| /* |
| * Copyright © 2012 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eugeni Dodonov <eugeni.dodonov@intel.com> |
| * |
| */ |
| |
| #include <linux/cpufreq.h> |
| #include <drm/drm_plane_helper.h> |
| #include "i915_drv.h" |
| #include "intel_drv.h" |
| #include "../../../platform/x86/intel_ips.h" |
| #include <linux/module.h> |
| #include <drm/drm_atomic_helper.h> |
| |
| /** |
| * DOC: RC6 |
| * |
| * RC6 is a special power stage which allows the GPU to enter an very |
| * low-voltage mode when idle, using down to 0V while at this stage. This |
| * stage is entered automatically when the GPU is idle when RC6 support is |
| * enabled, and as soon as new workload arises GPU wakes up automatically as well. |
| * |
| * There are different RC6 modes available in Intel GPU, which differentiate |
| * among each other with the latency required to enter and leave RC6 and |
| * voltage consumed by the GPU in different states. |
| * |
| * The combination of the following flags define which states GPU is allowed |
| * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and |
| * RC6pp is deepest RC6. Their support by hardware varies according to the |
| * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one |
| * which brings the most power savings; deeper states save more power, but |
| * require higher latency to switch to and wake up. |
| */ |
| #define INTEL_RC6_ENABLE (1<<0) |
| #define INTEL_RC6p_ENABLE (1<<1) |
| #define INTEL_RC6pp_ENABLE (1<<2) |
| |
| static void gen9_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */ |
| I915_WRITE(CHICKEN_PAR1_1, |
| I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP); |
| |
| /* |
| * Display WA#0390: skl,bxt,kbl,glk |
| * |
| * Must match Sampler, Pixel Back End, and Media |
| * (0xE194 bit 8, 0x7014 bit 13, 0x4DDC bits 27 and 31). |
| * |
| * Including bits outside the page in the hash would |
| * require 2 (or 4?) MiB alignment of resources. Just |
| * assume the defaul hashing mode which only uses bits |
| * within the page. |
| */ |
| I915_WRITE(CHICKEN_PAR1_1, |
| I915_READ(CHICKEN_PAR1_1) & ~SKL_RC_HASH_OUTSIDE); |
| |
| I915_WRITE(GEN8_CONFIG0, |
| I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES); |
| |
| /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */ |
| I915_WRITE(GEN8_CHICKEN_DCPR_1, |
| I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM); |
| |
| /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */ |
| /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */ |
| I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | |
| DISP_FBC_WM_DIS | |
| DISP_FBC_MEMORY_WAKE); |
| |
| /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */ |
| I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | |
| ILK_DPFC_DISABLE_DUMMY0); |
| |
| if (IS_SKYLAKE(dev_priv)) { |
| /* WaDisableDopClockGating */ |
| I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL) |
| & ~GEN7_DOP_CLOCK_GATE_ENABLE); |
| } |
| } |
| |
| static void bxt_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| gen9_init_clock_gating(dev_priv); |
| |
| /* WaDisableSDEUnitClockGating:bxt */ |
| I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | |
| GEN8_SDEUNIT_CLOCK_GATE_DISABLE); |
| |
| /* |
| * FIXME: |
| * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only. |
| */ |
| I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | |
| GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ); |
| |
| /* |
| * Wa: Backlight PWM may stop in the asserted state, causing backlight |
| * to stay fully on. |
| */ |
| I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | |
| PWM1_GATING_DIS | PWM2_GATING_DIS); |
| } |
| |
| static void glk_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| gen9_init_clock_gating(dev_priv); |
| |
| /* |
| * WaDisablePWMClockGating:glk |
| * Backlight PWM may stop in the asserted state, causing backlight |
| * to stay fully on. |
| */ |
| I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | |
| PWM1_GATING_DIS | PWM2_GATING_DIS); |
| |
| /* WaDDIIOTimeout:glk */ |
| if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) { |
| u32 val = I915_READ(CHICKEN_MISC_2); |
| val &= ~(GLK_CL0_PWR_DOWN | |
| GLK_CL1_PWR_DOWN | |
| GLK_CL2_PWR_DOWN); |
| I915_WRITE(CHICKEN_MISC_2, val); |
| } |
| |
| } |
| |
| static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv) |
| { |
| u32 tmp; |
| |
| tmp = I915_READ(CLKCFG); |
| |
| switch (tmp & CLKCFG_FSB_MASK) { |
| case CLKCFG_FSB_533: |
| dev_priv->fsb_freq = 533; /* 133*4 */ |
| break; |
| case CLKCFG_FSB_800: |
| dev_priv->fsb_freq = 800; /* 200*4 */ |
| break; |
| case CLKCFG_FSB_667: |
| dev_priv->fsb_freq = 667; /* 167*4 */ |
| break; |
| case CLKCFG_FSB_400: |
| dev_priv->fsb_freq = 400; /* 100*4 */ |
| break; |
| } |
| |
| switch (tmp & CLKCFG_MEM_MASK) { |
| case CLKCFG_MEM_533: |
| dev_priv->mem_freq = 533; |
| break; |
| case CLKCFG_MEM_667: |
| dev_priv->mem_freq = 667; |
| break; |
| case CLKCFG_MEM_800: |
| dev_priv->mem_freq = 800; |
| break; |
| } |
| |
| /* detect pineview DDR3 setting */ |
| tmp = I915_READ(CSHRDDR3CTL); |
| dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0; |
| } |
| |
| static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv) |
| { |
| u16 ddrpll, csipll; |
| |
| ddrpll = I915_READ16(DDRMPLL1); |
| csipll = I915_READ16(CSIPLL0); |
| |
| switch (ddrpll & 0xff) { |
| case 0xc: |
| dev_priv->mem_freq = 800; |
| break; |
| case 0x10: |
| dev_priv->mem_freq = 1066; |
| break; |
| case 0x14: |
| dev_priv->mem_freq = 1333; |
| break; |
| case 0x18: |
| dev_priv->mem_freq = 1600; |
| break; |
| default: |
| DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n", |
| ddrpll & 0xff); |
| dev_priv->mem_freq = 0; |
| break; |
| } |
| |
| dev_priv->ips.r_t = dev_priv->mem_freq; |
| |
| switch (csipll & 0x3ff) { |
| case 0x00c: |
| dev_priv->fsb_freq = 3200; |
| break; |
| case 0x00e: |
| dev_priv->fsb_freq = 3733; |
| break; |
| case 0x010: |
| dev_priv->fsb_freq = 4266; |
| break; |
| case 0x012: |
| dev_priv->fsb_freq = 4800; |
| break; |
| case 0x014: |
| dev_priv->fsb_freq = 5333; |
| break; |
| case 0x016: |
