blob: a343066f7b436d1526b0c9a58fe3beb67131c6ea [file] [log] [blame]
/**
* drivers/net/ethernet/micrel/ks8851_mll.c
* Copyright (c) 2009 Micrel Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* Supports:
* KS8851 16bit MLL chip from Micrel Inc.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/cache.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/ks8851_mll.h>
#define DRV_NAME "ks8851_mll"
static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
#define MAX_RECV_FRAMES 255
#define MAX_BUF_SIZE 2048
#define TX_BUF_SIZE 2000
#define RX_BUF_SIZE 2000
#define KS_CCR 0x08
#define CCR_EEPROM (1 << 9)
#define CCR_SPI (1 << 8)
#define CCR_8BIT (1 << 7)
#define CCR_16BIT (1 << 6)
#define CCR_32BIT (1 << 5)
#define CCR_SHARED (1 << 4)
#define CCR_32PIN (1 << 0)
/* MAC address registers */
#define KS_MARL 0x10
#define KS_MARM 0x12
#define KS_MARH 0x14
#define KS_OBCR 0x20
#define OBCR_ODS_16MA (1 << 6)
#define KS_EEPCR 0x22
#define EEPCR_EESA (1 << 4)
#define EEPCR_EESB (1 << 3)
#define EEPCR_EEDO (1 << 2)
#define EEPCR_EESCK (1 << 1)
#define EEPCR_EECS (1 << 0)
#define KS_MBIR 0x24
#define MBIR_TXMBF (1 << 12)
#define MBIR_TXMBFA (1 << 11)
#define MBIR_RXMBF (1 << 4)
#define MBIR_RXMBFA (1 << 3)
#define KS_GRR 0x26
#define GRR_QMU (1 << 1)
#define GRR_GSR (1 << 0)
#define KS_WFCR 0x2A
#define WFCR_MPRXE (1 << 7)
#define WFCR_WF3E (1 << 3)
#define WFCR_WF2E (1 << 2)
#define WFCR_WF1E (1 << 1)
#define WFCR_WF0E (1 << 0)
#define KS_WF0CRC0 0x30
#define KS_WF0CRC1 0x32
#define KS_WF0BM0 0x34
#define KS_WF0BM1 0x36
#define KS_WF0BM2 0x38
#define KS_WF0BM3 0x3A
#define KS_WF1CRC0 0x40
#define KS_WF1CRC1 0x42
#define KS_WF1BM0 0x44
#define KS_WF1BM1 0x46
#define KS_WF1BM2 0x48
#define KS_WF1BM3 0x4A
#define KS_WF2CRC0 0x50
#define KS_WF2CRC1 0x52
#define KS_WF2BM0 0x54
#define KS_WF2BM1 0x56
#define KS_WF2BM2 0x58
#define KS_WF2BM3 0x5A
#define KS_WF3CRC0 0x60
#define KS_WF3CRC1 0x62
#define KS_WF3BM0 0x64
#define KS_WF3BM1 0x66
#define KS_WF3BM2 0x68
#define KS_WF3BM3 0x6A
#define KS_TXCR 0x70
#define TXCR_TCGICMP (1 << 8)
#define TXCR_TCGUDP (1 << 7)
#define TXCR_TCGTCP (1 << 6)
#define TXCR_TCGIP (1 << 5)
#define TXCR_FTXQ (1 << 4)
#define TXCR_TXFCE (1 << 3)
#define TXCR_TXPE (1 << 2)
#define TXCR_TXCRC (1 << 1)
#define TXCR_TXE (1 << 0)
#define KS_TXSR 0x72
#define TXSR_TXLC (1 << 13)
#define TXSR_TXMC (1 << 12)
#define TXSR_TXFID_MASK (0x3f << 0)
#define TXSR_TXFID_SHIFT (0)
#define TXSR_TXFID_GET(_v) (((_v) >> 0) & 0x3f)
#define KS_RXCR1 0x74
#define RXCR1_FRXQ (1 << 15)
#define RXCR1_RXUDPFCC (1 << 14)
#define RXCR1_RXTCPFCC (1 << 13)
#define RXCR1_RXIPFCC (1 << 12)
#define RXCR1_RXPAFMA (1 << 11)
#define RXCR1_RXFCE (1 << 10)
#define RXCR1_RXEFE (1 << 9)
#define RXCR1_RXMAFMA (1 << 8)
#define RXCR1_RXBE (1 << 7)
#define RXCR1_RXME (1 << 6)
#define RXCR1_RXUE (1 << 5)
#define RXCR1_RXAE (1 << 4)
#define RXCR1_RXINVF (1 << 1)
#define RXCR1_RXE (1 << 0)
#define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \
RXCR1_RXMAFMA | RXCR1_RXPAFMA)
#define KS_RXCR2 0x76
#define RXCR2_SRDBL_MASK (0x7 << 5)
#define RXCR2_SRDBL_SHIFT (5)
#define RXCR2_SRDBL_4B (0x0 << 5)
#define RXCR2_SRDBL_8B (0x1 << 5)
#define RXCR2_SRDBL_16B (0x2 << 5)
#define RXCR2_SRDBL_32B (0x3 << 5)
/* #define RXCR2_SRDBL_FRAME (0x4 << 5) */
#define RXCR2_IUFFP (1 << 4)
#define RXCR2_RXIUFCEZ (1 << 3)
#define RXCR2_UDPLFE (1 << 2)
#define RXCR2_RXICMPFCC (1 << 1)
#define RXCR2_RXSAF (1 << 0)
#define KS_TXMIR 0x78
#define KS_RXFHSR 0x7C
#define RXFSHR_RXFV (1 << 15)
#define RXFSHR_RXICMPFCS (1 << 13)
#define RXFSHR_RXIPFCS (1 << 12)
#define RXFSHR_RXTCPFCS (1 << 11)
#define RXFSHR_RXUDPFCS (1 << 10)
#define RXFSHR_RXBF (1 << 7)
#define RXFSHR_RXMF (1 << 6)
#define RXFSHR_RXUF (1 << 5)
#define RXFSHR_RXMR (1 << 4)
#define RXFSHR_RXFT (1 << 3)
#define RXFSHR_RXFTL (1 << 2)
#define RXFSHR_RXRF (1 << 1)
#define RXFSHR_RXCE (1 << 0)
#define RXFSHR_ERR (RXFSHR_RXCE | RXFSHR_RXRF |\
