| le32_to_cpu( |
| ctx->attr->data.resident.value_length)); |
| } |
| } |
| skip_attr_list_load: |
| /* |
| * If an attribute list is present we now have the attribute list value |
| * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. |
| */ |
| if (S_ISDIR(vi->i_mode)) { |
| loff_t bvi_size; |
| struct inode *bvi; |
| ntfs_inode *bni; |
| INDEX_ROOT *ir; |
| char *ir_end, *index_end; |
| |
| /* It is a directory, find index root attribute. */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, |
| 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) { |
| // FIXME: File is corrupt! Hot-fix with empty |
| // index root attribute if recovery option is |
| // set. |
| ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " |
| "is missing."); |
| } |
| goto unm_err_out; |
| } |
| /* Set up the state. */ |
| if (unlikely(ctx->attr->non_resident)) { |
| ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " |
| "resident."); |
| goto unm_err_out; |
| } |
| /* Ensure the attribute name is placed before the value. */ |
| if (unlikely(ctx->attr->name_length && |
| (le16_to_cpu(ctx->attr->name_offset) >= |
| le16_to_cpu(ctx->attr->data.resident. |
| value_offset)))) { |
| ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " |
| "placed after the attribute value."); |
| goto unm_err_out; |
| } |
| /* |
| * Compressed/encrypted index root just means that the newly |
| * created files in that directory should be created compressed/ |
| * encrypted. However index root cannot be both compressed and |
| * encrypted. |
| */ |
| if (ctx->attr->flags & ATTR_COMPRESSION_MASK) |
| NInoSetCompressed(ni); |
| if (ctx->attr->flags & ATTR_IS_ENCRYPTED) { |
| if (ctx->attr->flags & ATTR_COMPRESSION_MASK) { |
| ntfs_error(vi->i_sb, "Found encrypted and " |
| "compressed attribute."); |
| goto unm_err_out; |
| } |
| NInoSetEncrypted(ni); |
| } |
| if (ctx->attr->flags & ATTR_IS_SPARSE) |
| NInoSetSparse(ni); |
| ir = (INDEX_ROOT*)((char*)ctx->attr + le16_to_cpu( |
| ctx->attr->data.resident.value_offset)); |
| ir_end = (char*)ir + le32_to_cpu( |
| ctx->attr->data.resident.value_length); |
| if (ir_end > (char*)ctx->mrec + vol->mft_record_size) { |
| ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " |
| "corrupt."); |
| goto unm_err_out; |
| } |
| index_end = (char*)&ir->index + |
| le32_to_cpu(ir->index.index_length); |
| if (index_end > ir_end) { |
| ntfs_error(vi->i_sb, "Directory index is corrupt."); |
| goto unm_err_out; |
| } |
| if (ir->type != AT_FILE_NAME) { |
| ntfs_error(vi->i_sb, "Indexed attribute is not " |
| "$FILE_NAME."); |
| goto unm_err_out; |
| } |
| if (ir->collation_rule != COLLATION_FILE_NAME) { |
| ntfs_error(vi->i_sb, "Index collation rule is not " |
| "COLLATION_FILE_NAME."); |
| goto unm_err_out; |
| } |
| ni->itype.index.collation_rule = ir->collation_rule; |
| ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); |
| if (ni->itype.index.block_size & |
| (ni->itype.index.block_size - 1)) { |
| ntfs_error(vi->i_sb, "Index block size (%u) is not a " |
| "power of two.", |
| ni->itype.index.block_size); |
| goto unm_err_out; |
| } |
| if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { |
| ntfs_error(vi->i_sb, "Index block size (%u) > " |
| "PAGE_CACHE_SIZE (%ld) is not " |
| "supported. Sorry.", |
| ni->itype.index.block_size, |
| PAGE_CACHE_SIZE); |
| err = -EOPNOTSUPP; |
| goto unm_err_out; |
| } |
| if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { |
| ntfs_error(vi->i_sb, "Index block size (%u) < " |
| "NTFS_BLOCK_SIZE (%i) is not " |
| "supported. Sorry.", |
| ni->itype.index.block_size, |
| NTFS_BLOCK_SIZE); |
| err = -EOPNOTSUPP; |
| goto unm_err_out; |
| } |
| ni->itype.index.block_size_bits = |
| ffs(ni->itype.index.block_size) - 1; |
| /* Determine the size of a vcn in the directory index. */ |
| if (vol->cluster_size <= ni->itype.index.block_size) { |
| ni->itype.index.vcn_size = vol->cluster_size; |
| ni->itype.index.vcn_size_bits = vol->cluster_size_bits; |
| } else { |
| ni->itype.index.vcn_size = vol->sector_size; |
| ni->itype.index.vcn_size_bits = vol->sector_size_bits; |
| } |
| |
| /* Setup the index allocation attribute, even if not present. */ |
| NInoSetMstProtected(ni); |
| ni->type = AT_INDEX_ALLOCATION; |
| ni->name = I30; |
| ni->name_len = 4; |
| |
| if (!(ir->index.flags & LARGE_INDEX)) { |
| /* No index allocation. */ |
| vi->i_size = ni->initialized_size = |
| ni->allocated_size = 0; |
| /* We are done with the mft record, so we release it. */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(ni); |
| m = NULL; |
| ctx = NULL; |
| goto skip_large_dir_stuff; |
| } /* LARGE_INDEX: Index allocation present. Setup state. */ |
| NInoSetIndexAllocPresent(ni); |
| /* Find index allocation attribute. */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " |
| "attribute is not present but " |
| "$INDEX_ROOT indicated it is."); |
| else |
| ntfs_error(vi->i_sb, "Failed to lookup " |
| "$INDEX_ALLOCATION " |
| "attribute."); |
| goto unm_err_out; |
| } |
| if (!ctx->attr->non_resident) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
| "is resident."); |
| goto unm_err_out; |
| } |
| /* |
| * Ensure the attribute name is placed before the mapping pairs |
| * array. |
| */ |
| if (unlikely(ctx->attr->name_length && |
| (le16_to_cpu(ctx->attr->name_offset) >= |
| le16_to_cpu(ctx->attr->data.non_resident. |
| mapping_pairs_offset)))) { |
| ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " |
| "is placed after the mapping pairs " |
| "array."); |
| goto unm_err_out; |
| } |
| if (ctx->attr->flags & ATTR_IS_ENCRYPTED) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
| "is encrypted."); |
| goto unm_err_out; |
| } |
| if (ctx->attr->flags & ATTR_IS_SPARSE) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
| "is sparse."); |
| goto unm_err_out; |
| } |
| if (ctx->attr->flags & ATTR_COMPRESSION_MASK) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
| "is compressed."); |
| goto unm_err_out; |
| } |
| if (ctx->attr->data.non_resident.lowest_vcn) { |
| ntfs_error(vi->i_sb, "First extent of " |
| "$INDEX_ALLOCATION attribute has non " |
| "zero lowest_vcn."); |
| goto unm_err_out; |
| } |
| vi->i_size = sle64_to_cpu( |
| ctx->attr->data.non_resident.data_size); |
| ni->initialized_size = sle64_to_cpu( |
| ctx->attr->data.non_resident.initialized_size); |
| ni->allocated_size = sle64_to_cpu( |
| ctx->attr->data.non_resident.allocated_size); |
| /* |
| * We are done with the mft record, so we release it. Otherwise |
| * we would deadlock in ntfs_attr_iget(). |
| */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(ni); |
| m = NULL; |
| ctx = NULL; |
| /* Get the index bitmap attribute inode. */ |
| bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); |
| if (IS_ERR(bvi)) { |
| ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); |
| err = PTR_ERR(bvi); |
| goto unm_err_out; |
| } |
| ni->itype.index.bmp_ino = bvi; |
| bni = NTFS_I(bvi); |
| if (NInoCompressed(bni) || NInoEncrypted(bni) || |
| NInoSparse(bni)) { |
| ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " |
| "and/or encrypted and/or sparse."); |
| goto unm_err_out; |
| } |
| /* Consistency check bitmap size vs. index allocation size. */ |
| bvi_size = i_size_read(bvi); |
| if ((bvi_size << 3) < (vi->i_size >> |
| ni->itype.index.block_size_bits)) { |
| ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " |
| "for index allocation (0x%llx).", |
| bvi_size << 3, vi->i_size); |
| goto unm_err_out; |
| } |
| skip_large_dir_stuff: |
| /* Setup the operations for this inode. */ |
| vi->i_op = &ntfs_dir_inode_ops; |
| vi->i_fop = &ntfs_dir_ops; |
| } else { |
| /* It is a file. */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| |