| dev_priv->fsb_freq = 5866; |
| break; |
| case 0x018: |
| dev_priv->fsb_freq = 6400; |
| break; |
| default: |
| DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n", |
| csipll & 0x3ff); |
| dev_priv->fsb_freq = 0; |
| break; |
| } |
| |
| if (dev_priv->fsb_freq == 3200) { |
| dev_priv->ips.c_m = 0; |
| } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) { |
| dev_priv->ips.c_m = 1; |
| } else { |
| dev_priv->ips.c_m = 2; |
| } |
| } |
| |
| static const struct cxsr_latency cxsr_latency_table[] = { |
| {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ |
| {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ |
| {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ |
| {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ |
| {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ |
| |
| {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ |
| {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ |
| {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ |
| {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ |
| {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ |
| |
| {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ |
| {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ |
| {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ |
| {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ |
| {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ |
| |
| {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ |
| {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ |
| {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ |
| {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ |
| {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ |
| |
| {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ |
| {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ |
| {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ |
| {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ |
| {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ |
| |
| {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ |
| {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ |
| {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ |
| {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ |
| {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ |
| }; |
| |
| static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop, |
| bool is_ddr3, |
| int fsb, |
| int mem) |
| { |
| const struct cxsr_latency *latency; |
| int i; |
| |
| if (fsb == 0 || mem == 0) |
| return NULL; |
| |
| for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { |
| latency = &cxsr_latency_table[i]; |
| if (is_desktop == latency->is_desktop && |
| is_ddr3 == latency->is_ddr3 && |
| fsb == latency->fsb_freq && mem == latency->mem_freq) |
| return latency; |
| } |
| |
| DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); |
| |
| return NULL; |
| } |
| |
| static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable) |
| { |
| u32 val; |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); |
| if (enable) |
| val &= ~FORCE_DDR_HIGH_FREQ; |
| else |
| val |= FORCE_DDR_HIGH_FREQ; |
| val &= ~FORCE_DDR_LOW_FREQ; |
| val |= FORCE_DDR_FREQ_REQ_ACK; |
| vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); |
| |
| if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & |
| FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) |
| DRM_ERROR("timed out waiting for Punit DDR DVFS request\n"); |
| |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| } |
| |
| static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable) |
| { |
| u32 val; |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); |
| if (enable) |
| val |= DSP_MAXFIFO_PM5_ENABLE; |
| else |
| val &= ~DSP_MAXFIFO_PM5_ENABLE; |
| vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); |
| |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| } |
| |
| #define FW_WM(value, plane) \ |
| (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK) |
| |
| static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) |
| { |
| bool was_enabled; |
| u32 val; |
| |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { |
| was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; |
| I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0); |
| POSTING_READ(FW_BLC_SELF_VLV); |
| } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) { |
| was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; |
| I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0); |
| POSTING_READ(FW_BLC_SELF); |
| } else if (IS_PINEVIEW(dev_priv)) { |
| val = I915_READ(DSPFW3); |
| was_enabled = val & PINEVIEW_SELF_REFRESH_EN; |
| if (enable) |
| val |= PINEVIEW_SELF_REFRESH_EN; |
| else |
| val &= ~PINEVIEW_SELF_REFRESH_EN; |
| I915_WRITE(DSPFW3, val); |
| POSTING_READ(DSPFW3); |
| } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) { |
| was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; |
| val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) : |
| _MASKED_BIT_DISABLE(FW_BLC_SELF_EN); |
| I915_WRITE(FW_BLC_SELF, val); |
| POSTING_READ(FW_BLC_SELF); |
| } else if (IS_I915GM(dev_priv)) { |
| /* |
| * FIXME can't find a bit like this for 915G, and |
| * and yet it does have the related watermark in |
| * FW_BLC_SELF. What's going on? |
| */ |
| was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; |
| val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) : |
| _MASKED_BIT_DISABLE(INSTPM_SELF_EN); |
| I915_WRITE(INSTPM, val); |
| POSTING_READ(INSTPM); |
| } else { |
| return false; |
| } |
| |
| trace_intel_memory_cxsr(dev_priv, was_enabled, enable); |
| |
| DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n", |
| enableddisabled(enable), |
| enableddisabled(was_enabled)); |
| |
| return was_enabled; |
| } |
| |
| /** |
| * intel_set_memory_cxsr - Configure CxSR state |
| * @dev_priv: i915 device |
| * @enable: Allow vs. disallow CxSR |
| * |
| * Allow or disallow the system to enter a special CxSR |
| * (C-state self refresh) state. What typically happens in CxSR mode |
| * is that several display FIFOs may get combined into a single larger |