RXFSHR_RXFTL | RXFSHR_RXMR |\
RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
RXFSHR_RXTCPFCS)
#define KS_RXFHBCR 0x7E
#define RXFHBCR_CNT_MASK 0x0FFF
#define KS_TXQCR 0x80
#define TXQCR_AETFE (1 << 2)
#define TXQCR_TXQMAM (1 << 1)
#define TXQCR_METFE (1 << 0)
#define KS_RXQCR 0x82
#define RXQCR_RXDTTS (1 << 12)
#define RXQCR_RXDBCTS (1 << 11)
#define RXQCR_RXFCTS (1 << 10)
#define RXQCR_RXIPHTOE (1 << 9)
#define RXQCR_RXDTTE (1 << 7)
#define RXQCR_RXDBCTE (1 << 6)
#define RXQCR_RXFCTE (1 << 5)
#define RXQCR_ADRFE (1 << 4)
#define RXQCR_SDA (1 << 3)
#define RXQCR_RRXEF (1 << 0)
#define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE)
#define KS_TXFDPR 0x84
#define TXFDPR_TXFPAI (1 << 14)
#define TXFDPR_TXFP_MASK (0x7ff << 0)
#define TXFDPR_TXFP_SHIFT (0)
#define KS_RXFDPR 0x86
#define RXFDPR_RXFPAI (1 << 14)
#define KS_RXDTTR 0x8C
#define KS_RXDBCTR 0x8E
#define KS_IER 0x90
#define KS_ISR 0x92
#define IRQ_LCI (1 << 15)
#define IRQ_TXI (1 << 14)
#define IRQ_RXI (1 << 13)
#define IRQ_RXOI (1 << 11)
#define IRQ_TXPSI (1 << 9)
#define IRQ_RXPSI (1 << 8)
#define IRQ_TXSAI (1 << 6)
#define IRQ_RXWFDI (1 << 5)
#define IRQ_RXMPDI (1 << 4)
#define IRQ_LDI (1 << 3)
#define IRQ_EDI (1 << 2)
#define IRQ_SPIBEI (1 << 1)
#define IRQ_DEDI (1 << 0)
#define KS_RXFCTR 0x9C
#define RXFCTR_THRESHOLD_MASK 0x00FF
#define KS_RXFC 0x9D
#define RXFCTR_RXFC_MASK (0xff << 8)
#define RXFCTR_RXFC_SHIFT (8)
#define RXFCTR_RXFC_GET(_v) (((_v) >> 8) & 0xff)
#define RXFCTR_RXFCT_MASK (0xff << 0)
#define RXFCTR_RXFCT_SHIFT (0)
#define KS_TXNTFSR 0x9E
#define KS_MAHTR0 0xA0
#define KS_MAHTR1 0xA2
#define KS_MAHTR2 0xA4
#define KS_MAHTR3 0xA6
#define KS_FCLWR 0xB0
#define KS_FCHWR 0xB2
#define KS_FCOWR 0xB4
#define KS_CIDER 0xC0
#define CIDER_ID 0x8870
#define CIDER_REV_MASK (0x7 << 1)
#define CIDER_REV_SHIFT (1)
#define CIDER_REV_GET(_v) (((_v) >> 1) & 0x7)
#define KS_CGCR 0xC6
#define KS_IACR 0xC8
#define IACR_RDEN (1 << 12)
#define IACR_TSEL_MASK (0x3 << 10)
#define IACR_TSEL_SHIFT (10)
#define IACR_TSEL_MIB (0x3 << 10)
#define IACR_ADDR_MASK (0x1f << 0)
#define IACR_ADDR_SHIFT (0)
#define KS_IADLR 0xD0
#define KS_IAHDR 0xD2
#define KS_PMECR 0xD4
#define PMECR_PME_DELAY (1 << 14)
#define PMECR_PME_POL (1 << 12)
#define PMECR_WOL_WAKEUP (1 << 11)
#define PMECR_WOL_MAGICPKT (1 << 10)
#define PMECR_WOL_LINKUP (1 << 9)
#define PMECR_WOL_ENERGY (1 << 8)
#define PMECR_AUTO_WAKE_EN (1 << 7)
#define PMECR_WAKEUP_NORMAL (1 << 6)
#define PMECR_WKEVT_MASK (0xf << 2)
#define PMECR_WKEVT_SHIFT (2)
#define PMECR_WKEVT_GET(_v) (((_v) >> 2) & 0xf)
#define PMECR_WKEVT_ENERGY (0x1 << 2)
#define PMECR_WKEVT_LINK (0x2 << 2)
#define PMECR_WKEVT_MAGICPKT (0x4 << 2)
#define PMECR_WKEVT_FRAME (0x8 << 2)
#define PMECR_PM_MASK (0x3 << 0)
#define PMECR_PM_SHIFT (0)
#define PMECR_PM_NORMAL (0x0 << 0)
#define PMECR_PM_ENERGY (0x1 << 0)
#define PMECR_PM_SOFTDOWN (0x2 << 0)
#define PMECR_PM_POWERSAVE (0x3 << 0)
/* Standard MII PHY data */
#define KS_P1MBCR 0xE4
#define P1MBCR_FORCE_FDX (1 << 8)
#define KS_P1MBSR 0xE6
#define P1MBSR_AN_COMPLETE (1 << 5)
#define P1MBSR_AN_CAPABLE (1 << 3)
#define P1MBSR_LINK_UP (1 << 2)
#define KS_PHY1ILR 0xE8
#define KS_PHY1IHR 0xEA
#define KS_P1ANAR 0xEC
#define KS_P1ANLPR 0xEE
#define KS_P1SCLMD 0xF4
#define P1SCLMD_LEDOFF (1 << 15)
#define P1SCLMD_TXIDS (1 << 14)
#define P1SCLMD_RESTARTAN (1 << 13)
#define P1SCLMD_DISAUTOMDIX (1 << 10)
#define P1SCLMD_FORCEMDIX (1 << 9)
#define P1SCLMD_AUTONEGEN (1 << 7)
#define P1SCLMD_FORCE100 (1 << 6)
#define P1SCLMD_FORCEFDX (1 << 5)
#define P1SCLMD_ADV_FLOW (1 << 4)
#define P1SCLMD_ADV_100BT_FDX (1 << 3)
#define P1SCLMD_ADV_100BT_HDX (1 << 2)
#define P1SCLMD_ADV_10BT_FDX (1 << 1)
#define P1SCLMD_ADV_10BT_HDX (1 << 0)
#define KS_P1CR 0xF6
#define P1CR_HP_MDIX (1 << 15)
#define P1CR_REV_POL (1 << 13)
#define P1CR_OP_100M (1 << 10)
#define P1CR_OP_FDX (1 << 9)
#define P1CR_OP_MDI (1 << 7)
#define P1CR_AN_DONE (1 << 6)