| /* Setup the data attribute, even if not present. */ |
| ni->type = AT_DATA; |
| ni->name = NULL; |
| ni->name_len = 0; |
| |
| /* Find first extent of the unnamed data attribute. */ |
| err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| vi->i_size = ni->initialized_size = |
| ni->allocated_size = 0; |
| if (err != -ENOENT) { |
| ntfs_error(vi->i_sb, "Failed to lookup $DATA " |
| "attribute."); |
| goto unm_err_out; |
| } |
| /* |
| * FILE_Secure does not have an unnamed $DATA |
| * attribute, so we special case it here. |
| */ |
| if (vi->i_ino == FILE_Secure) |
| goto no_data_attr_special_case; |
| /* |
| * Most if not all the system files in the $Extend |
| * system directory do not have unnamed data |
| * attributes so we need to check if the parent |
| * directory of the file is FILE_Extend and if it is |
| * ignore this error. To do this we need to get the |
| * name of this inode from the mft record as the name |
| * contains the back reference to the parent directory. |
| */ |
| if (ntfs_is_extended_system_file(ctx) > 0) |
| goto no_data_attr_special_case; |
| // FIXME: File is corrupt! Hot-fix with empty data |
| // attribute if recovery option is set. |
| ntfs_error(vi->i_sb, "$DATA attribute is missing."); |
| goto unm_err_out; |
| } |
| /* Setup the state. */ |
| if (ctx->attr->non_resident) { |
| NInoSetNonResident(ni); |
| if (ctx->attr->flags & ATTR_COMPRESSION_MASK) { |
| NInoSetCompressed(ni); |
| if (vol->cluster_size > 4096) { |
| ntfs_error(vi->i_sb, "Found " |
| "compressed data but " |
| "compression is disabled due " |
| "to cluster size (%i) > 4kiB.", |
| vol->cluster_size); |
| goto unm_err_out; |
| } |
| if ((ctx->attr->flags & ATTR_COMPRESSION_MASK) |
| != ATTR_IS_COMPRESSED) { |
| ntfs_error(vi->i_sb, "Found " |
| "unknown compression method or " |
| "corrupt file."); |
| goto unm_err_out; |
| } |
| ni->itype.compressed.block_clusters = 1U << |
| ctx->attr->data.non_resident. |
| compression_unit; |
| if (ctx->attr->data.non_resident. |
| compression_unit != 4) { |
| ntfs_error(vi->i_sb, "Found " |
| "nonstandard compression unit " |
| "(%u instead of 4). Cannot " |
| "handle this.", |
| ctx->attr->data.non_resident. |
| compression_unit); |
| err = -EOPNOTSUPP; |
| goto unm_err_out; |
| } |
| ni->itype.compressed.block_size = 1U << ( |
| ctx->attr->data.non_resident. |
| compression_unit + |
| vol->cluster_size_bits); |
| ni->itype.compressed.block_size_bits = ffs( |
| ni->itype.compressed.block_size) - 1; |
| } |
| if (ctx->attr->flags & ATTR_IS_ENCRYPTED) { |
| if (ctx->attr->flags & ATTR_COMPRESSION_MASK) { |
| ntfs_error(vi->i_sb, "Found encrypted " |
| "and compressed data."); |
| goto unm_err_out; |
| } |
| NInoSetEncrypted(ni); |
| } |
| if (ctx->attr->flags & ATTR_IS_SPARSE) |
| NInoSetSparse(ni); |
| if (ctx->attr->data.non_resident.lowest_vcn) { |
| ntfs_error(vi->i_sb, "First extent of $DATA " |
| "attribute has non zero " |
| "lowest_vcn."); |
| goto unm_err_out; |
| } |
| /* Setup all the sizes. */ |
| vi->i_size = sle64_to_cpu( |
| ctx->attr->data.non_resident.data_size); |
| ni->initialized_size = sle64_to_cpu( |
| ctx->attr->data.non_resident. |
| initialized_size); |
| ni->allocated_size = sle64_to_cpu( |
| ctx->attr->data.non_resident. |
| allocated_size); |
| if (NInoCompressed(ni)) { |
| ni->itype.compressed.size = sle64_to_cpu( |
| ctx->attr->data.non_resident. |
| compressed_size); |
| } |
| } else { /* Resident attribute. */ |
| /* |
| * Make all sizes equal for simplicity in read code |
| * paths. FIXME: Need to keep this in mind when |
| * converting to non-resident attribute in write code |
| * path. (Probably only affects truncate().) |
| */ |
| vi->i_size = ni->initialized_size = ni->allocated_size = |
| le32_to_cpu( |
| ctx->attr->data.resident.value_length); |
| } |
| no_data_attr_special_case: |
| /* We are done with the mft record, so we release it. */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(ni); |
| m = NULL; |
| ctx = NULL; |
| /* Setup the operations for this inode. */ |
| vi->i_op = &ntfs_file_inode_ops; |
| vi->i_fop = &ntfs_file_ops; |
| } |
| if (NInoMstProtected(ni)) |
| vi->i_mapping->a_ops = &ntfs_mst_aops; |
| else |
| vi->i_mapping->a_ops = &ntfs_aops; |
| /* |
| * The number of 512-byte blocks used on disk (for stat). This is in so |
| * far inaccurate as it doesn't account for any named streams or other |
| * special non-resident attributes, but that is how Windows works, too, |
| * so we are at least consistent with Windows, if not entirely |
| * consistent with the Linux Way. Doing it the Linux Way would cause a |
| * significant slowdown as it would involve iterating over all |
| * attributes in the mft record and adding the allocated/compressed |
| * sizes of all non-resident attributes present to give us the Linux |
| * correct size that should go into i_blocks (after division by 512). |
| */ |
| if (S_ISDIR(vi->i_mode) || !NInoCompressed(ni)) |
| vi->i_blocks = ni->allocated_size >> 9; |
| else |
| vi->i_blocks = ni->itype.compressed.size >> 9; |
| |
| ntfs_debug("Done."); |
| return 0; |
| |
| unm_err_out: |
| if (!err) |
| err = -EIO; |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| if (m) |
| unmap_mft_record(ni); |
| err_out: |
| ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " |
| "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); |
| make_bad_inode(vi); |
| if (err != -EOPNOTSUPP && err != -ENOMEM) |
| NVolSetErrors(vol); |
| return err; |
| } |
| |
| /** |
| * ntfs_read_locked_attr_inode - read an attribute inode from its base inode |
| * @base_vi: base inode |
| * @vi: attribute inode to read |
| * |
| * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the |
| * attribute inode described by @vi into memory from the base mft record |
| * described by @base_ni. |
| * |
| * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for |
| * reading and looks up the attribute described by @vi before setting up the |
| * necessary fields in @vi as well as initializing the ntfs inode. |
| * |
| * Q: What locks are held when the function is called? |
| * A: i_state has I_LOCK set, hence the inode is locked, also |
| * i_count is set to 1, so it is not going to go away |
| * |
| * Return 0 on success and -errno on error. In the error case, the inode will |
| * have had make_bad_inode() executed on it. |
| */ |
| static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) |
| { |
| ntfs_volume *vol = NTFS_SB(vi->i_sb); |
| ntfs_inode *ni, *base_ni; |
| MFT_RECORD *m; |
| ntfs_attr_search_ctx *ctx; |
| int err = 0; |
| |
| ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); |
| |
| ntfs_init_big_inode(vi); |
| |
| ni = NTFS_I(vi); |
| base_ni = NTFS_I(base_vi); |
| |
| /* Just mirror the values from the base inode. */ |
| vi->i_blksize = base_vi->i_blksize; |
| vi->i_version = base_vi->i_version; |
| vi->i_uid = base_vi->i_uid; |
| vi->i_gid = base_vi->i_gid; |
| vi->i_nlink = base_vi->i_nlink; |
| vi->i_mtime = base_vi->i_mtime; |
| vi->i_ctime = base_vi->i_ctime; |
| vi->i_atime = base_vi->i_atime; |
| vi->i_generation = ni->seq_no = base_ni->seq_no; |
| |
| /* Set inode type to zero but preserve permissions. */ |
| vi->i_mode = base_vi->i_mode & ~S_IFMT; |
| |
| m = map_mft_record(base_ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| goto err_out; |
| } |
| ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| if (!ctx) { |
| err = -ENOMEM; |
| goto unm_err_out; |
| } |
| |
| /* Find the attribute. */ |
| err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) |
| goto unm_err_out; |
| |
| if (!ctx->attr->non_resident) { |
| /* Ensure the attribute name is placed before the value. */ |