| * FIFO for a particular plane (so called max FIFO mode) to allow the |
| * system to defer memory fetches longer, and the memory will enter |
| * self refresh. |
| * |
| * Note that enabling CxSR does not guarantee that the system enter |
| * this special mode, nor does it guarantee that the system stays |
| * in that mode once entered. So this just allows/disallows the system |
| * to autonomously utilize the CxSR mode. Other factors such as core |
| * C-states will affect when/if the system actually enters/exits the |
| * CxSR mode. |
| * |
| * Note that on VLV/CHV this actually only controls the max FIFO mode, |
| * and the system is free to enter/exit memory self refresh at any time |
| * even when the use of CxSR has been disallowed. |
| * |
| * While the system is actually in the CxSR/max FIFO mode, some plane |
| * control registers will not get latched on vblank. Thus in order to |
| * guarantee the system will respond to changes in the plane registers |
| * we must always disallow CxSR prior to making changes to those registers. |
| * Unfortunately the system will re-evaluate the CxSR conditions at |
| * frame start which happens after vblank start (which is when the plane |
| * registers would get latched), so we can't proceed with the plane update |
| * during the same frame where we disallowed CxSR. |
| * |
| * Certain platforms also have a deeper HPLL SR mode. Fortunately the |
| * HPLL SR mode depends on CxSR itself, so we don't have to hand hold |
| * the hardware w.r.t. HPLL SR when writing to plane registers. |
| * Disallowing just CxSR is sufficient. |
| */ |
| bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) |
| { |
| bool ret; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| ret = _intel_set_memory_cxsr(dev_priv, enable); |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| dev_priv->wm.vlv.cxsr = enable; |
| else if (IS_G4X(dev_priv)) |
| dev_priv->wm.g4x.cxsr = enable; |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| |
| return ret; |
| } |
| |
| /* |
| * Latency for FIFO fetches is dependent on several factors: |
| * - memory configuration (speed, channels) |
| * - chipset |
| * - current MCH state |
| * It can be fairly high in some situations, so here we assume a fairly |
| * pessimal value. It's a tradeoff between extra memory fetches (if we |
| * set this value too high, the FIFO will fetch frequently to stay full) |
| * and power consumption (set it too low to save power and we might see |
| * FIFO underruns and display "flicker"). |
| * |
| * A value of 5us seems to be a good balance; safe for very low end |
| * platforms but not overly aggressive on lower latency configs. |
| */ |
| static const int pessimal_latency_ns = 5000; |
| |
| #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \ |
| ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8)) |
| |
| static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; |
| enum pipe pipe = crtc->pipe; |
| int sprite0_start, sprite1_start; |
| |
| switch (pipe) { |
| uint32_t dsparb, dsparb2, dsparb3; |
| case PIPE_A: |
| dsparb = I915_READ(DSPARB); |
| dsparb2 = I915_READ(DSPARB2); |
| sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0); |
| sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4); |
| break; |
| case PIPE_B: |
| dsparb = I915_READ(DSPARB); |
| dsparb2 = I915_READ(DSPARB2); |
| sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8); |
| sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12); |
| break; |
| case PIPE_C: |
| dsparb2 = I915_READ(DSPARB2); |
| dsparb3 = I915_READ(DSPARB3); |
| sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16); |
| sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20); |
| break; |
| default: |
| MISSING_CASE(pipe); |
| return; |
| } |
| |
| fifo_state->plane[PLANE_PRIMARY] = sprite0_start; |
| fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start; |
| fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start; |
| fifo_state->plane[PLANE_CURSOR] = 63; |
| } |
| |
| static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane) |
| { |
| uint32_t dsparb = I915_READ(DSPARB); |
| int size; |
| |
| size = dsparb & 0x7f; |
| if (plane) |
| size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; |
| |
| DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, |
| plane ? "B" : "A", size); |
| |
| return size; |
| } |
| |
| static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane) |
| { |
| uint32_t dsparb = I915_READ(DSPARB); |
| int size; |
| |
| size = dsparb & 0x1ff; |
| if (plane) |
| size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; |
| size >>= 1; /* Convert to cachelines */ |
| |
| DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, |
| plane ? "B" : "A", size); |
| |
| return size; |
| } |
| |
| static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane) |
| { |
| uint32_t dsparb = I915_READ(DSPARB); |
| int size; |
| |
| size = dsparb & 0x7f; |
| size >>= 2; /* Convert to cachelines */ |
| |
| DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, |
| plane ? "B" : "A", |
| size); |
| |
| return size; |
| } |
| |
| /* Pineview has different values for various configs */ |
| static const struct intel_watermark_params pineview_display_wm = { |
| .fifo_size = PINEVIEW_DISPLAY_FIFO, |
| .max_wm = PINEVIEW_MAX_WM, |
| .default_wm = PINEVIEW_DFT_WM, |
| .guard_size = PINEVIEW_GUARD_WM, |
| .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params pineview_display_hplloff_wm = { |
| .fifo_size = PINEVIEW_DISPLAY_FIFO, |
| .max_wm = PINEVIEW_MAX_WM, |
| .default_wm = PINEVIEW_DFT_HPLLOFF_WM, |
| .guard_size = PINEVIEW_GUARD_WM, |
| .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params pineview_cursor_wm = { |
| .fifo_size = PINEVIEW_CURSOR_FIFO, |
| .max_wm = PINEVIEW_CURSOR_MAX_WM, |
| .default_wm = PINEVIEW_CURSOR_DFT_WM, |
| .guard_size = PINEVIEW_CURSOR_GUARD_WM, |
| .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params pineview_cursor_hplloff_wm = { |
| .fifo_size = PINEVIEW_CURSOR_FIFO, |
| .max_wm = PINEVIEW_CURSOR_MAX_WM, |
