| /* |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| */ |
| |
| #include <linux/mman.h> |
| #include <linux/kvm_host.h> |
| #include <linux/io.h> |
| #include <trace/events/kvm.h> |
| #include <asm/idmap.h> |
| #include <asm/pgalloc.h> |
| #include <asm/cacheflush.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_mmio.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/mach/map.h> |
| #include <trace/events/kvm.h> |
| |
| #include "trace.h" |
| |
| extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[]; |
| |
| static DEFINE_MUTEX(kvm_hyp_pgd_mutex); |
| |
| static void kvm_tlb_flush_vmid(struct kvm *kvm) |
| { |
| kvm_call_hyp(__kvm_tlb_flush_vmid, kvm); |
| } |
| |
| static void kvm_set_pte(pte_t *pte, pte_t new_pte) |
| { |
| pte_val(*pte) = new_pte; |
| /* |
| * flush_pmd_entry just takes a void pointer and cleans the necessary |
| * cache entries, so we can reuse the function for ptes. |
| */ |
| flush_pmd_entry(pte); |
| } |
| |
| static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, |
| int min, int max) |
| { |
| void *page; |
| |
| BUG_ON(max > KVM_NR_MEM_OBJS); |
| if (cache->nobjs >= min) |
| return 0; |
| while (cache->nobjs < max) { |
| page = (void *)__get_free_page(PGALLOC_GFP); |
| if (!page) |
| return -ENOMEM; |
| cache->objects[cache->nobjs++] = page; |
| } |
| return 0; |
| } |
| |
| static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) |
| { |
| while (mc->nobjs) |
| free_page((unsigned long)mc->objects[--mc->nobjs]); |
| } |
| |
| static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) |
| { |
| void *p; |
| |
| BUG_ON(!mc || !mc->nobjs); |
| p = mc->objects[--mc->nobjs]; |
| return p; |
| } |
| |
| static void free_ptes(pmd_t *pmd, unsigned long addr) |
| { |
| pte_t *pte; |
| unsigned int i; |
| |
| for (i = 0; i < PTRS_PER_PMD; i++, addr += PMD_SIZE) { |
| if (!pmd_none(*pmd) && pmd_table(*pmd)) { |
| pte = pte_offset_kernel(pmd, addr); |
| pte_free_kernel(NULL, pte); |
| } |
| pmd++; |
| } |
| } |
| |
| /** |
| * free_hyp_pmds - free a Hyp-mode level-2 tables and child level-3 tables |
| * |
| * Assumes this is a page table used strictly in Hyp-mode and therefore contains |
| * only mappings in the kernel memory area, which is above PAGE_OFFSET. |
| */ |
| void free_hyp_pmds(void) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| unsigned long addr; |
| |
| mutex_lock(&kvm_hyp_pgd_mutex); |
| for (addr = PAGE_OFFSET; addr != 0; addr += PGDIR_SIZE) { |
| pgd = hyp_pgd + pgd_index(addr); |
| pud = pud_offset(pgd, addr); |
| |
| if (pud_none(*pud)) |
| continue; |
| BUG_ON(pud_bad(*pud)); |
| |
| pmd = pmd_offset(pud, addr); |
| free_ptes(pmd, addr); |
| pmd_free(NULL, pmd); |
| pud_clear(pud); |
| } |
| mutex_unlock(&kvm_hyp_pgd_mutex); |
| } |
| |
| static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start, |
| unsigned long end) |
| { |
| pte_t *pte; |
| unsigned long addr; |
| struct page *page; |
| |
| for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { |
| pte = pte_offset_kernel(pmd, addr); |
| BUG_ON(!virt_addr_valid(addr)); |
| page = virt_to_page(addr); |
| kvm_set_pte(pte, mk_pte(page, PAGE_HYP)); |
| } |
| } |
| |
| static void create_hyp_io_pte_mappings(pmd_t *pmd, unsigned long start, |
| unsigned long end, |
| unsigned long *pfn_base) |
| { |
| pte_t *pte; |
| unsigned long addr; |
| |
| for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { |
| pte = pte_offset_kernel(pmd, addr); |
| BUG_ON(pfn_valid(*pfn_base)); |
| kvm_set_pte(pte, pfn_pte(*pfn_base, PAGE_HYP_DEVICE)); |