| if (unlikely(ctx->attr->name_length && |
| (le16_to_cpu(ctx->attr->name_offset) >= |
| le16_to_cpu(ctx->attr->data.resident. |
| value_offset)))) { |
| ntfs_error(vol->sb, "Attribute name is placed after " |
| "the attribute value."); |
| goto unm_err_out; |
| } |
| if (NInoMstProtected(ni) || ctx->attr->flags) { |
| ntfs_error(vi->i_sb, "Found mst protected attribute " |
| "or attribute with non-zero flags but " |
| "the attribute is resident. Please " |
| "report you saw this message to " |
| "linux-ntfs-dev@lists.sourceforge.net"); |
| goto unm_err_out; |
| } |
| /* |
| * Resident attribute. Make all sizes equal for simplicity in |
| * read code paths. |
| */ |
| vi->i_size = ni->initialized_size = ni->allocated_size = |
| le32_to_cpu(ctx->attr->data.resident.value_length); |
| } else { |
| NInoSetNonResident(ni); |
| /* |
| * Ensure the attribute name is placed before the mapping pairs |
| * array. |
| */ |
| if (unlikely(ctx->attr->name_length && |
| (le16_to_cpu(ctx->attr->name_offset) >= |
| le16_to_cpu(ctx->attr->data.non_resident. |
| mapping_pairs_offset)))) { |
| ntfs_error(vol->sb, "Attribute name is placed after " |
| "the mapping pairs array."); |
| goto unm_err_out; |
| } |
| if (ctx->attr->flags & ATTR_COMPRESSION_MASK) { |
| if (NInoMstProtected(ni)) { |
| ntfs_error(vi->i_sb, "Found mst protected " |
| "attribute but the attribute " |
| "is compressed. Please report " |
| "you saw this message to " |
| "linux-ntfs-dev@lists." |
| "sourceforge.net"); |
| goto unm_err_out; |
| } |
| NInoSetCompressed(ni); |
| if ((ni->type != AT_DATA) || (ni->type == AT_DATA && |
| ni->name_len)) { |
| ntfs_error(vi->i_sb, "Found compressed " |
| "non-data or named data " |
| "attribute. Please report " |
| "you saw this message to " |
| "linux-ntfs-dev@lists." |
| "sourceforge.net"); |
| goto unm_err_out; |
| } |
| if (vol->cluster_size > 4096) { |
| ntfs_error(vi->i_sb, "Found compressed " |
| "attribute but compression is " |
| "disabled due to cluster size " |
| "(%i) > 4kiB.", |
| vol->cluster_size); |
| goto unm_err_out; |
| } |
| if ((ctx->attr->flags & ATTR_COMPRESSION_MASK) |
| != ATTR_IS_COMPRESSED) { |
| ntfs_error(vi->i_sb, "Found unknown " |
| "compression method."); |
| goto unm_err_out; |
| } |
| ni->itype.compressed.block_clusters = 1U << |
| ctx->attr->data.non_resident. |
| compression_unit; |
| if (ctx->attr->data.non_resident.compression_unit != |
| 4) { |
| ntfs_error(vi->i_sb, "Found nonstandard " |
| "compression unit (%u instead " |
| "of 4). Cannot handle this.", |
| ctx->attr->data.non_resident. |
| compression_unit); |
| err = -EOPNOTSUPP; |
| goto unm_err_out; |
| } |
| ni->itype.compressed.block_size = 1U << ( |
| ctx->attr->data.non_resident. |
| compression_unit + |
| vol->cluster_size_bits); |
| ni->itype.compressed.block_size_bits = ffs( |
| ni->itype.compressed.block_size) - 1; |
| } |
| if (ctx->attr->flags & ATTR_IS_ENCRYPTED) { |
| if (ctx->attr->flags & ATTR_COMPRESSION_MASK) { |
| ntfs_error(vi->i_sb, "Found encrypted " |
| "and compressed data."); |
| goto unm_err_out; |
| } |
| if (NInoMstProtected(ni)) { |
| ntfs_error(vi->i_sb, "Found mst protected " |
| "attribute but the attribute " |
| "is encrypted. Please report " |
| "you saw this message to " |
| "linux-ntfs-dev@lists." |
| "sourceforge.net"); |
| goto unm_err_out; |
| } |
| NInoSetEncrypted(ni); |
| } |
| if (ctx->attr->flags & ATTR_IS_SPARSE) { |
| if (NInoMstProtected(ni)) { |
| ntfs_error(vi->i_sb, "Found mst protected " |
| "attribute but the attribute " |
| "is sparse. Please report " |
| "you saw this message to " |
| "linux-ntfs-dev@lists." |
| "sourceforge.net"); |
| goto unm_err_out; |
| } |
| NInoSetSparse(ni); |
| } |
| if (ctx->attr->data.non_resident.lowest_vcn) { |
| ntfs_error(vi->i_sb, "First extent of attribute has " |
| "non-zero lowest_vcn."); |
| goto unm_err_out; |
| } |
| /* Setup all the sizes. */ |
| vi->i_size = sle64_to_cpu( |
| ctx->attr->data.non_resident.data_size); |
| ni->initialized_size = sle64_to_cpu( |
| ctx->attr->data.non_resident.initialized_size); |
| ni->allocated_size = sle64_to_cpu( |
| ctx->attr->data.non_resident.allocated_size); |
| if (NInoCompressed(ni)) { |
| ni->itype.compressed.size = sle64_to_cpu( |
| ctx->attr->data.non_resident. |
| compressed_size); |
| } |
| } |
| |
| /* Setup the operations for this attribute inode. */ |
| vi->i_op = NULL; |
| vi->i_fop = NULL; |
| if (NInoMstProtected(ni)) |
| vi->i_mapping->a_ops = &ntfs_mst_aops; |
| else |
| vi->i_mapping->a_ops = &ntfs_aops; |
| |
| if (!NInoCompressed(ni)) |
| vi->i_blocks = ni->allocated_size >> 9; |
| else |
| vi->i_blocks = ni->itype.compressed.size >> 9; |
| |
| /* |
| * Make sure the base inode doesn't go away and attach it to the |
| * attribute inode. |
| */ |
| igrab(base_vi); |
| ni->ext.base_ntfs_ino = base_ni; |
| ni->nr_extents = -1; |
| |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| |
| ntfs_debug("Done."); |
| return 0; |
| |
| unm_err_out: |
| if (!err) |
| err = -EIO; |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| err_out: |
| ntfs_error(vol->sb, "Failed with error code %i while reading attribute " |
| "inode (mft_no 0x%lx, type 0x%x, name_len %i). " |
| "Marking corrupt inode and base inode 0x%lx as bad. " |
| "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, |
| base_vi->i_ino); |
| make_bad_inode(vi); |
| make_bad_inode(base_vi); |
| if (err != -ENOMEM) |
| NVolSetErrors(vol); |
| return err; |
| } |
| |
| /** |
| * ntfs_read_locked_index_inode - read an index inode from its base inode |
| * @base_vi: base inode |
| * @vi: index inode to read |
| * |
| * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the |
| * index inode described by @vi into memory from the base mft record described |
| * by @base_ni. |
| * |
| * ntfs_read_locked_index_inode() maps, pins and locks the base inode for |
| * reading and looks up the attributes relating to the index described by @vi |
| * before setting up the necessary fields in @vi as well as initializing the |
| * ntfs inode. |
| * |
| * Note, index inodes are essentially attribute inodes (NInoAttr() is true) |
| * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they |
| * are setup like directory inodes since directories are a special case of |
| * indices ao they need to be treated in much the same way. Most importantly, |
| * for small indices the index allocation attribute might not actually exist. |
| * However, the index root attribute always exists but this does not need to |
| * have an inode associated with it and this is why we define a new inode type |
| * index. Also, like for directories, we need to have an attribute inode for |
| * the bitmap attribute corresponding to the index allocation attribute and we |
| * can store this in the appropriate field of the inode, just like we do for |
| * normal directory inodes. |
| * |
| * Q: What locks are held when the function is called? |
| * A: i_state has I_LOCK set, hence the inode is locked, also |
| * i_count is set to 1, so it is not going to go away |
| * |
| * Return 0 on success and -errno on error. In the error case, the inode will |
| * have had make_bad_inode() executed on it. |
| */ |
| static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) |
| { |
| loff_t bvi_size; |
| ntfs_volume *vol = NTFS_SB(vi->i_sb); |
| ntfs_inode *ni, *base_ni, *bni; |
| struct inode *bvi; |
| MFT_RECORD *m; |
| ntfs_attr_search_ctx *ctx; |
| INDEX_ROOT *ir; |
| u8 *ir_end, *index_end; |
| int err = 0; |
| |
| ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); |
| ntfs_init_big_inode(vi); |
| ni = NTFS_I(vi); |
| base_ni = NTFS_I(base_vi); |
| /* Just mirror the values from the base inode. */ |