| .default_wm = PINEVIEW_CURSOR_DFT_WM, |
| .guard_size = PINEVIEW_CURSOR_GUARD_WM, |
| .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params i965_cursor_wm_info = { |
| .fifo_size = I965_CURSOR_FIFO, |
| .max_wm = I965_CURSOR_MAX_WM, |
| .default_wm = I965_CURSOR_DFT_WM, |
| .guard_size = 2, |
| .cacheline_size = I915_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params i945_wm_info = { |
| .fifo_size = I945_FIFO_SIZE, |
| .max_wm = I915_MAX_WM, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I915_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params i915_wm_info = { |
| .fifo_size = I915_FIFO_SIZE, |
| .max_wm = I915_MAX_WM, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I915_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params i830_a_wm_info = { |
| .fifo_size = I855GM_FIFO_SIZE, |
| .max_wm = I915_MAX_WM, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I830_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params i830_bc_wm_info = { |
| .fifo_size = I855GM_FIFO_SIZE, |
| .max_wm = I915_MAX_WM/2, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I830_FIFO_LINE_SIZE, |
| }; |
| static const struct intel_watermark_params i845_wm_info = { |
| .fifo_size = I830_FIFO_SIZE, |
| .max_wm = I915_MAX_WM, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I830_FIFO_LINE_SIZE, |
| }; |
| |
| /** |
| * intel_wm_method1 - Method 1 / "small buffer" watermark formula |
| * @pixel_rate: Pipe pixel rate in kHz |
| * @cpp: Plane bytes per pixel |
| * @latency: Memory wakeup latency in 0.1us units |
| * |
| * Compute the watermark using the method 1 or "small buffer" |
| * formula. The caller may additonally add extra cachelines |
| * to account for TLB misses and clock crossings. |
| * |
| * This method is concerned with the short term drain rate |
| * of the FIFO, ie. it does not account for blanking periods |
| * which would effectively reduce the average drain rate across |
| * a longer period. The name "small" refers to the fact the |
| * FIFO is relatively small compared to the amount of data |
| * fetched. |
| * |
| * The FIFO level vs. time graph might look something like: |
| * |
| * |\ |\ |
| * | \ | \ |
| * __---__---__ (- plane active, _ blanking) |
| * -> time |
| * |
| * or perhaps like this: |
| * |
| * |\|\ |\|\ |
| * __----__----__ (- plane active, _ blanking) |
| * -> time |
| * |
| * Returns: |
| * The watermark in bytes |
| */ |
| static unsigned int intel_wm_method1(unsigned int pixel_rate, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| uint64_t ret; |
| |
| ret = (uint64_t) pixel_rate * cpp * latency; |
| ret = DIV_ROUND_UP_ULL(ret, 10000); |
| |
| return ret; |
| } |
| |
| /** |
| * intel_wm_method2 - Method 2 / "large buffer" watermark formula |
| * @pixel_rate: Pipe pixel rate in kHz |
| * @htotal: Pipe horizontal total |
| * @width: Plane width in pixels |
| * @cpp: Plane bytes per pixel |
| * @latency: Memory wakeup latency in 0.1us units |
| * |
| * Compute the watermark using the method 2 or "large buffer" |
| * formula. The caller may additonally add extra cachelines |
| * to account for TLB misses and clock crossings. |
| * |
| * This method is concerned with the long term drain rate |
| * of the FIFO, ie. it does account for blanking periods |
| * which effectively reduce the average drain rate across |
| * a longer period. The name "large" refers to the fact the |
| * FIFO is relatively large compared to the amount of data |
| * fetched. |
| * |
| * The FIFO level vs. time graph might look something like: |
| * |
| * |\___ |\___ |
| * | \___ | \___ |
| * | \ | \ |
| * __ --__--__--__--__--__--__ (- plane active, _ blanking) |
| * -> time |
| * |
| * Returns: |
| * The watermark in bytes |
| */ |
| static unsigned int intel_wm_method2(unsigned int pixel_rate, |
| unsigned int htotal, |
| unsigned int width, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| unsigned int ret; |
| |
| /* |
| * FIXME remove once all users are computing |
| * watermarks in the correct place. |
| */ |
| if (WARN_ON_ONCE(htotal == 0)) |
| htotal = 1; |
| |
| ret = (latency * pixel_rate) / (htotal * 10000); |
| ret = (ret + 1) * width * cpp; |
| |
| return ret; |
| } |
| |
| /** |
| * intel_calculate_wm - calculate watermark level |
| * @pixel_rate: pixel clock |
| * @wm: chip FIFO params |
| * @cpp: bytes per pixel |
| * @latency_ns: memory latency for the platform |
| * |
| * Calculate the watermark level (the level at which the display plane will |
| * start fetching from memory again). Each chip has a different display |
| * FIFO size and allocation, so the caller needs to figure that out and pass |
| * in the correct intel_watermark_params structure. |
| * |
| * As the pixel clock runs, the FIFO will be drained at a rate that depends |
| * on the pixel size. When it reaches the watermark level, it'll start |
| * fetching FIFO line sized based chunks from memory until the FIFO fills |
| * past the watermark point. If the FIFO drains completely, a FIFO underrun |
| * will occur, and a display engine hang could result. |
| */ |
| static unsigned int intel_calculate_wm(int pixel_rate, |
| const struct intel_watermark_params *wm, |
| int fifo_size, int cpp, |
| unsigned int latency_ns) |
| { |
| int entries, wm_size; |
| |
| /* |
| * Note: we need to make sure we don't overflow for various clock & |
| * latency values. |
| * clocks go from a few thousand to several hundred thousand. |
| * latency is usually a few thousand |
| */ |
| entries = intel_wm_method1(pixel_rate, cpp, |
| latency_ns / 100); |
| entries = DIV_ROUND_UP(entries, wm->cacheline_size) + |
| wm->guard_size; |
| DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries); |
| |
| wm_size = fifo_size - entries; |
| DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size); |
| |
| /* Don't promote wm_size to unsigned... */ |
| if (wm_size > wm->max_wm) |
| wm_size = wm->max_wm; |
| if (wm_size <= 0) |
| wm_size = wm->default_wm; |
| |
| /* |
| * Bspec seems to indicate that the value shouldn't be lower than |
| * 'burst size + 1'. Certainly 830 is quite unhappy with low values. |