| (*pfn_base)++; |
| } |
| } |
| |
| static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start, |
| unsigned long end, unsigned long *pfn_base) |
| { |
| pmd_t *pmd; |
| pte_t *pte; |
| unsigned long addr, next; |
| |
| for (addr = start; addr < end; addr = next) { |
| pmd = pmd_offset(pud, addr); |
| |
| BUG_ON(pmd_sect(*pmd)); |
| |
| if (pmd_none(*pmd)) { |
| pte = pte_alloc_one_kernel(NULL, addr); |
| if (!pte) { |
| kvm_err("Cannot allocate Hyp pte\n"); |
| return -ENOMEM; |
| } |
| pmd_populate_kernel(NULL, pmd, pte); |
| } |
| |
| next = pmd_addr_end(addr, end); |
| |
| /* |
| * If pfn_base is NULL, we map kernel pages into HYP with the |
| * virtual address. Otherwise, this is considered an I/O |
| * mapping and we map the physical region starting at |
| * *pfn_base to [start, end[. |
| */ |
| if (!pfn_base) |
| create_hyp_pte_mappings(pmd, addr, next); |
| else |
| create_hyp_io_pte_mappings(pmd, addr, next, pfn_base); |
| } |
| |
| return 0; |
| } |
| |
| static int __create_hyp_mappings(void *from, void *to, unsigned long *pfn_base) |
| { |
| unsigned long start = (unsigned long)from; |
| unsigned long end = (unsigned long)to; |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| unsigned long addr, next; |
| int err = 0; |
| |
| BUG_ON(start > end); |
| if (start < PAGE_OFFSET) |
| return -EINVAL; |
| |
| mutex_lock(&kvm_hyp_pgd_mutex); |
| for (addr = start; addr < end; addr = next) { |
| pgd = hyp_pgd + pgd_index(addr); |
| pud = pud_offset(pgd, addr); |
| |
| if (pud_none_or_clear_bad(pud)) { |
| pmd = pmd_alloc_one(NULL, addr); |
| if (!pmd) { |
| kvm_err("Cannot allocate Hyp pmd\n"); |
| err = -ENOMEM; |
| goto out; |
| } |
| pud_populate(NULL, pud, pmd); |
| } |
| |
| next = pgd_addr_end(addr, end); |
| err = create_hyp_pmd_mappings(pud, addr, next, pfn_base); |
| if (err) |
| goto out; |
| } |
| out: |
| mutex_unlock(&kvm_hyp_pgd_mutex); |
| return err; |
| } |
| |
| /** |
| * create_hyp_mappings - map a kernel virtual address range in Hyp mode |
| * @from: The virtual kernel start address of the range |
| * @to: The virtual kernel end address of the range (exclusive) |
| * |
| * The same virtual address as the kernel virtual address is also used in |
| * Hyp-mode mapping to the same underlying physical pages. |
| * |
| * Note: Wrapping around zero in the "to" address is not supported. |
| */ |
| int create_hyp_mappings(void *from, void *to) |
| { |
| return __create_hyp_mappings(from, to, NULL); |
| } |
| |
| /** |
| * create_hyp_io_mappings - map a physical IO range in Hyp mode |
| * @from: The virtual HYP start address of the range |
| * @to: The virtual HYP end address of the range (exclusive) |
| * @addr: The physical start address which gets mapped |
| */ |
| int create_hyp_io_mappings(void *from, void *to, phys_addr_t addr) |
| { |
| unsigned long pfn = __phys_to_pfn(addr); |
| return __create_hyp_mappings(from, to, &pfn); |
| } |
| |
| /** |
| * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation. |
| * @kvm: The KVM struct pointer for the VM. |
| * |
| * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can |
| * support either full 40-bit input addresses or limited to 32-bit input |
| * addresses). Clears the allocated pages. |
| * |
| * Note we don't need locking here as this is only called when the VM is |
| * created, which can only be done once. |
| */ |
| int kvm_alloc_stage2_pgd(struct kvm *kvm) |
| { |
| pgd_t *pgd; |
| |
| if (kvm->arch.pgd != NULL) { |
| kvm_err("kvm_arch already initialized?\n"); |