| vi->i_blksize = base_vi->i_blksize; |
| vi->i_version = base_vi->i_version; |
| vi->i_uid = base_vi->i_uid; |
| vi->i_gid = base_vi->i_gid; |
| vi->i_nlink = base_vi->i_nlink; |
| vi->i_mtime = base_vi->i_mtime; |
| vi->i_ctime = base_vi->i_ctime; |
| vi->i_atime = base_vi->i_atime; |
| vi->i_generation = ni->seq_no = base_ni->seq_no; |
| /* Set inode type to zero but preserve permissions. */ |
| vi->i_mode = base_vi->i_mode & ~S_IFMT; |
| /* Map the mft record for the base inode. */ |
| m = map_mft_record(base_ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| goto err_out; |
| } |
| ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| if (!ctx) { |
| err = -ENOMEM; |
| goto unm_err_out; |
| } |
| /* Find the index root attribute. */ |
| err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) |
| ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " |
| "missing."); |
| goto unm_err_out; |
| } |
| /* Set up the state. */ |
| if (unlikely(ctx->attr->non_resident)) { |
| ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); |
| goto unm_err_out; |
| } |
| /* Ensure the attribute name is placed before the value. */ |
| if (unlikely(ctx->attr->name_length && |
| (le16_to_cpu(ctx->attr->name_offset) >= |
| le16_to_cpu(ctx->attr->data.resident. |
| value_offset)))) { |
| ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " |
| "after the attribute value."); |
| goto unm_err_out; |
| } |
| /* Compressed/encrypted/sparse index root is not allowed. */ |
| if (ctx->attr->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | |
| ATTR_IS_SPARSE)) { |
| ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " |
| "root attribute."); |
| goto unm_err_out; |
| } |
| ir = (INDEX_ROOT*)((u8*)ctx->attr + |
| le16_to_cpu(ctx->attr->data.resident.value_offset)); |
| ir_end = (u8*)ir + le32_to_cpu(ctx->attr->data.resident.value_length); |
| if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { |
| ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); |
| goto unm_err_out; |
| } |
| index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); |
| if (index_end > ir_end) { |
| ntfs_error(vi->i_sb, "Index is corrupt."); |
| goto unm_err_out; |
| } |
| if (ir->type) { |
| ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", |
| le32_to_cpu(ir->type)); |
| goto unm_err_out; |
| } |
| ni->itype.index.collation_rule = ir->collation_rule; |
| ntfs_debug("Index collation rule is 0x%x.", |
| le32_to_cpu(ir->collation_rule)); |
| ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); |
| if (ni->itype.index.block_size & (ni->itype.index.block_size - 1)) { |
| ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " |
| "two.", ni->itype.index.block_size); |
| goto unm_err_out; |
| } |
| if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { |
| ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE " |
| "(%ld) is not supported. Sorry.", |
| ni->itype.index.block_size, PAGE_CACHE_SIZE); |
| err = -EOPNOTSUPP; |
| goto unm_err_out; |
| } |
| if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { |
| ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " |
| "(%i) is not supported. Sorry.", |
| ni->itype.index.block_size, NTFS_BLOCK_SIZE); |
| err = -EOPNOTSUPP; |
| goto unm_err_out; |
| } |
| ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; |
| /* Determine the size of a vcn in the index. */ |
| if (vol->cluster_size <= ni->itype.index.block_size) { |
| ni->itype.index.vcn_size = vol->cluster_size; |
| ni->itype.index.vcn_size_bits = vol->cluster_size_bits; |
| } else { |
| ni->itype.index.vcn_size = vol->sector_size; |
| ni->itype.index.vcn_size_bits = vol->sector_size_bits; |
| } |
| /* Check for presence of index allocation attribute. */ |
| if (!(ir->index.flags & LARGE_INDEX)) { |
| /* No index allocation. */ |
| vi->i_size = ni->initialized_size = ni->allocated_size = 0; |
| /* We are done with the mft record, so we release it. */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| m = NULL; |
| ctx = NULL; |
| goto skip_large_index_stuff; |
| } /* LARGE_INDEX: Index allocation present. Setup state. */ |
| NInoSetIndexAllocPresent(ni); |
| /* Find index allocation attribute. */ |
| ntfs_attr_reinit_search_ctx(ctx); |
| err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
| "not present but $INDEX_ROOT " |
| "indicated it is."); |
| else |
| ntfs_error(vi->i_sb, "Failed to lookup " |
| "$INDEX_ALLOCATION attribute."); |
| goto unm_err_out; |
| } |
| if (!ctx->attr->non_resident) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
| "resident."); |
| goto unm_err_out; |
| } |
| /* |
| * Ensure the attribute name is placed before the mapping pairs array. |
| */ |
| if (unlikely(ctx->attr->name_length && (le16_to_cpu( |
| ctx->attr->name_offset) >= le16_to_cpu( |
| ctx->attr->data.non_resident.mapping_pairs_offset)))) { |
| ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " |
| "placed after the mapping pairs array."); |
| goto unm_err_out; |
| } |
| if (ctx->attr->flags & ATTR_IS_ENCRYPTED) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
| "encrypted."); |
| goto unm_err_out; |
| } |
| if (ctx->attr->flags & ATTR_IS_SPARSE) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); |
| goto unm_err_out; |
| } |
| if (ctx->attr->flags & ATTR_COMPRESSION_MASK) { |
| ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
| "compressed."); |
| goto unm_err_out; |
| } |
| if (ctx->attr->data.non_resident.lowest_vcn) { |
| ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " |
| "attribute has non zero lowest_vcn."); |
| goto unm_err_out; |
| } |
| vi->i_size = sle64_to_cpu(ctx->attr->data.non_resident.data_size); |
| ni->initialized_size = sle64_to_cpu( |
| ctx->attr->data.non_resident.initialized_size); |
| ni->allocated_size = sle64_to_cpu( |
| ctx->attr->data.non_resident.allocated_size); |
| /* |
| * We are done with the mft record, so we release it. Otherwise |
| * we would deadlock in ntfs_attr_iget(). |
| */ |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(base_ni); |
| m = NULL; |
| ctx = NULL; |
| /* Get the index bitmap attribute inode. */ |
| bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); |
| if (IS_ERR(bvi)) { |
| ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); |
| err = PTR_ERR(bvi); |
| goto unm_err_out; |
| } |
| bni = NTFS_I(bvi); |
| if (NInoCompressed(bni) || NInoEncrypted(bni) || |
| NInoSparse(bni)) { |
| ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " |
| "encrypted and/or sparse."); |
| goto iput_unm_err_out; |
| } |
| /* Consistency check bitmap size vs. index allocation size. */ |
| bvi_size = i_size_read(bvi); |
| if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { |
| ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " |
| "index allocation (0x%llx).", bvi_size << 3, |
| vi->i_size); |
| goto iput_unm_err_out; |
| } |
| ni->itype.index.bmp_ino = bvi; |
| skip_large_index_stuff: |
| /* Setup the operations for this index inode. */ |
| vi->i_op = NULL; |
| vi->i_fop = NULL; |
| vi->i_mapping->a_ops = &ntfs_mst_aops; |
| vi->i_blocks = ni->allocated_size >> 9; |
| |
| /* |
| * Make sure the base inode doesn't go away and attach it to the |
| * index inode. |
| */ |
| igrab(base_vi); |
| ni->ext.base_ntfs_ino = base_ni; |
| ni->nr_extents = -1; |
| |
| ntfs_debug("Done."); |
| return 0; |
| |
| iput_unm_err_out: |
| iput(bvi); |
| unm_err_out: |
| if (!err) |
| err = -EIO; |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| if (m) |
| unmap_mft_record(base_ni); |
| err_out: |
| ntfs_error(vi->i_sb, "Failed with error code %i while reading index " |
| "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, |
| ni->name_len); |