| * Lets go for 8 which is the burst size since certain platforms |
| * already use a hardcoded 8 (which is what the spec says should be |
| * done). |
| */ |
| if (wm_size <= 8) |
| wm_size = 8; |
| |
| return wm_size; |
| } |
| |
| static bool is_disabling(int old, int new, int threshold) |
| { |
| return old >= threshold && new < threshold; |
| } |
| |
| static bool is_enabling(int old, int new, int threshold) |
| { |
| return old < threshold && new >= threshold; |
| } |
| |
| static int intel_wm_num_levels(struct drm_i915_private *dev_priv) |
| { |
| return dev_priv->wm.max_level + 1; |
| } |
| |
| static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->base.plane); |
| |
| /* FIXME check the 'enable' instead */ |
| if (!crtc_state->base.active) |
| return false; |
| |
| /* |
| * Treat cursor with fb as always visible since cursor updates |
| * can happen faster than the vrefresh rate, and the current |
| * watermark code doesn't handle that correctly. Cursor updates |
| * which set/clear the fb or change the cursor size are going |
| * to get throttled by intel_legacy_cursor_update() to work |
| * around this problem with the watermark code. |
| */ |
| if (plane->id == PLANE_CURSOR) |
| return plane_state->base.fb != NULL; |
| else |
| return plane_state->base.visible; |
| } |
| |
| static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv) |
| { |
| struct intel_crtc *crtc, *enabled = NULL; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| if (intel_crtc_active(crtc)) { |
| if (enabled) |
| return NULL; |
| enabled = crtc; |
| } |
| } |
| |
| return enabled; |
| } |
| |
| static void pineview_update_wm(struct intel_crtc *unused_crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); |
| struct intel_crtc *crtc; |
| const struct cxsr_latency *latency; |
| u32 reg; |
| unsigned int wm; |
| |
| latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv), |
| dev_priv->is_ddr3, |
| dev_priv->fsb_freq, |
| dev_priv->mem_freq); |
| if (!latency) { |
| DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); |
| intel_set_memory_cxsr(dev_priv, false); |
| return; |
| } |
| |
| crtc = single_enabled_crtc(dev_priv); |
| if (crtc) { |
| const struct drm_display_mode *adjusted_mode = |
| &crtc->config->base.adjusted_mode; |
| const struct drm_framebuffer *fb = |
| crtc->base.primary->state->fb; |
| int cpp = fb->format->cpp[0]; |
| int clock = adjusted_mode->crtc_clock; |
| |
| /* Display SR */ |
| wm = intel_calculate_wm(clock, &pineview_display_wm, |
| pineview_display_wm.fifo_size, |
| cpp, latency->display_sr); |
| reg = I915_READ(DSPFW1); |
| reg &= ~DSPFW_SR_MASK; |
| reg |= FW_WM(wm, SR); |
| I915_WRITE(DSPFW1, reg); |
| DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg); |
| |
| /* cursor SR */ |
| wm = intel_calculate_wm(clock, &pineview_cursor_wm, |
| pineview_display_wm.fifo_size, |
| 4, latency->cursor_sr); |
| reg = I915_READ(DSPFW3); |
| reg &= ~DSPFW_CURSOR_SR_MASK; |
| reg |= FW_WM(wm, CURSOR_SR); |
| I915_WRITE(DSPFW3, reg); |
| |
| /* Display HPLL off SR */ |
| wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm, |
| pineview_display_hplloff_wm.fifo_size, |
| cpp, latency->display_hpll_disable); |
| reg = I915_READ(DSPFW3); |
| reg &= ~DSPFW_HPLL_SR_MASK; |
| reg |= FW_WM(wm, HPLL_SR); |
| I915_WRITE(DSPFW3, reg); |
| |
| /* cursor HPLL off SR */ |
| wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, |
| pineview_display_hplloff_wm.fifo_size, |
| 4, latency->cursor_hpll_disable); |
| reg = I915_READ(DSPFW3); |
| reg &= ~DSPFW_HPLL_CURSOR_MASK; |
| reg |= FW_WM(wm, HPLL_CURSOR); |
| I915_WRITE(DSPFW3, reg); |
| DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg); |
| |
| intel_set_memory_cxsr(dev_priv, true); |
| } else { |
| intel_set_memory_cxsr(dev_priv, false); |
| } |
| } |
| |
| /* |
| * Documentation says: |
| * "If the line size is small, the TLB fetches can get in the way of the |
| * data fetches, causing some lag in the pixel data return which is not |
| * accounted for in the above formulas. The following adjustment only |
| * needs to be applied if eight whole lines fit in the buffer at once. |
| * The WM is adjusted upwards by the difference between the FIFO size |
| * and the size of 8 whole lines. This adjustment is always performed |
| * in the actual pixel depth regardless of whether FBC is enabled or not." |
| */ |
| static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp) |
| { |
| int tlb_miss = fifo_size * 64 - width * cpp * 8; |
| |
| return max(0, tlb_miss); |
| } |
| |
| static void g4x_write_wm_values(struct drm_i915_private *dev_priv, |
| const struct g4x_wm_values *wm) |
| { |
| enum pipe pipe; |
| |
| for_each_pipe(dev_priv, pipe) |
| trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm); |
| |
| I915_WRITE(DSPFW1, |
| FW_WM(wm->sr.plane, SR) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); |
| I915_WRITE(DSPFW2, |
| (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) | |
| FW_WM(wm->sr.fbc, FBC_SR) | |
| FW_WM(wm->hpll.fbc, FBC_HPLL_SR) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); |
| I915_WRITE(DSPFW3, |
| (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) | |
| FW_WM(wm->sr.cursor, CURSOR_SR) | |
| FW_WM(wm->hpll.cursor, HPLL_CURSOR) | |
| FW_WM(wm->hpll.plane, HPLL_SR)); |
| |
| POSTING_READ(DSPFW1); |
| } |
| |
| #define FW_WM_VLV(value, plane) \ |
| (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV) |
| |
| static void vlv_write_wm_values(struct drm_i915_private *dev_priv, |
| const struct vlv_wm_values *wm) |
| { |
| enum pipe pipe; |
| |
| for_each_pipe(dev_priv, pipe) { |
| trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm); |
| |
| I915_WRITE(VLV_DDL(pipe), |
| (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) | |
| (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) | |
| (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) | |
| (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT)); |
| } |
| |
| /* |
| * Zero the (unused) WM1 watermarks, and also clear all the |
| * high order bits so that there are no out of bounds values |