| return -EINVAL; |
| } |
| |
| pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER); |
| if (!pgd) |
| return -ENOMEM; |
| |
| /* stage-2 pgd must be aligned to its size */ |
| VM_BUG_ON((unsigned long)pgd & (S2_PGD_SIZE - 1)); |
| |
| memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t)); |
| clean_dcache_area(pgd, PTRS_PER_S2_PGD * sizeof(pgd_t)); |
| kvm->arch.pgd = pgd; |
| |
| return 0; |
| } |
| |
| static void clear_pud_entry(pud_t *pud) |
| { |
| pmd_t *pmd_table = pmd_offset(pud, 0); |
| pud_clear(pud); |
| pmd_free(NULL, pmd_table); |
| put_page(virt_to_page(pud)); |
| } |
| |
| static void clear_pmd_entry(pmd_t *pmd) |
| { |
| pte_t *pte_table = pte_offset_kernel(pmd, 0); |
| pmd_clear(pmd); |
| pte_free_kernel(NULL, pte_table); |
| put_page(virt_to_page(pmd)); |
| } |
| |
| static bool pmd_empty(pmd_t *pmd) |
| { |
| struct page *pmd_page = virt_to_page(pmd); |
| return page_count(pmd_page) == 1; |
| } |
| |
| static void clear_pte_entry(pte_t *pte) |
| { |
| if (pte_present(*pte)) { |
| kvm_set_pte(pte, __pte(0)); |
| put_page(virt_to_page(pte)); |
| } |
| } |
| |
| static bool pte_empty(pte_t *pte) |
| { |
| struct page *pte_page = virt_to_page(pte); |
| return page_count(pte_page) == 1; |
| } |
| |
| /** |
| * unmap_stage2_range -- Clear stage2 page table entries to unmap a range |
| * @kvm: The VM pointer |
| * @start: The intermediate physical base address of the range to unmap |
| * @size: The size of the area to unmap |
| * |
| * Clear a range of stage-2 mappings, lowering the various ref-counts. Must |
| * be called while holding mmu_lock (unless for freeing the stage2 pgd before |
| * destroying the VM), otherwise another faulting VCPU may come in and mess |
| * with things behind our backs. |
| */ |
| static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| phys_addr_t addr = start, end = start + size; |
| u64 range; |
| |
| while (addr < end) { |
| pgd = kvm->arch.pgd + pgd_index(addr); |
| pud = pud_offset(pgd, addr); |
| if (pud_none(*pud)) { |
| addr += PUD_SIZE; |
| continue; |
| } |
| |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) { |
| addr += PMD_SIZE; |
| continue; |
| } |
| |
| pte = pte_offset_kernel(pmd, addr); |
| clear_pte_entry(pte); |
| range = PAGE_SIZE; |
| |
| /* If we emptied the pte, walk back up the ladder */ |
| if (pte_empty(pte)) { |
| clear_pmd_entry(pmd); |
| range = PMD_SIZE; |
| if (pmd_empty(pmd)) { |
| clear_pud_entry(pud); |
| range = PUD_SIZE; |
| } |
| } |
| |
| addr += range; |
| } |
| } |
| |
| /** |
| * kvm_free_stage2_pgd - free all stage-2 tables |
| * @kvm: The KVM struct pointer for the VM. |
| * |
| * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all |
| * underlying level-2 and level-3 tables before freeing the actual level-1 table |
| * and setting the struct pointer to NULL. |
| * |
| * Note we don't need locking here as this is only called when the VM is |
| * destroyed, which can only be done once. |
| */ |
| void kvm_free_stage2_pgd(struct kvm *kvm) |
| { |
| if (kvm->arch.pgd == NULL) |
| return; |
| |
| unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE); |
| free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER); |
| kvm->arch.pgd = NULL; |
| } |
| |
| |
| static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, |
| phys_addr_t addr, const pte_t *new_pte, bool iomap) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte, old_pte; |
| |
| /* Create 2nd stage page table mapping - Level 1 */ |
| pgd = kvm->arch.pgd + pgd_index(addr); |