| make_bad_inode(vi); |
| if (err != -EOPNOTSUPP && err != -ENOMEM) |
| NVolSetErrors(vol); |
| return err; |
| } |
| |
| /** |
| * ntfs_read_inode_mount - special read_inode for mount time use only |
| * @vi: inode to read |
| * |
| * Read inode FILE_MFT at mount time, only called with super_block lock |
| * held from within the read_super() code path. |
| * |
| * This function exists because when it is called the page cache for $MFT/$DATA |
| * is not initialized and hence we cannot get at the contents of mft records |
| * by calling map_mft_record*(). |
| * |
| * Further it needs to cope with the circular references problem, i.e. cannot |
| * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because |
| * we do not know where the other extent mft records are yet and again, because |
| * we cannot call map_mft_record*() yet. Obviously this applies only when an |
| * attribute list is actually present in $MFT inode. |
| * |
| * We solve these problems by starting with the $DATA attribute before anything |
| * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each |
| * extent is found, we ntfs_mapping_pairs_decompress() including the implied |
| * ntfs_runlists_merge(). Each step of the iteration necessarily provides |
| * sufficient information for the next step to complete. |
| * |
| * This should work but there are two possible pit falls (see inline comments |
| * below), but only time will tell if they are real pits or just smoke... |
| */ |
| int ntfs_read_inode_mount(struct inode *vi) |
| { |
| VCN next_vcn, last_vcn, highest_vcn; |
| s64 block; |
| struct super_block *sb = vi->i_sb; |
| ntfs_volume *vol = NTFS_SB(sb); |
| struct buffer_head *bh; |
| ntfs_inode *ni; |
| MFT_RECORD *m = NULL; |
| ATTR_RECORD *attr; |
| ntfs_attr_search_ctx *ctx; |
| unsigned int i, nr_blocks; |
| int err; |
| |
| ntfs_debug("Entering."); |
| |
| /* Initialize the ntfs specific part of @vi. */ |
| ntfs_init_big_inode(vi); |
| |
| ni = NTFS_I(vi); |
| |
| /* Setup the data attribute. It is special as it is mst protected. */ |
| NInoSetNonResident(ni); |
| NInoSetMstProtected(ni); |
| NInoSetSparseDisabled(ni); |
| ni->type = AT_DATA; |
| ni->name = NULL; |
| ni->name_len = 0; |
| |
| /* |
| * This sets up our little cheat allowing us to reuse the async read io |
| * completion handler for directories. |
| */ |
| ni->itype.index.block_size = vol->mft_record_size; |
| ni->itype.index.block_size_bits = vol->mft_record_size_bits; |
| |
| /* Very important! Needed to be able to call map_mft_record*(). */ |
| vol->mft_ino = vi; |
| |
| /* Allocate enough memory to read the first mft record. */ |
| if (vol->mft_record_size > 64 * 1024) { |
| ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", |
| vol->mft_record_size); |
| goto err_out; |
| } |
| i = vol->mft_record_size; |
| if (i < sb->s_blocksize) |
| i = sb->s_blocksize; |
| m = (MFT_RECORD*)ntfs_malloc_nofs(i); |
| if (!m) { |
| ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); |
| goto err_out; |
| } |
| |
| /* Determine the first block of the $MFT/$DATA attribute. */ |
| block = vol->mft_lcn << vol->cluster_size_bits >> |
| sb->s_blocksize_bits; |
| nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; |
| if (!nr_blocks) |
| nr_blocks = 1; |
| |
| /* Load $MFT/$DATA's first mft record. */ |
| for (i = 0; i < nr_blocks; i++) { |
| bh = sb_bread(sb, block++); |
| if (!bh) { |
| ntfs_error(sb, "Device read failed."); |
| goto err_out; |
| } |
| memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, |
| sb->s_blocksize); |
| brelse(bh); |
| } |
| |
| /* Apply the mst fixups. */ |
| if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { |
| /* FIXME: Try to use the $MFTMirr now. */ |
| ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); |
| goto err_out; |
| } |
| |
| /* Need this to sanity check attribute list references to $MFT. */ |
| vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); |
| |
| /* Provides readpage() and sync_page() for map_mft_record(). */ |
| vi->i_mapping->a_ops = &ntfs_mst_aops; |
| |
| ctx = ntfs_attr_get_search_ctx(ni, m); |
| if (!ctx) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| |
| /* Find the attribute list attribute if present. */ |
| err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); |
| if (err) { |
| if (unlikely(err != -ENOENT)) { |
| ntfs_error(sb, "Failed to lookup attribute list " |
| "attribute. You should run chkdsk."); |
| goto put_err_out; |
| } |
| } else /* if (!err) */ { |
| ATTR_LIST_ENTRY *al_entry, *next_al_entry; |
| u8 *al_end; |
| |
| ntfs_debug("Attribute list attribute found in $MFT."); |
| NInoSetAttrList(ni); |
| if (ctx->attr->flags & ATTR_IS_ENCRYPTED || |
| ctx->attr->flags & ATTR_COMPRESSION_MASK || |
| ctx->attr->flags & ATTR_IS_SPARSE) { |
| ntfs_error(sb, "Attribute list attribute is " |
| "compressed/encrypted/sparse. Not " |
| "allowed. $MFT is corrupt. You should " |
| "run chkdsk."); |
| goto put_err_out; |
| } |
| /* Now allocate memory for the attribute list. */ |
| ni->attr_list_size = (u32)ntfs_attr_size(ctx->attr); |
| ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); |
| if (!ni->attr_list) { |
| ntfs_error(sb, "Not enough memory to allocate buffer " |
| "for attribute list."); |
| goto put_err_out; |
| } |
| if (ctx->attr->non_resident) { |
| NInoSetAttrListNonResident(ni); |
| if (ctx->attr->data.non_resident.lowest_vcn) { |
| ntfs_error(sb, "Attribute list has non zero " |
| "lowest_vcn. $MFT is corrupt. " |
| "You should run chkdsk."); |
| goto put_err_out; |
| } |
| /* Setup the runlist. */ |
| ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, |
| ctx->attr, NULL); |
| if (IS_ERR(ni->attr_list_rl.rl)) { |
| err = PTR_ERR(ni->attr_list_rl.rl); |
| ni->attr_list_rl.rl = NULL; |
| ntfs_error(sb, "Mapping pairs decompression " |
| "failed with error code %i.", |
| -err); |
| goto put_err_out; |
| } |
| /* Now load the attribute list. */ |
| if ((err = load_attribute_list(vol, &ni->attr_list_rl, |
| ni->attr_list, ni->attr_list_size, |
| sle64_to_cpu(ctx->attr->data. |
| non_resident.initialized_size)))) { |
| ntfs_error(sb, "Failed to load attribute list " |
| "attribute with error code %i.", |
| -err); |
| goto put_err_out; |
| } |
| } else /* if (!ctx.attr->non_resident) */ { |
| if ((u8*)ctx->attr + le16_to_cpu( |
| ctx->attr->data.resident.value_offset) + |
| le32_to_cpu( |
| ctx->attr->data.resident.value_length) > |
| (u8*)ctx->mrec + vol->mft_record_size) { |
| ntfs_error(sb, "Corrupt attribute list " |
| "attribute."); |
| goto put_err_out; |
| } |
| /* Now copy the attribute list. */ |
| memcpy(ni->attr_list, (u8*)ctx->attr + le16_to_cpu( |
| ctx->attr->data.resident.value_offset), |
| le32_to_cpu( |
| ctx->attr->data.resident.value_length)); |
| } |
| /* The attribute list is now setup in memory. */ |
| /* |
| * FIXME: I don't know if this case is actually possible. |
| * According to logic it is not possible but I have seen too |
| * many weird things in MS software to rely on logic... Thus we |
| * perform a manual search and make sure the first $MFT/$DATA |
| * extent is in the base inode. If it is not we abort with an |
| * error and if we ever see a report of this error we will need |
| * to do some magic in order to have the necessary mft record |
| * loaded and in the right place in the page cache. But |
| * hopefully logic will prevail and this never happens... |
| */ |
| al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; |
| al_end = (u8*)al_entry + ni->attr_list_size; |
| for (;; al_entry = next_al_entry) { |
| /* Out of bounds check. */ |
| if ((u8*)al_entry < ni->attr_list || |
| (u8*)al_entry > al_end) |
| goto em_put_err_out; |
| /* Catch the end of the attribute list. */ |