#define P1CR_LINK_GOOD (1 << 5)
#define P1CR_PNTR_FLOW (1 << 4)
#define P1CR_PNTR_100BT_FDX (1 << 3)
#define P1CR_PNTR_100BT_HDX (1 << 2)
#define P1CR_PNTR_10BT_FDX (1 << 1)
#define P1CR_PNTR_10BT_HDX (1 << 0)
/* TX Frame control */
#define TXFR_TXIC (1 << 15)
#define TXFR_TXFID_MASK (0x3f << 0)
#define TXFR_TXFID_SHIFT (0)
#define KS_P1SR 0xF8
#define P1SR_HP_MDIX (1 << 15)
#define P1SR_REV_POL (1 << 13)
#define P1SR_OP_100M (1 << 10)
#define P1SR_OP_FDX (1 << 9)
#define P1SR_OP_MDI (1 << 7)
#define P1SR_AN_DONE (1 << 6)
#define P1SR_LINK_GOOD (1 << 5)
#define P1SR_PNTR_FLOW (1 << 4)
#define P1SR_PNTR_100BT_FDX (1 << 3)
#define P1SR_PNTR_100BT_HDX (1 << 2)
#define P1SR_PNTR_10BT_FDX (1 << 1)
#define P1SR_PNTR_10BT_HDX (1 << 0)
#define ENUM_BUS_NONE 0
#define ENUM_BUS_8BIT 1
#define ENUM_BUS_16BIT 2
#define ENUM_BUS_32BIT 3
#define MAX_MCAST_LST 32
#define HW_MCAST_SIZE 8
/**
* union ks_tx_hdr - tx header data
* @txb: The header as bytes
* @txw: The header as 16bit, little-endian words
*
* A dual representation of the tx header data to allow
* access to individual bytes, and to allow 16bit accesses
* with 16bit alignment.
*/
union ks_tx_hdr {
u8 txb[4];
__le16 txw[2];
};
/**
* struct ks_net - KS8851 driver private data
* @net_device : The network device we're bound to
* @hw_addr : start address of data register.
* @hw_addr_cmd : start address of command register.
* @txh : temporaly buffer to save status/length.
* @lock : Lock to ensure that the device is not accessed when busy.
* @pdev : Pointer to platform device.
* @mii : The MII state information for the mii calls.
* @frame_head_info : frame header information for multi-pkt rx.
* @statelock : Lock on this structure for tx list.
* @msg_enable : The message flags controlling driver output (see ethtool).
* @frame_cnt : number of frames received.
* @bus_width : i/o bus width.
* @rc_rxqcr : Cached copy of KS_RXQCR.
* @rc_txcr : Cached copy of KS_TXCR.
* @rc_ier : Cached copy of KS_IER.
* @sharedbus : Multipex(addr and data bus) mode indicator.
* @cmd_reg_cache : command register cached.
* @cmd_reg_cache_int : command register cached. Used in the irq handler.
* @promiscuous : promiscuous mode indicator.
* @all_mcast : mutlicast indicator.
* @mcast_lst_size : size of multicast list.
* @mcast_lst : multicast list.
* @mcast_bits : multicast enabed.
* @mac_addr : MAC address assigned to this device.
* @fid : frame id.
* @extra_byte : number of extra byte prepended rx pkt.
* @enabled : indicator this device works.
*
* The @lock ensures that the chip is protected when certain operations are
* in progress. When the read or write packet transfer is in progress, most
* of the chip registers are not accessible until the transfer is finished and
* the DMA has been de-asserted.
*
* The @statelock is used to protect information in the structure which may
* need to be accessed via several sources, such as the network driver layer
* or one of the work queues.
*
*/
/* Receive multiplex framer header info */
struct type_frame_head {
u16 sts; /* Frame status */
u16 len; /* Byte count */
};
struct ks_net {
struct net_device *netdev;
void __iomem *hw_addr;
void __iomem *hw_addr_cmd;
union ks_tx_hdr txh ____cacheline_aligned;
struct mutex lock; /* spinlock to be interrupt safe */
struct platform_device *pdev;
struct mii_if_info mii;
struct type_frame_head *frame_head_info;
spinlock_t statelock;
u32 msg_enable;
u32 frame_cnt;
int bus_width;
u16 rc_rxqcr;
u16 rc_txcr;
u16 rc_ier;
u16 sharedbus;
u16 cmd_reg_cache;
u16 cmd_reg_cache_int;
u16 promiscuous;
u16 all_mcast;
u16 mcast_lst_size;
u8 mcast_lst[MAX_MCAST_LST][ETH_ALEN];
u8 mcast_bits[HW_MCAST_SIZE];
u8 mac_addr[6];
u8 fid;
u8 extra_byte;
u8 enabled;
};
static int msg_enable;
#define BE3 0x8000 /* Byte Enable 3 */
#define BE2 0x4000 /* Byte Enable 2 */
#define BE1 0x2000 /* Byte Enable 1 */
#define BE0 0x1000 /* Byte Enable 0 */
/* register read/write calls.