| pud = pud_offset(pgd, addr); |
| if (pud_none(*pud)) { |
| if (!cache) |
| return 0; /* ignore calls from kvm_set_spte_hva */ |
| pmd = mmu_memory_cache_alloc(cache); |
| pud_populate(NULL, pud, pmd); |
| pmd += pmd_index(addr); |
| get_page(virt_to_page(pud)); |
| } else |
| pmd = pmd_offset(pud, addr); |
| |
| /* Create 2nd stage page table mapping - Level 2 */ |
| if (pmd_none(*pmd)) { |
| if (!cache) |
| return 0; /* ignore calls from kvm_set_spte_hva */ |
| pte = mmu_memory_cache_alloc(cache); |
| clean_pte_table(pte); |
| pmd_populate_kernel(NULL, pmd, pte); |
| pte += pte_index(addr); |
| get_page(virt_to_page(pmd)); |
| } else |
| pte = pte_offset_kernel(pmd, addr); |
| |
| if (iomap && pte_present(*pte)) |
| return -EFAULT; |
| |
| /* Create 2nd stage page table mapping - Level 3 */ |
| old_pte = *pte; |
| kvm_set_pte(pte, *new_pte); |
| if (pte_present(old_pte)) |
| kvm_tlb_flush_vmid(kvm); |
| else |
| get_page(virt_to_page(pte)); |
| |
| return 0; |
| } |
| |
| /** |
| * kvm_phys_addr_ioremap - map a device range to guest IPA |
| * |
| * @kvm: The KVM pointer |
| * @guest_ipa: The IPA at which to insert the mapping |
| * @pa: The physical address of the device |
| * @size: The size of the mapping |
| */ |
| int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, |
| phys_addr_t pa, unsigned long size) |
| { |
| phys_addr_t addr, end; |
| int ret = 0; |
| unsigned long pfn; |
| struct kvm_mmu_memory_cache cache = { 0, }; |
| |
| end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK; |
| pfn = __phys_to_pfn(pa); |
| |
| for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) { |
| pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE | L_PTE_S2_RDWR); |
| |
| ret = mmu_topup_memory_cache(&cache, 2, 2); |
| if (ret) |
| goto out; |
| spin_lock(&kvm->mmu_lock); |
| ret = stage2_set_pte(kvm, &cache, addr, &pte, true); |
| spin_unlock(&kvm->mmu_lock); |
| if (ret) |
| goto out; |
| |
| pfn++; |
| } |
| |
| out: |
| mmu_free_memory_cache(&cache); |
| return ret; |
| } |
| |
| static void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) |
| { |
| /* |
| * If we are going to insert an instruction page and the icache is |
| * either VIPT or PIPT, there is a potential problem where the host |
| * (or another VM) may have used the same page as this guest, and we |
| * read incorrect data from the icache. If we're using a PIPT cache, |
| * we can invalidate just that page, but if we are using a VIPT cache |
| * we need to invalidate the entire icache - damn shame - as written |
| * in the ARM ARM (DDI 0406C.b - Page B3-1393). |
| * |
| * VIVT caches are tagged using both the ASID and the VMID and doesn't |
| * need any kind of flushing (DDI 0406C.b - Page B3-1392). |
| */ |
| if (icache_is_pipt()) { |
| unsigned long hva = gfn_to_hva(kvm, gfn); |
| __cpuc_coherent_user_range(hva, hva + PAGE_SIZE); |
| } else if (!icache_is_vivt_asid_tagged()) { |
| /* any kind of VIPT cache */ |
| __flush_icache_all(); |
| } |
| } |
| |
| static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, |
| gfn_t gfn, struct kvm_memory_slot *memslot, |
| unsigned long fault_status) |
| { |
| pte_t new_pte; |
| pfn_t pfn; |
| int ret; |
| bool write_fault, writable; |
| unsigned long mmu_seq; |
| struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; |
| |
| write_fault = kvm_is_write_fault(vcpu->arch.hsr); |
| if (fault_status == FSC_PERM && !write_fault) { |
| kvm_err("Unexpected L2 read permission error\n"); |
| return -EFAULT; |
| } |
| |
| /* We need minimum second+third level pages */ |
| ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS); |
| if (ret) |
| return ret; |
| |
| mmu_seq = vcpu->kvm->mmu_notifier_seq; |
| /* |
| * Ensure the read of mmu_notifier_seq happens before we call |
| * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk |
| * the page we just got a reference to gets unmapped before we have a |
| * chance to grab the mmu_lock, which ensure that if the page gets |
| * unmapped afterwards, the call to kvm_unmap_hva will take it away |
| * from us again properly. This smp_rmb() interacts with the smp_wmb() |
| * in kvm_mmu_notifier_invalidate_<page|range_end>. |
| */ |
| smp_rmb(); |
| |
| pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable); |
| if (is_error_pfn(pfn)) |
| return -EFAULT; |
| |
| new_pte = pfn_pte(pfn, PAGE_S2); |
| coherent_icache_guest_page(vcpu->kvm, gfn); |
| |
| spin_lock(&vcpu->kvm->mmu_lock); |
| if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) |
| goto out_unlock; |
| if (writable) { |
| pte_val(new_pte) |= L_PTE_S2_RDWR; |
| kvm_set_pfn_dirty(pfn); |
| } |
| stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false); |
| |
| out_unlock: |
| spin_unlock(&vcpu->kvm->mmu_lock); |
| kvm_release_pfn_clean(pfn); |
| return 0; |
| } |
| |
| /** |
| * kvm_handle_guest_abort - handles all 2nd stage aborts |
| * @vcpu: the VCPU pointer |
| * @run: the kvm_run structure |
| * |
| * Any abort that gets to the host is almost guaranteed to be caused by a |
| * missing second stage translation table entry, which can mean that either the |
| * guest simply needs more memory and we must allocate an appropriate page or it |
| * can mean that the guest tried to access I/O memory, which is emulated by user |
| * space. The distinction is based on the IPA causing the fault and whether this |
| * memory region has been registered as standard RAM by user space. |
| */ |
| int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| unsigned long hsr_ec; |
| unsigned long fault_status; |
| phys_addr_t fault_ipa; |
| struct kvm_memory_slot *memslot; |
| bool is_iabt; |
| gfn_t gfn; |
| int ret, idx; |
| |
| hsr_ec = vcpu->arch.hsr >> HSR_EC_SHIFT; |
| is_iabt = (hsr_ec == HSR_EC_IABT); |
| fault_ipa = ((phys_addr_t)vcpu->arch.hpfar & HPFAR_MASK) << 8; |
| |
| trace_kvm_guest_fault(*vcpu_pc(vcpu), vcpu->arch.hsr, |
| vcpu->arch.hxfar, fault_ipa); |
| |
| /* Check the stage-2 fault is trans. fault or write fault */ |
| fault_status = (vcpu->arch.hsr & HSR_FSC_TYPE); |
| if (fault_status != FSC_FAULT && fault_status != FSC_PERM) { |
| kvm_err("Unsupported fault status: EC=%#lx DFCS=%#lx\n", |
| hsr_ec, fault_status); |
| return -EFAULT; |
| } |
| |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| |
| gfn = fault_ipa >> PAGE_SHIFT; |
| if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) { |
| if (is_iabt) { |
| /* Prefetch Abort on I/O address */ |
| kvm_inject_pabt(vcpu, vcpu->arch.hxfar); |
| ret = 1; |
| goto out_unlock; |
| } |
| |
| if (fault_status != FSC_FAULT) { |
| kvm_err("Unsupported fault status on io memory: %#lx\n", |
| fault_status); |
| ret = -EFAULT; |
| goto out_unlock; |
| } |
| |
| /* Adjust page offset */ |
| fault_ipa |= vcpu->arch.hxfar & ~PAGE_MASK; |
| ret = io_mem_abort(vcpu, run, fault_ipa); |
| goto out_unlock; |
| } |
| |
| memslot = gfn_to_memslot(vcpu->kvm, gfn); |
| if (!memslot->user_alloc) { |
| kvm_err("non user-alloc memslots not supported\n"); |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status); |
| if (ret == 0) |
| ret = 1; |