| * present in the registers during the reprogramming. |
| */ |
| I915_WRITE(DSPHOWM, 0); |
| I915_WRITE(DSPHOWM1, 0); |
| I915_WRITE(DSPFW4, 0); |
| I915_WRITE(DSPFW5, 0); |
| I915_WRITE(DSPFW6, 0); |
| |
| I915_WRITE(DSPFW1, |
| FW_WM(wm->sr.plane, SR) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | |
| FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); |
| I915_WRITE(DSPFW2, |
| FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | |
| FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); |
| I915_WRITE(DSPFW3, |
| FW_WM(wm->sr.cursor, CURSOR_SR)); |
| |
| if (IS_CHERRYVIEW(dev_priv)) { |
| I915_WRITE(DSPFW7_CHV, |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); |
| I915_WRITE(DSPFW8_CHV, |
| FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) | |
| FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE)); |
| I915_WRITE(DSPFW9_CHV, |
| FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) | |
| FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC)); |
| I915_WRITE(DSPHOWM, |
| FW_WM(wm->sr.plane >> 9, SR_HI) | |
| FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) | |
| FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) | |
| FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); |
| } else { |
| I915_WRITE(DSPFW7, |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); |
| I915_WRITE(DSPHOWM, |
| FW_WM(wm->sr.plane >> 9, SR_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); |
| } |
| |
| POSTING_READ(DSPFW1); |
| } |
| |
| #undef FW_WM_VLV |
| |
| static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv) |
| { |
| /* all latencies in usec */ |
| dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5; |
| dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12; |
| dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35; |
| |
| dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL; |
| } |
| |
| static int g4x_plane_fifo_size(enum plane_id plane_id, int level) |
| { |
| /* |
| * DSPCNTR[13] supposedly controls whether the |
| * primary plane can use the FIFO space otherwise |
| * reserved for the sprite plane. It's not 100% clear |
| * what the actual FIFO size is, but it looks like we |
| * can happily set both primary and sprite watermarks |
| * up to 127 cachelines. So that would seem to mean |
| * that either DSPCNTR[13] doesn't do anything, or that |
| * the total FIFO is >= 256 cachelines in size. Either |
| * way, we don't seem to have to worry about this |
| * repartitioning as the maximum watermark value the |
| * register can hold for each plane is lower than the |
| * minimum FIFO size. |
| */ |
| switch (plane_id) { |
| case PLANE_CURSOR: |
| return 63; |
| case PLANE_PRIMARY: |
| return level == G4X_WM_LEVEL_NORMAL ? 127 : 511; |
| case PLANE_SPRITE0: |
| return level == G4X_WM_LEVEL_NORMAL ? 127 : 0; |
| default: |
| MISSING_CASE(plane_id); |
| return 0; |
| } |
| } |
| |
| static int g4x_fbc_fifo_size(int level) |
| { |
| switch (level) { |
| case G4X_WM_LEVEL_SR: |
| return 7; |
| case G4X_WM_LEVEL_HPLL: |
| return 15; |
| default: |
| MISSING_CASE(level); |
| return 0; |
| } |
| } |
| |
| static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| int level) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->base.plane); |
| struct drm_i915_private *dev_priv = to_i915(plane->base.dev); |
| const struct drm_display_mode *adjusted_mode = |
| &crtc_state->base.adjusted_mode; |
| int clock, htotal, cpp, width, wm; |
| int latency = dev_priv->wm.pri_latency[level] * 10; |
| |
| if (latency == 0) |
| return USHRT_MAX; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) |
| return 0; |
| |
| /* |
| * Not 100% sure which way ELK should go here as the |
| * spec only says CL/CTG should assume 32bpp and BW |
| * doesn't need to. But as these things followed the |
| * mobile vs. desktop lines on gen3 as well, let's |
| * assume ELK doesn't need this. |
| * |
| * The spec also fails to list such a restriction for |
| * the HPLL watermark, which seems a little strange. |
| * Let's use 32bpp for the HPLL watermark as well. |
| */ |
| if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY && |
| level != G4X_WM_LEVEL_NORMAL) |
| cpp = 4; |
| else |
| cpp = plane_state->base.fb->format->cpp[0]; |
| |
| clock = adjusted_mode->crtc_clock; |
| htotal = adjusted_mode->crtc_htotal; |
| |
| if (plane->id == PLANE_CURSOR) |
| width = plane_state->base.crtc_w; |
| else |
| width = drm_rect_width(&plane_state->base.dst); |
| |
| if (plane->id == PLANE_CURSOR) { |
| wm = intel_wm_method2(clock, htotal, width, cpp, latency); |
| } else if (plane->id == PLANE_PRIMARY && |
| level == G4X_WM_LEVEL_NORMAL) { |
| wm = intel_wm_method1(clock, cpp, latency); |
| } else { |
| int small, large; |
| |
| small = intel_wm_method1(clock, cpp, latency); |
| large = intel_wm_method2(clock, htotal, width, cpp, latency); |
| |
| wm = min(small, large); |
| } |
| |
| wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level), |
| width, cpp); |
| |
| wm = DIV_ROUND_UP(wm, 64) + 2; |
| |
| return min_t(int, wm, USHRT_MAX); |
| } |
| |
| static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state, |
| int level, enum plane_id plane_id, u16 value) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| bool dirty = false; |
| |
| for (; level < intel_wm_num_levels(dev_priv); level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; |
| |
| dirty |= raw->plane[plane_id] != value; |
| raw->plane[plane_id] = value; |
| } |
| |
| return dirty; |
| } |
| |
| static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state, |
| int level, u16 value) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| bool dirty = false; |
| |
| /* NORMAL level doesn't have an FBC watermark */ |
| level = max(level, G4X_WM_LEVEL_SR); |
| |
| for (; level < intel_wm_num_levels(dev_priv); level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; |
| |
| dirty |= raw->fbc != value; |
| raw->fbc = value; |
| } |
| |
| return dirty; |
| } |
| |
| static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate, |
| const struct intel_plane_state *pstate, |