| if ((u8*)al_entry == al_end) |
| goto em_put_err_out; |
| if (!al_entry->length) |
| goto em_put_err_out; |
| if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + |
| le16_to_cpu(al_entry->length) > al_end) |
| goto em_put_err_out; |
| next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + |
| le16_to_cpu(al_entry->length)); |
| if (le32_to_cpu(al_entry->type) > |
| const_le32_to_cpu(AT_DATA)) |
| goto em_put_err_out; |
| if (AT_DATA != al_entry->type) |
| continue; |
| /* We want an unnamed attribute. */ |
| if (al_entry->name_length) |
| goto em_put_err_out; |
| /* Want the first entry, i.e. lowest_vcn == 0. */ |
| if (al_entry->lowest_vcn) |
| goto em_put_err_out; |
| /* First entry has to be in the base mft record. */ |
| if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { |
| /* MFT references do not match, logic fails. */ |
| ntfs_error(sb, "BUG: The first $DATA extent " |
| "of $MFT is not in the base " |
| "mft record. Please report " |
| "you saw this message to " |
| "linux-ntfs-dev@lists." |
| "sourceforge.net"); |
| goto put_err_out; |
| } else { |
| /* Sequence numbers must match. */ |
| if (MSEQNO_LE(al_entry->mft_reference) != |
| ni->seq_no) |
| goto em_put_err_out; |
| /* Got it. All is ok. We can stop now. */ |
| break; |
| } |
| } |
| } |
| |
| ntfs_attr_reinit_search_ctx(ctx); |
| |
| /* Now load all attribute extents. */ |
| attr = NULL; |
| next_vcn = last_vcn = highest_vcn = 0; |
| while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, |
| ctx))) { |
| runlist_element *nrl; |
| |
| /* Cache the current attribute. */ |
| attr = ctx->attr; |
| /* $MFT must be non-resident. */ |
| if (!attr->non_resident) { |
| ntfs_error(sb, "$MFT must be non-resident but a " |
| "resident extent was found. $MFT is " |
| "corrupt. Run chkdsk."); |
| goto put_err_out; |
| } |
| /* $MFT must be uncompressed and unencrypted. */ |
| if (attr->flags & ATTR_COMPRESSION_MASK || |
| attr->flags & ATTR_IS_ENCRYPTED || |
| attr->flags & ATTR_IS_SPARSE) { |
| ntfs_error(sb, "$MFT must be uncompressed, " |
| "non-sparse, and unencrypted but a " |
| "compressed/sparse/encrypted extent " |
| "was found. $MFT is corrupt. Run " |
| "chkdsk."); |
| goto put_err_out; |
| } |
| /* |
| * Decompress the mapping pairs array of this extent and merge |
| * the result into the existing runlist. No need for locking |
| * as we have exclusive access to the inode at this time and we |
| * are a mount in progress task, too. |
| */ |
| nrl = ntfs_mapping_pairs_decompress(vol, attr, ni->runlist.rl); |
| if (IS_ERR(nrl)) { |
| ntfs_error(sb, "ntfs_mapping_pairs_decompress() " |
| "failed with error code %ld. $MFT is " |
| "corrupt.", PTR_ERR(nrl)); |
| goto put_err_out; |
| } |
| ni->runlist.rl = nrl; |
| |
| /* Are we in the first extent? */ |
| if (!next_vcn) { |
| if (attr->data.non_resident.lowest_vcn) { |
| ntfs_error(sb, "First extent of $DATA " |
| "attribute has non zero " |
| "lowest_vcn. $MFT is corrupt. " |
| "You should run chkdsk."); |
| goto put_err_out; |
| } |
| /* Get the last vcn in the $DATA attribute. */ |
| last_vcn = sle64_to_cpu( |
| attr->data.non_resident.allocated_size) |
| >> vol->cluster_size_bits; |
| /* Fill in the inode size. */ |
| vi->i_size = sle64_to_cpu( |
| attr->data.non_resident.data_size); |
| ni->initialized_size = sle64_to_cpu(attr->data. |
| non_resident.initialized_size); |
| ni->allocated_size = sle64_to_cpu( |
| attr->data.non_resident.allocated_size); |
| /* |
| * Verify the number of mft records does not exceed |
| * 2^32 - 1. |
| */ |
| if ((vi->i_size >> vol->mft_record_size_bits) >= |
| (1ULL << 32)) { |
| ntfs_error(sb, "$MFT is too big! Aborting."); |
| goto put_err_out; |
| } |
| /* |
| * We have got the first extent of the runlist for |
| * $MFT which means it is now relatively safe to call |
| * the normal ntfs_read_inode() function. |
| * Complete reading the inode, this will actually |
| * re-read the mft record for $MFT, this time entering |
| * it into the page cache with which we complete the |
| * kick start of the volume. It should be safe to do |
| * this now as the first extent of $MFT/$DATA is |
| * already known and we would hope that we don't need |
| * further extents in order to find the other |
| * attributes belonging to $MFT. Only time will tell if |
| * this is really the case. If not we will have to play |
| * magic at this point, possibly duplicating a lot of |
| * ntfs_read_inode() at this point. We will need to |
| * ensure we do enough of its work to be able to call |
| * ntfs_read_inode() on extents of $MFT/$DATA. But lets |
| * hope this never happens... |
| */ |
| ntfs_read_locked_inode(vi); |
| if (is_bad_inode(vi)) { |
| ntfs_error(sb, "ntfs_read_inode() of $MFT " |
| "failed. BUG or corrupt $MFT. " |
| "Run chkdsk and if no errors " |
| "are found, please report you " |
| "saw this message to " |
| "linux-ntfs-dev@lists." |
| "sourceforge.net"); |
| ntfs_attr_put_search_ctx(ctx); |
| /* Revert to the safe super operations. */ |
| ntfs_free(m); |
| return -1; |
| } |
| /* |
| * Re-initialize some specifics about $MFT's inode as |
| * ntfs_read_inode() will have set up the default ones. |
| */ |
| /* Set uid and gid to root. */ |
| vi->i_uid = vi->i_gid = 0; |
| /* Regular file. No access for anyone. */ |
| vi->i_mode = S_IFREG; |
| /* No VFS initiated operations allowed for $MFT. */ |
| vi->i_op = &ntfs_empty_inode_ops; |
| vi->i_fop = &ntfs_empty_file_ops; |
| } |
| |
| /* Get the lowest vcn for the next extent. */ |
| highest_vcn = sle64_to_cpu(attr->data.non_resident.highest_vcn); |
| next_vcn = highest_vcn + 1; |
| |
| /* Only one extent or error, which we catch below. */ |
| if (next_vcn <= 0) |
| break; |
| |
| /* Avoid endless loops due to corruption. */ |
| if (next_vcn < sle64_to_cpu( |
| attr->data.non_resident.lowest_vcn)) { |
| ntfs_error(sb, "$MFT has corrupt attribute list " |
| "attribute. Run chkdsk."); |
| goto put_err_out; |
| } |
| } |
| if (err != -ENOENT) { |
| ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " |
| "$MFT is corrupt. Run chkdsk."); |
| goto put_err_out; |
| } |
| if (!attr) { |
| ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " |
| "corrupt. Run chkdsk."); |
| goto put_err_out; |
| } |
| if (highest_vcn && highest_vcn != last_vcn - 1) { |
| ntfs_error(sb, "Failed to load the complete runlist for " |
| "$MFT/$DATA. Driver bug or corrupt $MFT. " |
| "Run chkdsk."); |
| ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", |
| (unsigned long long)highest_vcn, |
| (unsigned long long)last_vcn - 1); |
| goto put_err_out; |
| } |
| ntfs_attr_put_search_ctx(ctx); |
| ntfs_debug("Done."); |
| ntfs_free(m); |
| return 0; |
| |
| em_put_err_out: |
| ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " |
| "attribute list. $MFT is corrupt. Run chkdsk."); |
| put_err_out: |
| ntfs_attr_put_search_ctx(ctx); |
| err_out: |
| ntfs_error(sb, "Failed. Marking inode as bad."); |
| make_bad_inode(vi); |
| ntfs_free(m); |
| return -1; |
| } |
| |
| /** |
| * ntfs_put_inode - handler for when the inode reference count is decremented |
| * @vi: vfs inode |
| * |
| * The VFS calls ntfs_put_inode() every time the inode reference count (i_count) |
| * is about to be decremented (but before the decrement itself. |
| * |
| * If the inode @vi is a directory with two references, one of which is being |
| * dropped, we need to put the attribute inode for the directory index bitmap, |
| * if it is present, otherwise the directory inode would remain pinned for |
| * ever. |
| */ |
| void ntfs_put_inode(struct inode *vi) |
| { |
| if (S_ISDIR(vi->i_mode) && atomic_read(&vi->i_count) == 2) { |
| ntfs_inode *ni = NTFS_I(vi); |