| out_unlock: |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| return ret; |
| } |
| |
| static void handle_hva_to_gpa(struct kvm *kvm, |
| unsigned long start, |
| unsigned long end, |
| void (*handler)(struct kvm *kvm, |
| gpa_t gpa, void *data), |
| void *data) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *memslot; |
| |
| slots = kvm_memslots(kvm); |
| |
| /* we only care about the pages that the guest sees */ |
| kvm_for_each_memslot(memslot, slots) { |
| unsigned long hva_start, hva_end; |
| gfn_t gfn, gfn_end; |
| |
| hva_start = max(start, memslot->userspace_addr); |
| hva_end = min(end, memslot->userspace_addr + |
| (memslot->npages << PAGE_SHIFT)); |
| if (hva_start >= hva_end) |
| continue; |
| |
| /* |
| * {gfn(page) | page intersects with [hva_start, hva_end)} = |
| * {gfn_start, gfn_start+1, ..., gfn_end-1}. |
| */ |
| gfn = hva_to_gfn_memslot(hva_start, memslot); |
| gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); |
| |
| for (; gfn < gfn_end; ++gfn) { |
| gpa_t gpa = gfn << PAGE_SHIFT; |
| handler(kvm, gpa, data); |
| } |
| } |
| } |
| |
| static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data) |
| { |
| unmap_stage2_range(kvm, gpa, PAGE_SIZE); |
| kvm_tlb_flush_vmid(kvm); |
| } |
| |
| int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) |
| { |
| unsigned long end = hva + PAGE_SIZE; |
| |
| if (!kvm->arch.pgd) |
| return 0; |
| |
| trace_kvm_unmap_hva(hva); |
| handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL); |
| return 0; |
| } |
| |
| int kvm_unmap_hva_range(struct kvm *kvm, |
| unsigned long start, unsigned long end) |
| { |
| if (!kvm->arch.pgd) |
| return 0; |
| |
| trace_kvm_unmap_hva_range(start, end); |
| handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); |
| return 0; |
| } |
| |
| static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data) |
| { |
| pte_t *pte = (pte_t *)data; |
| |
| stage2_set_pte(kvm, NULL, gpa, pte, false); |
| } |
| |
| |
| void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) |
| { |
| unsigned long end = hva + PAGE_SIZE; |
| pte_t stage2_pte; |
| |
| if (!kvm->arch.pgd) |
| return; |
| |
| trace_kvm_set_spte_hva(hva); |
| stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2); |
| handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte); |
| } |
| |
| void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) |
| { |
| mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); |
| } |
| |
| phys_addr_t kvm_mmu_get_httbr(void) |
| { |
| VM_BUG_ON(!virt_addr_valid(hyp_pgd)); |
| return virt_to_phys(hyp_pgd); |
| } |
| |
| int kvm_mmu_init(void) |
| { |
| if (!hyp_pgd) { |
| kvm_err("Hyp mode PGD not allocated\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * kvm_clear_idmap - remove all idmaps from the hyp pgd |
| * |
| * Free the underlying pmds for all pgds in range and clear the pgds (but |
| * don't free them) afterwards. |
| */ |
| void kvm_clear_hyp_idmap(void) |
| { |
| unsigned long addr, end; |
| unsigned long next; |
| pgd_t *pgd = hyp_pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| addr = virt_to_phys(__hyp_idmap_text_start); |
| end = virt_to_phys(__hyp_idmap_text_end); |
| |
| pgd += pgd_index(addr); |
| do { |
| next = pgd_addr_end(addr, end); |
| if (pgd_none_or_clear_bad(pgd)) |
| continue; |
| pud = pud_offset(pgd, addr); |
| pmd = pmd_offset(pud, addr); |
| |
| pud_clear(pud); |
| clean_pmd_entry(pmd); |
| pmd_free(NULL, (pmd_t *)((unsigned long)pmd & PAGE_MASK)); |
| } while (pgd++, addr = next, addr < end); |
| } |