| uint32_t pri_val); |
| |
| static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->base.plane); |
| int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); |
| enum plane_id plane_id = plane->id; |
| bool dirty = false; |
| int level; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) { |
| dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0); |
| if (plane_id == PLANE_PRIMARY) |
| dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0); |
| goto out; |
| } |
| |
| for (level = 0; level < num_levels; level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; |
| int wm, max_wm; |
| |
| wm = g4x_compute_wm(crtc_state, plane_state, level); |
| max_wm = g4x_plane_fifo_size(plane_id, level); |
| |
| if (wm > max_wm) |
| break; |
| |
| dirty |= raw->plane[plane_id] != wm; |
| raw->plane[plane_id] = wm; |
| |
| if (plane_id != PLANE_PRIMARY || |
| level == G4X_WM_LEVEL_NORMAL) |
| continue; |
| |
| wm = ilk_compute_fbc_wm(crtc_state, plane_state, |
| raw->plane[plane_id]); |
| max_wm = g4x_fbc_fifo_size(level); |
| |
| /* |
| * FBC wm is not mandatory as we |
| * can always just disable its use. |
| */ |
| if (wm > max_wm) |
| wm = USHRT_MAX; |
| |
| dirty |= raw->fbc != wm; |
| raw->fbc = wm; |
| } |
| |
| /* mark watermarks as invalid */ |
| dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); |
| |
| if (plane_id == PLANE_PRIMARY) |
| dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); |
| |
| out: |
| if (dirty) { |
| DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n", |
| plane->base.name, |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id], |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id], |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]); |
| |
| if (plane_id == PLANE_PRIMARY) |
| DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n", |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc, |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc); |
| } |
| |
| return dirty; |
| } |
| |
| static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, |
| enum plane_id plane_id, int level) |
| { |
| const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; |
| |
| return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level); |
| } |
| |
| static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, |
| int level) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| |
| if (level > dev_priv->wm.max_level) |
| return false; |
| |
| return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && |
| g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && |
| g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); |
| } |
| |
| /* mark all levels starting from 'level' as invalid */ |
| static void g4x_invalidate_wms(struct intel_crtc *crtc, |
| struct g4x_wm_state *wm_state, int level) |
| { |
| if (level <= G4X_WM_LEVEL_NORMAL) { |
| enum plane_id plane_id; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| wm_state->wm.plane[plane_id] = USHRT_MAX; |
| } |
| |
| if (level <= G4X_WM_LEVEL_SR) { |
| wm_state->cxsr = false; |
| wm_state->sr.cursor = USHRT_MAX; |
| wm_state->sr.plane = USHRT_MAX; |
| wm_state->sr.fbc = USHRT_MAX; |
| } |
| |
| if (level <= G4X_WM_LEVEL_HPLL) { |
| wm_state->hpll_en = false; |
| wm_state->hpll.cursor = USHRT_MAX; |
| wm_state->hpll.plane = USHRT_MAX; |
| wm_state->hpll.fbc = USHRT_MAX; |
| } |
| } |
| |
| static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct intel_atomic_state *state = |
| to_intel_atomic_state(crtc_state->base.state); |
| struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; |
| int num_active_planes = hweight32(crtc_state->active_planes & |
| ~BIT(PLANE_CURSOR)); |
| const struct g4x_pipe_wm *raw; |
| struct intel_plane_state *plane_state; |
| struct intel_plane *plane; |
| enum plane_id plane_id; |
| int i, level; |
| unsigned int dirty = 0; |
| |
| for_each_intel_plane_in_state(state, plane, plane_state, i) { |
| const struct intel_plane_state *old_plane_state = |
| to_intel_plane_state(plane->base.state); |
| |
| if (plane_state->base.crtc != &crtc->base && |
| old_plane_state->base.crtc != &crtc->base) |
| continue; |
| |
| if (g4x_raw_plane_wm_compute(crtc_state, plane_state)) |
| dirty |= BIT(plane->id); |
| } |
| |
| if (!dirty) |
| return 0; |
| |
| level = G4X_WM_LEVEL_NORMAL; |
| if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| wm_state->wm.plane[plane_id] = raw->plane[plane_id]; |
| |
| level = G4X_WM_LEVEL_SR; |
| |
| if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| wm_state->sr.plane = raw->plane[PLANE_PRIMARY]; |
| wm_state->sr.cursor = raw->plane[PLANE_CURSOR]; |
| wm_state->sr.fbc = raw->fbc; |
| |
| wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY); |
| |
| level = G4X_WM_LEVEL_HPLL; |
| |
| if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| wm_state->hpll.plane = raw->plane[PLANE_PRIMARY]; |
| wm_state->hpll.cursor = raw->plane[PLANE_CURSOR]; |
| wm_state->hpll.fbc = raw->fbc; |
| |
| wm_state->hpll_en = wm_state->cxsr; |
| |
| level++; |
| |
| out: |
| if (level == G4X_WM_LEVEL_NORMAL) |
| return -EINVAL; |
| |
| /* invalidate the higher levels */ |
| g4x_invalidate_wms(crtc, wm_state, level); |
| |
| /* |
| * Determine if the FBC watermark(s) can be used. IF |
| * this isn't the case we prefer to disable the FBC |
| ( watermark(s) rather than disable the SR/HPLL |
| * level(s) entirely. |
| */ |
| wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL; |
| |
| if (level >= G4X_WM_LEVEL_SR && |
| wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR)) |
| wm_state->fbc_en = false; |
| else if (level >= G4X_WM_LEVEL_HPLL && |
| wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL)) |
| wm_state->fbc_en = false; |
| |
| return 0; |
| } |
| |
| static int g4x_compute_intermediate_wm(struct drm_device *dev, |
| struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate; |
| const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal; |
| const struct g4x_wm_state *active = &crtc->wm.active.g4x; |
| enum plane_id plane_id; |
| |
| intermediate->cxsr = optimal->cxsr && active->cxsr && |
| !crtc_state->disable_cxsr; |