*
* All these calls issue transactions to access the chip's registers. They
* all require that the necessary lock is held to prevent accesses when the
* chip is busy transferring packet data (RX/TX FIFO accesses).
*/
/**
* ks_rdreg8 - read 8 bit register from device
* @ks : The chip information
* @offset: The register address
*
* Read a 8bit register from the chip, returning the result
*/
static u8 ks_rdreg8(struct ks_net *ks, int offset)
{
u16 data;
u8 shift_bit = offset & 0x03;
u8 shift_data = (offset & 1) << 3;
ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
data = ioread16(ks->hw_addr);
return (u8)(data >> shift_data);
}
/**
* ks_rdreg16 - read 16 bit register from device
* @ks : The chip information
* @offset: The register address
*
* Read a 16bit register from the chip, returning the result
*/
static u16 ks_rdreg16(struct ks_net *ks, int offset)
{
ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
return ioread16(ks->hw_addr);
}
/**
* ks_wrreg8 - write 8bit register value to chip
* @ks: The chip information
* @offset: The register address
* @value: The value to write
*
*/
static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
{
u8 shift_bit = (offset & 0x03);
u16 value_write = (u16)(value << ((offset & 1) << 3));
ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
iowrite16(value_write, ks->hw_addr);
}
/**
* ks_wrreg16 - write 16bit register value to chip
* @ks: The chip information
* @offset: The register address
* @value: The value to write
*
*/
static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
{
ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
iowrite16(value, ks->hw_addr);
}
/**
* ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
* @ks: The chip state
* @wptr: buffer address to save data
* @len: length in byte to read
*
*/
static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
*wptr++ = (u16)ioread16(ks->hw_addr);
}
/**
* ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
* @ks: The chip information
* @wptr: buffer address
* @len: length in byte to write
*
*/
static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
iowrite16(*wptr++, ks->hw_addr);
}
static void ks_disable_int(struct ks_net *ks)
{
ks_wrreg16(ks, KS_IER, 0x0000);
} /* ks_disable_int */
static void ks_enable_int(struct ks_net *ks)
{
ks_wrreg16(ks, KS_IER, ks->rc_ier);
} /* ks_enable_int */
/**
* ks_tx_fifo_space - return the available hardware buffer size.
* @ks: The chip information
*
*/
static inline u16 ks_tx_fifo_space(struct ks_net *ks)
{
return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
}
/**
* ks_save_cmd_reg - save the command register from the cache.
* @ks: The chip information
*
*/
static inline void ks_save_cmd_reg(struct ks_net *ks)
{
/*ks8851 MLL has a bug to read back the command register.
* So rely on software to save the content of command register.
*/
ks->cmd_reg_cache_int = ks->cmd_reg_cache;
}
/**
* ks_restore_cmd_reg - restore the command register from the cache and
* write to hardware register.
* @ks: The chip information
*
*/
static inline void ks_restore_cmd_reg(struct ks_net *ks)
{
ks->cmd_reg_cache = ks->cmd_reg_cache_int;
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
}
/**
* ks_set_powermode - set power mode of the device
* @ks: The chip information
* @pwrmode: The power mode value to write to KS_PMECR.
*
* Change the power mode of the chip.
*/
static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
{
unsigned pmecr;
netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
ks_rdreg16(ks, KS_GRR);
pmecr = ks_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_PM_MASK;
pmecr |= pwrmode;
ks_wrreg16(ks, KS_PMECR, pmecr);
}
/**
* ks_read_config - read chip configuration of bus width.
* @ks: The chip information
*
*/
static void ks_read_config(struct ks_net *ks)
{
u16 reg_data = 0;
/* Regardless of bus width, 8 bit read should always work.*/
reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
/* addr/data bus are multiplexed */
ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
/* There are garbage data when reading data from QMU,
depending on bus-width.
*/
if (reg_data & CCR_8BIT) {
ks->bus_width = ENUM_BUS_8BIT;
ks->extra_byte = 1;
} else if (reg_data & CCR_16BIT) {
ks->bus_width = ENUM_BUS_16BIT;
ks->extra_byte = 2;
} else {
ks->bus_width = ENUM_BUS_32BIT;
ks->extra_byte = 4;
}
}
/**
* ks_soft_reset - issue one of the soft reset to the device
* @ks: The device state.
* @op: The bit(s) to set in the GRR
*
* Issue the relevant soft-reset command to the device's GRR register
* specified by @op.
*
* Note, the delays are in there as a caution to ensure that the reset
* has time to take effect and then complete. Since the datasheet does
* not currently specify the exact sequence, we have chosen something
* that seems to work with our device.
*/
static void ks_soft_reset(struct ks_net *ks, unsigned op)
{
/* Disable interrupt first */
ks_wrreg16(ks, KS_IER, 0x0000);
ks_wrreg16(ks, KS_GRR, op);
mdelay(10); /* wait a short time to effect reset */
ks_wrreg16(ks, KS_GRR, 0);
mdelay(1); /* wait for condition to clear */
}
void ks_enable_qmu(struct ks_net *ks)
{
u16 w;
w = ks_rdreg16(ks, KS_TXCR);
/* Enables QMU Transmit (TXCR). */
ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
/*
* RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
* Enable
*/
w = ks_rdreg16(ks, KS_RXQCR);
ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
/* Enables QMU Receive (RXCR1). */
w = ks_rdreg16(ks, KS_RXCR1);
ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
ks->enabled = true;
} /* ks_enable_qmu */
static void ks_disable_qmu(struct ks_net *ks)
{
u16 w;
w = ks_rdreg16(ks, KS_TXCR);
/* Disables QMU Transmit (TXCR). */
w &= ~TXCR_TXE;
ks_wrreg16(ks, KS_TXCR, w);
/* Disables QMU Receive (RXCR1). */
w = ks_rdreg16(ks, KS_RXCR1);
w &= ~RXCR1_RXE ;
ks_wrreg16(ks, KS_RXCR1, w);
ks->enabled = false;
} /* ks_disable_qmu */
/**
* ks_read_qmu - read 1 pkt data from the QMU.