| if (NInoIndexAllocPresent(ni)) { |
| struct inode *bvi = NULL; |
| down(&vi->i_sem); |
| if (atomic_read(&vi->i_count) == 2) { |
| bvi = ni->itype.index.bmp_ino; |
| if (bvi) |
| ni->itype.index.bmp_ino = NULL; |
| } |
| up(&vi->i_sem); |
| if (bvi) |
| iput(bvi); |
| } |
| } |
| } |
| |
| static void __ntfs_clear_inode(ntfs_inode *ni) |
| { |
| /* Free all alocated memory. */ |
| down_write(&ni->runlist.lock); |
| if (ni->runlist.rl) { |
| ntfs_free(ni->runlist.rl); |
| ni->runlist.rl = NULL; |
| } |
| up_write(&ni->runlist.lock); |
| |
| if (ni->attr_list) { |
| ntfs_free(ni->attr_list); |
| ni->attr_list = NULL; |
| } |
| |
| down_write(&ni->attr_list_rl.lock); |
| if (ni->attr_list_rl.rl) { |
| ntfs_free(ni->attr_list_rl.rl); |
| ni->attr_list_rl.rl = NULL; |
| } |
| up_write(&ni->attr_list_rl.lock); |
| |
| if (ni->name_len && ni->name != I30) { |
| /* Catch bugs... */ |
| BUG_ON(!ni->name); |
| kfree(ni->name); |
| } |
| } |
| |
| void ntfs_clear_extent_inode(ntfs_inode *ni) |
| { |
| ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); |
| |
| BUG_ON(NInoAttr(ni)); |
| BUG_ON(ni->nr_extents != -1); |
| |
| #ifdef NTFS_RW |
| if (NInoDirty(ni)) { |
| if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) |
| ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " |
| "Losing data! This is a BUG!!!"); |
| // FIXME: Do something!!! |
| } |
| #endif /* NTFS_RW */ |
| |
| __ntfs_clear_inode(ni); |
| |
| /* Bye, bye... */ |
| ntfs_destroy_extent_inode(ni); |
| } |
| |
| /** |
| * ntfs_clear_big_inode - clean up the ntfs specific part of an inode |
| * @vi: vfs inode pending annihilation |
| * |
| * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() |
| * is called, which deallocates all memory belonging to the NTFS specific part |
| * of the inode and returns. |
| * |
| * If the MFT record is dirty, we commit it before doing anything else. |
| */ |
| void ntfs_clear_big_inode(struct inode *vi) |
| { |
| ntfs_inode *ni = NTFS_I(vi); |
| |
| /* |
| * If the inode @vi is an index inode we need to put the attribute |
| * inode for the index bitmap, if it is present, otherwise the index |
| * inode would disappear and the attribute inode for the index bitmap |
| * would no longer be referenced from anywhere and thus it would remain |
| * pinned for ever. |
| */ |
| if (NInoAttr(ni) && (ni->type == AT_INDEX_ALLOCATION) && |
| NInoIndexAllocPresent(ni) && ni->itype.index.bmp_ino) { |
| iput(ni->itype.index.bmp_ino); |
| ni->itype.index.bmp_ino = NULL; |
| } |
| #ifdef NTFS_RW |
| if (NInoDirty(ni)) { |
| BOOL was_bad = (is_bad_inode(vi)); |
| |
| /* Committing the inode also commits all extent inodes. */ |
| ntfs_commit_inode(vi); |
| |
| if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { |
| ntfs_error(vi->i_sb, "Failed to commit dirty inode " |
| "0x%lx. Losing data!", vi->i_ino); |
| // FIXME: Do something!!! |
| } |
| } |
| #endif /* NTFS_RW */ |
| |
| /* No need to lock at this stage as no one else has a reference. */ |
| if (ni->nr_extents > 0) { |
| int i; |
| |
| for (i = 0; i < ni->nr_extents; i++) |
| ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); |
| kfree(ni->ext.extent_ntfs_inos); |
| } |
| |
| __ntfs_clear_inode(ni); |
| |
| if (NInoAttr(ni)) { |
| /* Release the base inode if we are holding it. */ |
| if (ni->nr_extents == -1) { |
| iput(VFS_I(ni->ext.base_ntfs_ino)); |
| ni->nr_extents = 0; |
| ni->ext.base_ntfs_ino = NULL; |
| } |
| } |
| return; |
| } |
| |
| /** |
| * ntfs_show_options - show mount options in /proc/mounts |
| * @sf: seq_file in which to write our mount options |
| * @mnt: vfs mount whose mount options to display |
| * |
| * Called by the VFS once for each mounted ntfs volume when someone reads |
| * /proc/mounts in order to display the NTFS specific mount options of each |
| * mount. The mount options of the vfs mount @mnt are written to the seq file |
| * @sf and success is returned. |
| */ |
| int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt) |
| { |
| ntfs_volume *vol = NTFS_SB(mnt->mnt_sb); |
| int i; |
| |
| seq_printf(sf, ",uid=%i", vol->uid); |
| seq_printf(sf, ",gid=%i", vol->gid); |
| if (vol->fmask == vol->dmask) |
| seq_printf(sf, ",umask=0%o", vol->fmask); |
| else { |
| seq_printf(sf, ",fmask=0%o", vol->fmask); |
| seq_printf(sf, ",dmask=0%o", vol->dmask); |
| } |
| seq_printf(sf, ",nls=%s", vol->nls_map->charset); |
| if (NVolCaseSensitive(vol)) |
| seq_printf(sf, ",case_sensitive"); |
| if (NVolShowSystemFiles(vol)) |
| seq_printf(sf, ",show_sys_files"); |
| if (!NVolSparseEnabled(vol)) |
| seq_printf(sf, ",disable_sparse"); |
| for (i = 0; on_errors_arr[i].val; i++) { |
| if (on_errors_arr[i].val & vol->on_errors) |
| seq_printf(sf, ",errors=%s", on_errors_arr[i].str); |
| } |
| seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); |
| return 0; |
| } |
| |
| #ifdef NTFS_RW |
| |
| /** |
| * ntfs_truncate - called when the i_size of an ntfs inode is changed |
| * @vi: inode for which the i_size was changed |
| * |
| * We do not support i_size changes yet. |
| * |
| * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and |
| * that the change is allowed. |
| * |
| * This implies for us that @vi is a file inode rather than a directory, index, |
| * or attribute inode as well as that @vi is a base inode. |
| * |
| * Returns 0 on success or -errno on error. |
| * |
| * Called with ->i_sem held. In all but one case ->i_alloc_sem is held for |
| * writing. The only case where ->i_alloc_sem is not held is |
| * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called |
| * with the current i_size as the offset which means that it is a noop as far |
| * as ntfs_truncate() is concerned. |
| */ |
| int ntfs_truncate(struct inode *vi) |
| { |
| ntfs_inode *ni = NTFS_I(vi); |
| ntfs_volume *vol = ni->vol; |
| ntfs_attr_search_ctx *ctx; |
| MFT_RECORD *m; |
| const char *te = " Leaving file length out of sync with i_size."; |
| int err; |
| |
| ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); |
| BUG_ON(NInoAttr(ni)); |
| BUG_ON(ni->nr_extents < 0); |
| m = map_mft_record(ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " |
| "(error code %d).%s", vi->i_ino, err, te); |
| ctx = NULL; |
| m = NULL; |
| goto err_out; |
| } |
| ctx = ntfs_attr_get_search_ctx(ni, m); |
| if (unlikely(!ctx)) { |
| ntfs_error(vi->i_sb, "Failed to allocate a search context for " |
| "inode 0x%lx (not enough memory).%s", |
| vi->i_ino, te); |
| err = -ENOMEM; |
| goto err_out; |
| } |
| err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| if (err == -ENOENT) |
| ntfs_error(vi->i_sb, "Open attribute is missing from " |
| "mft record. Inode 0x%lx is corrupt. " |
| "Run chkdsk.", vi->i_ino); |
| else |
| ntfs_error(vi->i_sb, "Failed to lookup attribute in " |
| "inode 0x%lx (error code %d).", |
| vi->i_ino, err); |
| goto err_out; |
| } |
| /* If the size has not changed there is nothing to do. */ |
| if (ntfs_attr_size(ctx->attr) == i_size_read(vi)) |
| goto done; |
| // TODO: Implement the truncate... |
| ntfs_error(vi->i_sb, "Inode size has changed but this is not " |
| "implemented yet. Resetting inode size to old value. " |
| " This is most likely a bug in the ntfs driver!"); |
| i_size_write(vi, ntfs_attr_size(ctx->attr)); |
| done: |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(ni); |
| NInoClearTruncateFailed(ni); |
| ntfs_debug("Done."); |
| return 0; |
| err_out: |
| if (err != -ENOMEM) { |
| NVolSetErrors(vol); |
| make_bad_inode(vi); |
| } |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| if (m) |
| unmap_mft_record(ni); |
| NInoSetTruncateFailed(ni); |
| return err; |
| } |
| |
| /** |
| * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value |