* @ks: The chip information
* @buf: buffer address to save 1 pkt
* @len: Pkt length
* Here is the sequence to read 1 pkt:
* 1. set sudo DMA mode
* 2. read prepend data
* 3. read pkt data
* 4. reset sudo DMA Mode
*/
static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
{
u32 r = ks->extra_byte & 0x1 ;
u32 w = ks->extra_byte - r;
/* 1. set sudo DMA mode */
ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
/* 2. read prepend data */
/**
* read 4 + extra bytes and discard them.
* extra bytes for dummy, 2 for status, 2 for len
*/
/* use likely(r) for 8 bit access for performance */
if (unlikely(r))
ioread8(ks->hw_addr);
ks_inblk(ks, buf, w + 2 + 2);
/* 3. read pkt data */
ks_inblk(ks, buf, ALIGN(len, 4));
/* 4. reset sudo DMA Mode */
ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
}
/**
* ks_rcv - read multiple pkts data from the QMU.
* @ks: The chip information
* @netdev: The network device being opened.
*
* Read all of header information before reading pkt content.
* It is not allowed only port of pkts in QMU after issuing
* interrupt ack.
*/
static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
{
u32 i;
struct type_frame_head *frame_hdr = ks->frame_head_info;
struct sk_buff *skb;
ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
/* read all header information */
for (i = 0; i < ks->frame_cnt; i++) {
/* Checking Received packet status */
frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
/* Get packet len from hardware */
frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
frame_hdr++;
}
frame_hdr = ks->frame_head_info;
while (ks->frame_cnt--) {
skb = netdev_alloc_skb(netdev, frame_hdr->len + 16);
if (likely(skb && (frame_hdr->sts & RXFSHR_RXFV) &&
(frame_hdr->len < RX_BUF_SIZE) && frame_hdr->len)) {
skb_reserve(skb, 2);
/* read data block including CRC 4 bytes */
ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
skb_put(skb, frame_hdr->len);
skb->protocol = eth_type_trans(skb, netdev);
netif_rx(skb);
} else {
pr_err("%s: err:skb alloc\n", __func__);
ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
if (skb)
dev_kfree_skb_irq(skb);
}
frame_hdr++;
}
}
/**
* ks_update_link_status - link status update.
* @netdev: The network device being opened.
* @ks: The chip information
*
*/
static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
{
/* check the status of the link */
u32 link_up_status;
if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
netif_carrier_on(netdev);
link_up_status = true;
} else {
netif_carrier_off(netdev);
link_up_status = false;
}
netif_dbg(ks, link, ks->netdev,
"%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
}
/**
* ks_irq - device interrupt handler
* @irq: Interrupt number passed from the IRQ handler.
* @pw: The private word passed to register_irq(), our struct ks_net.
*
* This is the handler invoked to find out what happened
*
* Read the interrupt status, work out what needs to be done and then clear
* any of the interrupts that are not needed.
*/
static irqreturn_t ks_irq(int irq, void *pw)
{
struct net_device *netdev = pw;
struct ks_net *ks = netdev_priv(netdev);
u16 status;
/*this should be the first in IRQ handler */
ks_save_cmd_reg(ks);
status = ks_rdreg16(ks, KS_ISR);
if (unlikely(!status)) {
ks_restore_cmd_reg(ks);
return IRQ_NONE;
}
ks_wrreg16(ks, KS_ISR, status);
if (likely(status & IRQ_RXI))
ks_rcv(ks, netdev);
if (unlikely(status & IRQ_LCI))
ks_update_link_status(netdev, ks);
if (unlikely(status & IRQ_TXI))
netif_wake_queue(netdev);
if (unlikely(status & IRQ_LDI)) {
u16 pmecr = ks_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_WKEVT_MASK;
ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
}
/* this should be the last in IRQ handler*/
ks_restore_cmd_reg(ks);
return IRQ_HANDLED;
}
/**
* ks_net_open - open network device
* @netdev: The network device being opened.
*
* Called when the network device is marked active, such as a user executing
* 'ifconfig up' on the device.
*/
static int ks_net_open(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
int err;
#define KS_INT_FLAGS (IRQF_DISABLED|IRQF_TRIGGER_LOW)
/* lock the card, even if we may not actually do anything
* else at the moment.
*/
netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
/* reset the HW */
err = request_irq(netdev->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
if (err) {
pr_err("Failed to request IRQ: %d: %d\n", netdev->irq, err);
return err;
}
/* wake up powermode to normal mode */
ks_set_powermode(ks, PMECR_PM_NORMAL);
mdelay(1); /* wait for normal mode to take effect */
ks_wrreg16(ks, KS_ISR, 0xffff);
ks_enable_int(ks);
ks_enable_qmu(ks);
netif_start_queue(ks->netdev);
netif_dbg(ks, ifup, ks->netdev, "network device up\n");
return 0;
}
/**
* ks_net_stop - close network device
* @netdev: The device being closed.
*
* Called to close down a network device which has been active. Cancell any
* work, shutdown the RX and TX process and then place the chip into a low
* power state whilst it is not being used.
*/
static int ks_net_stop(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
netif_info(ks, ifdown, netdev, "shutting down\n");
netif_stop_queue(netdev);
mutex_lock(&ks->lock);
/* turn off the IRQs and ack any outstanding */
ks_wrreg16(ks, KS_IER, 0x0000);
ks_wrreg16(ks, KS_ISR, 0xffff);
/* shutdown RX/TX QMU */
ks_disable_qmu(ks);
/* set powermode to soft power down to save power */
ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
free_irq(netdev->irq, netdev);
mutex_unlock(&ks->lock);
return 0;
}
/**
* ks_write_qmu - write 1 pkt data to the QMU.
* @ks: The chip information
* @pdata: buffer address to save 1 pkt
* @len: Pkt length in byte
* Here is the sequence to write 1 pkt:
* 1. set sudo DMA mode
* 2. write status/length
* 3. write pkt data
* 4. reset sudo DMA Mode
* 5. reset sudo DMA mode
* 6. Wait until pkt is out
*/
static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
{
/* start header at txb[0] to align txw entries */
ks->txh.txw[0] = 0;
ks->txh.txw[1] = cpu_to_le16(len);
/* 1. set sudo-DMA mode */
ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
/* 2. write status/lenth info */
ks_outblk(ks, ks->txh.txw, 4);
/* 3. write pkt data */
ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
/* 4. reset sudo-DMA mode */
ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
/* 6. wait until TXQCR_METFE is auto-cleared */
while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
;
}
/**
* ks_start_xmit - transmit packet
* @skb : The buffer to transmit
* @netdev : The device used to transmit the packet.
*
* Called by the network layer to transmit the @skb.
* spin_lock_irqsave is required because tx and rx should be mutual exclusive.
* So while tx is in-progress, prevent IRQ interrupt from happenning.
*/
static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
int retv = NETDEV_TX_OK;
struct ks_net *ks = netdev_priv(netdev);
disable_irq(netdev->irq);
ks_disable_int(ks);
spin_lock(&ks->statelock);
/* Extra space are required:
* 4 byte for alignment, 4 for status/length, 4 for CRC
*/
if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
ks_write_qmu(ks, skb->data, skb->len);
dev_kfree_skb(skb);
} else
retv = NETDEV_TX_BUSY;
spin_unlock(&ks->statelock);
ks_enable_int(ks);
enable_irq(netdev->irq);
return retv;
}
/**
* ks_start_rx - ready to serve pkts
* @ks : The chip information
*
*/
static void ks_start_rx(struct ks_net *ks)
{
u16 cntl;
/* Enables QMU Receive (RXCR1). */
cntl = ks_rdreg16(ks, KS_RXCR1);
cntl |= RXCR1_RXE ;
ks_wrreg16(ks, KS_RXCR1, cntl);
} /* ks_start_rx */
/**
* ks_stop_rx - stop to serve pkts
* @ks : The chip information
*
*/
static void ks_stop_rx(struct ks_net *ks)
{
u16 cntl;
/* Disables QMU Receive (RXCR1). */
cntl = ks_rdreg16(ks, KS_RXCR1);
cntl &= ~RXCR1_RXE ;
ks_wrreg16(ks, KS_RXCR1, cntl);
} /* ks_stop_rx */
static unsigned long const ethernet_polynomial = 0x04c11db7U;
static unsigned long ether_gen_crc(int length, u8 *data)
{
long crc = -1;
while (--length >= 0) {
u8 current_octet = *data++;
int bit;
for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
crc = (crc << 1) ^
((crc < 0) ^ (current_octet & 1) ?
ethernet_polynomial : 0);
}
}
return (unsigned long)crc;
} /* ether_gen_crc */
/**
* ks_set_grpaddr - set multicast information
* @ks : The chip information
*/
static void ks_set_grpaddr(struct ks_net *ks)
{
u8 i;
u32 index, position, value;
memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
for (i = 0; i < ks->mcast_lst_size; i++) {
position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
index = position >> 3;
value = 1 << (position & 7);
ks->mcast_bits[index] |= (u8)value;
}
for (i = 0; i < HW_MCAST_SIZE; i++) {
if (i & 1) {
ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
(ks->mcast_bits[i] << 8) |
ks->mcast_bits[i - 1]);
}
}
} /* ks_set_grpaddr */
/**
* ks_clear_mcast - clear multicast information
*
* @ks : The chip information
* This routine removes all mcast addresses set in the hardware.
*/
static void ks_clear_mcast(struct ks_net *ks)
{
u16 i, mcast_size;
for (i = 0; i < HW_MCAST_SIZE; i++)
ks->mcast_bits[i] = 0;
mcast_size = HW_MCAST_SIZE >> 2;
for (i = 0; i < mcast_size; i++)
ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
}
static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
{
u16 cntl;
ks->promiscuous = promiscuous_mode;
ks_stop_rx(ks); /* Stop receiving for reconfiguration */
cntl = ks_rdreg16(ks, KS_RXCR1);
cntl &= ~RXCR1_FILTER_MASK;
if (promiscuous_mode)
/* Enable Promiscuous mode */
cntl |= RXCR1_RXAE | RXCR1_RXINVF;
else
/* Disable Promiscuous mode (default normal mode) */
cntl |= RXCR1_RXPAFMA;
ks_wrreg16(ks, KS_RXCR1, cntl);
if (ks->enabled)
ks_start_rx(ks);
} /* ks_set_promis */
static void ks_set_mcast(struct ks_net *ks, u16 mcast)
{
u16 cntl;
ks->all_mcast = mcast;
ks_stop_rx(ks); /* Stop receiving for reconfiguration */
cntl = ks_rdreg16(ks, KS_RXCR1);
cntl &= ~RXCR1_FILTER_MASK;
if (mcast)
/* Enable "Perfect with Multicast address passed mode" */
cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
else
/**
* Disable "Perfect with Multicast address passed
* mode" (normal mode).
*/
cntl |= RXCR1_RXPAFMA;
ks_wrreg16(ks, KS_RXCR1, cntl);
if (ks->enabled)
ks_start_rx(ks);
} /* ks_set_mcast */
static void ks_set_rx_mode(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
struct netdev_hw_addr *ha;
/* Turn on/off promiscuous mode. */
if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
ks_set_promis(ks,
(u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
/* Turn on/off all mcast mode. */
else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
ks_set_mcast(ks,
(u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
else
ks_set_promis(ks, false);
if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
int i = 0;
netdev_for_each_mc_addr(ha, netdev) {
if (i >= MAX_MCAST_LST)
break;
memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
}
ks->mcast_lst_size = (u8)i;
ks_set_grpaddr(ks);
} else {
/**
* List too big to support so
* turn on all mcast mode.