| * @vi: inode for which the i_size was changed |
| * |
| * Wrapper for ntfs_truncate() that has no return value. |
| * |
| * See ntfs_truncate() description above for details. |
| */ |
| void ntfs_truncate_vfs(struct inode *vi) { |
| ntfs_truncate(vi); |
| } |
| |
| /** |
| * ntfs_setattr - called from notify_change() when an attribute is being changed |
| * @dentry: dentry whose attributes to change |
| * @attr: structure describing the attributes and the changes |
| * |
| * We have to trap VFS attempts to truncate the file described by @dentry as |
| * soon as possible, because we do not implement changes in i_size yet. So we |
| * abort all i_size changes here. |
| * |
| * We also abort all changes of user, group, and mode as we do not implement |
| * the NTFS ACLs yet. |
| * |
| * Called with ->i_sem held. For the ATTR_SIZE (i.e. ->truncate) case, also |
| * called with ->i_alloc_sem held for writing. |
| * |
| * Basically this is a copy of generic notify_change() and inode_setattr() |
| * functionality, except we intercept and abort changes in i_size. |
| */ |
| int ntfs_setattr(struct dentry *dentry, struct iattr *attr) |
| { |
| struct inode *vi = dentry->d_inode; |
| int err; |
| unsigned int ia_valid = attr->ia_valid; |
| |
| err = inode_change_ok(vi, attr); |
| if (err) |
| return err; |
| |
| /* We do not support NTFS ACLs yet. */ |
| if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { |
| ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " |
| "supported yet, ignoring."); |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| if (ia_valid & ATTR_SIZE) { |
| if (attr->ia_size != i_size_read(vi)) { |
| ntfs_warning(vi->i_sb, "Changes in inode size are not " |
| "supported yet, ignoring."); |
| err = -EOPNOTSUPP; |
| // TODO: Implement... |
| // err = vmtruncate(vi, attr->ia_size); |
| if (err || ia_valid == ATTR_SIZE) |
| goto out; |
| } else { |
| /* |
| * We skipped the truncate but must still update |
| * timestamps. |
| */ |
| ia_valid |= ATTR_MTIME|ATTR_CTIME; |
| } |
| } |
| |
| if (ia_valid & ATTR_ATIME) |
| vi->i_atime = attr->ia_atime; |
| if (ia_valid & ATTR_MTIME) |
| vi->i_mtime = attr->ia_mtime; |
| if (ia_valid & ATTR_CTIME) |
| vi->i_ctime = attr->ia_ctime; |
| mark_inode_dirty(vi); |
| out: |
| return err; |
| } |
| |
| /** |
| * ntfs_write_inode - write out a dirty inode |
| * @vi: inode to write out |
| * @sync: if true, write out synchronously |
| * |
| * Write out a dirty inode to disk including any extent inodes if present. |
| * |
| * If @sync is true, commit the inode to disk and wait for io completion. This |
| * is done using write_mft_record(). |
| * |
| * If @sync is false, just schedule the write to happen but do not wait for i/o |
| * completion. In 2.6 kernels, scheduling usually happens just by virtue of |
| * marking the page (and in this case mft record) dirty but we do not implement |
| * this yet as write_mft_record() largely ignores the @sync parameter and |
| * always performs synchronous writes. |
| * |
| * Return 0 on success and -errno on error. |
| */ |
| int ntfs_write_inode(struct inode *vi, int sync) |
| { |
| sle64 nt; |
| ntfs_inode *ni = NTFS_I(vi); |
| ntfs_attr_search_ctx *ctx; |
| MFT_RECORD *m; |
| STANDARD_INFORMATION *si; |
| int err = 0; |
| BOOL modified = FALSE; |
| |
| ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", |
| vi->i_ino); |
| /* |
| * Dirty attribute inodes are written via their real inodes so just |
| * clean them here. Access time updates are taken care off when the |
| * real inode is written. |
| */ |
| if (NInoAttr(ni)) { |
| NInoClearDirty(ni); |
| ntfs_debug("Done."); |
| return 0; |
| } |
| /* Map, pin, and lock the mft record belonging to the inode. */ |
| m = map_mft_record(ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| goto err_out; |
| } |
| /* Update the access times in the standard information attribute. */ |
| ctx = ntfs_attr_get_search_ctx(ni, m); |
| if (unlikely(!ctx)) { |
| err = -ENOMEM; |
| goto unm_err_out; |
| } |
| err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| ntfs_attr_put_search_ctx(ctx); |
| goto unm_err_out; |
| } |
| si = (STANDARD_INFORMATION*)((u8*)ctx->attr + |
| le16_to_cpu(ctx->attr->data.resident.value_offset)); |
| /* Update the access times if they have changed. */ |
| nt = utc2ntfs(vi->i_mtime); |
| if (si->last_data_change_time != nt) { |
| ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " |
| "new = 0x%llx", vi->i_ino, |
| sle64_to_cpu(si->last_data_change_time), |
| sle64_to_cpu(nt)); |
| si->last_data_change_time = nt; |
| modified = TRUE; |
| } |
| nt = utc2ntfs(vi->i_ctime); |
| if (si->last_mft_change_time != nt) { |
| ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " |
| "new = 0x%llx", vi->i_ino, |
| sle64_to_cpu(si->last_mft_change_time), |
| sle64_to_cpu(nt)); |
| si->last_mft_change_time = nt; |
| modified = TRUE; |
| } |
| nt = utc2ntfs(vi->i_atime); |
| if (si->last_access_time != nt) { |
| ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " |
| "new = 0x%llx", vi->i_ino, |
| sle64_to_cpu(si->last_access_time), |
| sle64_to_cpu(nt)); |
| si->last_access_time = nt; |
| modified = TRUE; |
| } |
| /* |
| * If we just modified the standard information attribute we need to |
| * mark the mft record it is in dirty. We do this manually so that |
| * mark_inode_dirty() is not called which would redirty the inode and |
| * hence result in an infinite loop of trying to write the inode. |
| * There is no need to mark the base inode nor the base mft record |
| * dirty, since we are going to write this mft record below in any case |
| * and the base mft record may actually not have been modified so it |
| * might not need to be written out. |
| * NOTE: It is not a problem when the inode for $MFT itself is being |
| * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES |
| * on the $MFT inode and hence ntfs_write_inode() will not be |
| * re-invoked because of it which in turn is ok since the dirtied mft |
| * record will be cleaned and written out to disk below, i.e. before |
| * this function returns. |
| */ |
| if (modified && !NInoTestSetDirty(ctx->ntfs_ino)) |
| mark_ntfs_record_dirty(ctx->ntfs_ino->page, |
| ctx->ntfs_ino->page_ofs); |
| ntfs_attr_put_search_ctx(ctx); |
| /* Now the access times are updated, write the base mft record. */ |
| if (NInoDirty(ni)) |
| err = write_mft_record(ni, m, sync); |
| /* Write all attached extent mft records. */ |
| down(&ni->extent_lock); |
| if (ni->nr_extents > 0) { |
| ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; |
| int i; |
| |
| ntfs_debug("Writing %i extent inodes.", ni->nr_extents); |
| for (i = 0; i < ni->nr_extents; i++) { |
| ntfs_inode *tni = extent_nis[i]; |
| |
| if (NInoDirty(tni)) { |
| MFT_RECORD *tm = map_mft_record(tni); |
| int ret; |
| |
| if (IS_ERR(tm)) { |
| if (!err || err == -ENOMEM) |
| err = PTR_ERR(tm); |
| continue; |
| } |
| ret = write_mft_record(tni, tm, sync); |
| unmap_mft_record(tni); |
| if (unlikely(ret)) { |
| if (!err || err == -ENOMEM) |
| err = ret; |
| } |
| } |
| } |
| } |
| up(&ni->extent_lock); |
| unmap_mft_record(ni); |
| if (unlikely(err)) |
| goto err_out; |
| ntfs_debug("Done."); |
| return 0; |
| unm_err_out: |
| unmap_mft_record(ni); |
| err_out: |
| if (err == -ENOMEM) { |
| ntfs_warning(vi->i_sb, "Not enough memory to write inode. " |
| "Marking the inode dirty again, so the VFS " |
| "retries later."); |
| mark_inode_dirty(vi); |
| } else { |
| ntfs_error(vi->i_sb, "Failed (error code %i): Marking inode " |
| "as bad. You should run chkdsk.", -err); |
| make_bad_inode(vi); |
| NVolSetErrors(ni->vol); |
| } |
| return err; |
| } |
| |
| #endif /* NTFS_RW */ |