*/
ks->mcast_lst_size = MAX_MCAST_LST;
ks_set_mcast(ks, true);
}
} else {
ks->mcast_lst_size = 0;
ks_clear_mcast(ks);
}
} /* ks_set_rx_mode */
static void ks_set_mac(struct ks_net *ks, u8 *data)
{
u16 *pw = (u16 *)data;
u16 w, u;
ks_stop_rx(ks); /* Stop receiving for reconfiguration */
u = *pw++;
w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
ks_wrreg16(ks, KS_MARH, w);
u = *pw++;
w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
ks_wrreg16(ks, KS_MARM, w);
u = *pw;
w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
ks_wrreg16(ks, KS_MARL, w);
memcpy(ks->mac_addr, data, 6);
if (ks->enabled)
ks_start_rx(ks);
}
static int ks_set_mac_address(struct net_device *netdev, void *paddr)
{
struct ks_net *ks = netdev_priv(netdev);
struct sockaddr *addr = paddr;
u8 *da;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
da = (u8 *)netdev->dev_addr;
ks_set_mac(ks, da);
return 0;
}
static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
{
struct ks_net *ks = netdev_priv(netdev);
if (!netif_running(netdev))
return -EINVAL;
return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
}
static const struct net_device_ops ks_netdev_ops = {
.ndo_open = ks_net_open,
.ndo_stop = ks_net_stop,
.ndo_do_ioctl = ks_net_ioctl,
.ndo_start_xmit = ks_start_xmit,
.ndo_set_mac_address = ks_set_mac_address,
.ndo_set_rx_mode = ks_set_rx_mode,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
};
/* ethtool support */
static void ks_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *di)
{
strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
strlcpy(di->version, "1.00", sizeof(di->version));
strlcpy(di->bus_info, dev_name(netdev->dev.parent),
sizeof(di->bus_info));
}
static u32 ks_get_msglevel(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
return ks->msg_enable;
}
static void ks_set_msglevel(struct net_device *netdev, u32 to)
{
struct ks_net *ks = netdev_priv(netdev);
ks->msg_enable = to;
}
static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
struct ks_net *ks = netdev_priv(netdev);
return mii_ethtool_gset(&ks->mii, cmd);
}
static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
struct ks_net *ks = netdev_priv(netdev);
return mii_ethtool_sset(&ks->mii, cmd);
}
static u32 ks_get_link(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
return mii_link_ok(&ks->mii);
}
static int ks_nway_reset(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
return mii_nway_restart(&ks->mii);
}
static const struct ethtool_ops ks_ethtool_ops = {
.get_drvinfo = ks_get_drvinfo,
.get_msglevel = ks_get_msglevel,
.set_msglevel = ks_set_msglevel,
.get_settings = ks_get_settings,
.set_settings = ks_set_settings,
.get_link = ks_get_link,
.nway_reset = ks_nway_reset,
};
/* MII interface controls */
/**
* ks_phy_reg - convert MII register into a KS8851 register
* @reg: MII register number.
*
* Return the KS8851 register number for the corresponding MII PHY register
* if possible. Return zero if the MII register has no direct mapping to the
* KS8851 register set.
*/
static int ks_phy_reg(int reg)
{
switch (reg) {
case MII_BMCR:
return KS_P1MBCR;
case MII_BMSR:
return KS_P1MBSR;
case MII_PHYSID1:
return KS_PHY1ILR;
case MII_PHYSID2:
return KS_PHY1IHR;
case MII_ADVERTISE:
return KS_P1ANAR;
case MII_LPA:
return KS_P1ANLPR;
}
return 0x0;
}
/**
* ks_phy_read - MII interface PHY register read.
* @netdev: The network device the PHY is on.
* @phy_addr: Address of PHY (ignored as we only have one)
* @reg: The register to read.
*
* This call reads data from the PHY register specified in @reg. Since the
* device does not support all the MII registers, the non-existent values
* are always returned as zero.
*
* We return zero for unsupported registers as the MII code does not check
* the value returned for any error status, and simply returns it to the
* caller. The mii-tool that the driver was tested with takes any -ve error
* as real PHY capabilities, thus displaying incorrect data to the user.
*/
static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
{
struct ks_net *ks = netdev_priv(netdev);
int ksreg;
int result;
ksreg = ks_phy_reg(reg);
if (!ksreg)
return 0x0; /* no error return allowed, so use zero */
mutex_lock(&ks->lock);
result = ks_rdreg16(ks, ksreg);
mutex_unlock(&ks->lock);
return result;
}
static void ks_phy_write(struct net_device *netdev,
int phy, int reg, int value)
{
struct ks_net *ks = netdev_priv(netdev);
int ksreg;
ksreg = ks_phy_reg(reg);
if (ksreg) {
mutex_lock(&ks->lock);
ks_wrreg16(ks, ksreg, value);
mutex_unlock(&ks->lock);
}
}
/**
* ks_read_selftest - read the selftest memory info.
* @ks: The device state
*
* Read and check the TX/RX memory selftest information.
*/
static int ks_read_selftest(struct ks_net *ks)
{
unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
int ret = 0;
unsigned rd;
rd = ks_rdreg16(ks, KS_MBIR);
if ((rd & both_done) != both_done) {
netdev_warn(ks->netdev, "Memory selftest not finished\n");
return 0;
}
if (rd & MBIR_TXMBFA) {
netdev_err(ks->netdev, "TX memory selftest fails\n");
ret |= 1;
}
if (rd & MBIR_RXMBFA) {
netdev_err(ks->netdev, "RX memory selftest fails\n");
ret |= 2;
}
netdev_info(ks->netdev, "the selftest passes\n");
return ret;
}
static void ks_setup(struct ks_net *ks)
{
u16 w;
/**
* Configure QMU Transmit
*/
/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
/* Setup Receive Frame Data Pointer Auto-Increment */
ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
/* Setup RxQ Command Control (RXQCR) */
ks->rc_rxqcr = RXQCR_CMD_CNTL;
ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
/**
* set the force mode to half duplex, default is full duplex
* because if the auto-negotiation fails, most switch uses
* half-duplex.
*/
w = ks_rdreg16(ks, KS_P1MBCR);
w &= ~P1MBCR_FORCE_FDX;
ks_wrreg16(ks, KS_P1MBCR, w);
w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
ks_wrreg16(ks, KS_TXCR, w);
w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
if (ks->promiscuous) /* bPromiscuous */
w |= (RXCR1_RXAE | RXCR1_RXINVF);
else if (ks->all_mcast) /* Multicast address passed mode */
w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
else /* Normal mode */
w |= RXCR1_RXPAFMA;
ks_wrreg16(ks, KS_RXCR1, w);
} /*ks_setup */
static void ks_setup_int(struct ks_net *ks)
{
ks->rc_ier = 0x00;
/* Clear the interrupts status of the hardware. */
ks_wrreg16(ks, KS_ISR, 0xffff);
/* Enables the interrupts of the hardware. */
ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
} /* ks_setup_int */
static int ks_hw_init(struct ks_net *ks)
{
#define MHEADER_SIZE (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
ks->promiscuous = 0;
ks->all_mcast = 0;
ks->mcast_lst_size = 0;
ks->frame_head_info = kmalloc(MHEADER_SIZE, GFP_KERNEL);
if (!ks->frame_head_info)
return false;
ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
return true;
}
static int ks8851_probe(struct platform_device *pdev)
{
int err = -ENOMEM;
struct resource *io_d, *io_c;
struct net_device *netdev;
struct ks_net *ks;
u16 id, data;
struct ks8851_mll_platform_data *pdata;
io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!request_mem_region(io_d->start, resource_size(io_d), DRV_NAME))
goto err_mem_region;
if (!request_mem_region(io_c->start, resource_size(io_c), DRV_NAME))
goto err_mem_region1;
netdev = alloc_etherdev(sizeof(struct ks_net));
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
ks = netdev_priv(netdev);
ks->netdev = netdev;
ks->hw_addr = ioremap(io_d->start, resource_size(io_d));
if (!ks->hw_addr)
goto err_ioremap;
ks->hw_addr_cmd = ioremap(io_c->start, resource_size(io_c));
if (!ks->hw_addr_cmd)
goto err_ioremap1;
netdev->irq = platform_get_irq(pdev, 0);
if ((int)netdev->irq < 0) {
err = netdev->irq;
goto err_get_irq;
}
ks->pdev = pdev;
mutex_init(&ks->lock);
spin_lock_init(&ks->statelock);
netdev->netdev_ops = &ks_netdev_ops;
netdev->ethtool_ops = &ks_ethtool_ops;
/* setup mii state */
ks->mii.dev = netdev;
ks->mii.phy_id = 1,
ks->mii.phy_id_mask = 1;
ks->mii.reg_num_mask = 0xf;
ks->mii.mdio_read = ks_phy_read;
ks->mii.mdio_write = ks_phy_write;
netdev_info(netdev, "message enable is %d\n", msg_enable);
/* set the default message enable */
ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
NETIF_MSG_PROBE |
NETIF_MSG_LINK));
ks_read_config(ks);
/* simple check for a valid chip being connected to the bus */
if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
netdev_err(netdev, "failed to read device ID\n");
err = -ENODEV;
goto err_register;
}
if (ks_read_selftest(ks)) {
netdev_err(netdev, "failed to read device ID\n");
err = -ENODEV;
goto err_register;
}
err = register_netdev(netdev);
if (err)
goto err_register;
platform_set_drvdata(pdev, netdev);
ks_soft_reset(ks, GRR_GSR);
ks_hw_init(ks);
ks_disable_qmu(ks);
ks_setup(ks);
ks_setup_int(ks);
data = ks_rdreg16(ks, KS_OBCR);
ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
/* overwriting the default MAC address */
pdata = pdev->dev.platform_data;
if (!pdata) {
netdev_err(netdev, "No platform data\n");
err = -ENODEV;
goto err_pdata;
}
memcpy(ks->mac_addr, pdata->mac_addr, 6);
if (!is_valid_ether_addr(ks->mac_addr)) {
/* Use random MAC address if none passed */
eth_random_addr(ks->mac_addr);
netdev_info(netdev, "Using random mac address\n");
}
netdev_info(netdev, "Mac address is: %pM\n", ks->mac_addr);
memcpy(netdev->dev_addr, ks->mac_addr, 6);
ks_set_mac(ks, netdev->dev_addr);
id = ks_rdreg16(ks, KS_CIDER);
netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
(id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
return 0;
err_pdata:
unregister_netdev(netdev);
err_register:
err_get_irq:
iounmap(ks->hw_addr_cmd);
err_ioremap1:
iounmap(ks->hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
release_mem_region(io_c->start, resource_size(io_c));
err_mem_region1:
release_mem_region(io_d->start, resource_size(io_d));
err_mem_region:
return err;
}
static int ks8851_remove(struct platform_device *pdev)
{
struct net_device *netdev = platform_get_drvdata(pdev);
struct ks_net *ks = netdev_priv(netdev);
struct resource *iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
kfree(ks->frame_head_info);
unregister_netdev(netdev);
iounmap(ks->hw_addr);
free_netdev(netdev);
release_mem_region(iomem->start, resource_size(iomem));
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver ks8851_platform_driver = {
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
.probe = ks8851_probe,
.remove = ks8851_remove,
};
module_platform_driver(ks8851_platform_driver);
MODULE_DESCRIPTION("KS8851 MLL Network driver");
MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
MODULE_LICENSE("GPL");
module_param_named(message, msg_enable, int, 0);
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");