| intermediate->hpll_en = optimal->hpll_en && active->hpll_en && |
| !crtc_state->disable_cxsr; |
| intermediate->fbc_en = optimal->fbc_en && active->fbc_en; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| intermediate->wm.plane[plane_id] = |
| max(optimal->wm.plane[plane_id], |
| active->wm.plane[plane_id]); |
| |
| WARN_ON(intermediate->wm.plane[plane_id] > |
| g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL)); |
| } |
| |
| intermediate->sr.plane = max(optimal->sr.plane, |
| active->sr.plane); |
| intermediate->sr.cursor = max(optimal->sr.cursor, |
| active->sr.cursor); |
| intermediate->sr.fbc = max(optimal->sr.fbc, |
| active->sr.fbc); |
| |
| intermediate->hpll.plane = max(optimal->hpll.plane, |
| active->hpll.plane); |
| intermediate->hpll.cursor = max(optimal->hpll.cursor, |
| active->hpll.cursor); |
| intermediate->hpll.fbc = max(optimal->hpll.fbc, |
| active->hpll.fbc); |
| |
| WARN_ON((intermediate->sr.plane > |
| g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) || |
| intermediate->sr.cursor > |
| g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) && |
| intermediate->cxsr); |
| WARN_ON((intermediate->sr.plane > |
| g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) || |
| intermediate->sr.cursor > |
| g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) && |
| intermediate->hpll_en); |
| |
| WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) && |
| intermediate->fbc_en && intermediate->cxsr); |
| WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) && |
| intermediate->fbc_en && intermediate->hpll_en); |
| |
| /* |
| * If our intermediate WM are identical to the final WM, then we can |
| * omit the post-vblank programming; only update if it's different. |
| */ |
| if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) |
| crtc_state->wm.need_postvbl_update = true; |
| |
| return 0; |
| } |
| |
| static void g4x_merge_wm(struct drm_i915_private *dev_priv, |
| struct g4x_wm_values *wm) |
| { |
| struct intel_crtc *crtc; |
| int num_active_crtcs = 0; |
| |
| wm->cxsr = true; |
| wm->hpll_en = true; |
| wm->fbc_en = true; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; |
| |
| if (!crtc->active) |
| continue; |
| |
| if (!wm_state->cxsr) |
| wm->cxsr = false; |
| if (!wm_state->hpll_en) |
| wm->hpll_en = false; |
| if (!wm_state->fbc_en) |
| wm->fbc_en = false; |
| |
| num_active_crtcs++; |
| } |
| |
| if (num_active_crtcs != 1) { |
| wm->cxsr = false; |
| wm->hpll_en = false; |
| wm->fbc_en = false; |
| } |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; |
| enum pipe pipe = crtc->pipe; |
| |
| wm->pipe[pipe] = wm_state->wm; |
| if (crtc->active && wm->cxsr) |
| wm->sr = wm_state->sr; |
| if (crtc->active && wm->hpll_en) |
| wm->hpll = wm_state->hpll; |
| } |
| } |
| |
| static void g4x_program_watermarks(struct drm_i915_private *dev_priv) |
| { |
| struct g4x_wm_values *old_wm = &dev_priv->wm.g4x; |
| struct g4x_wm_values new_wm = {}; |
| |
| g4x_merge_wm(dev_priv, &new_wm); |
| |
| if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) |
| return; |
| |
| if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) |
| _intel_set_memory_cxsr(dev_priv, false); |
| |
| g4x_write_wm_values(dev_priv, &new_wm); |
| |
| if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) |
| _intel_set_memory_cxsr(dev_priv, true); |
| |
| *old_wm = new_wm; |
| } |
| |
| static void g4x_initial_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate; |
| g4x_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void g4x_optimize_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); |
| |
| if (!crtc_state->wm.need_postvbl_update) |
| return; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; |
| g4x_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| /* latency must be in 0.1us units. */ |
| static unsigned int vlv_wm_method2(unsigned int pixel_rate, |
| unsigned int htotal, |
| unsigned int width, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| unsigned int ret; |
| |
| ret = intel_wm_method2(pixel_rate, htotal, |
| width, cpp, latency); |
| ret = DIV_ROUND_UP(ret, 64); |
| |
| return ret; |
| } |
| |
| static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv) |
| { |
| /* all latencies in usec */ |
| dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3; |
| |
| dev_priv->wm.max_level = VLV_WM_LEVEL_PM2; |
| |
| if (IS_CHERRYVIEW(dev_priv)) { |
| dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12; |
| dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33; |
| |
| dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS; |
| } |
| } |
| |
| static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| int level) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->base.plane); |
| struct drm_i915_private *dev_priv = to_i915(plane->base.dev); |
| const struct drm_display_mode *adjusted_mode = |
| &crtc_state->base.adjusted_mode; |
| int clock, htotal, cpp, width, wm; |
| |
| if (dev_priv->wm.pri_latency[level] == 0) |
| return USHRT_MAX; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) |
| return 0; |
| |
| cpp = plane_state->base.fb->format->cpp[0]; |
| clock = adjusted_mode->crtc_clock; |
| htotal = adjusted_mode->crtc_htotal; |
| width = crtc_state->pipe_src_w; |
| |
| if (plane->id == PLANE_CURSOR) { |
| /* |
| * FIXME the formula gives values that are |
| * too big for the cursor FIFO, and hence we |
| * would never be able to use cursors. For |
| * now just hardcode the watermark. |
| */ |
| wm = 63; |
| } else { |
| wm = vlv_wm_method2(clock, htotal, width, cpp, |
| dev_priv->wm.pri_latency[level] * 10); |
| } |
| |
| return min_t(int, wm, USHRT_MAX); |
| } |
| |
| static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes) |
| { |
| return (active_planes & (BIT(PLANE_SPRITE0) | |
| BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1); |
| } |
| |
| static int vlv_compute_fifo(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| const struct g4x_pipe_wm *raw = |
| &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2]; |
| struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; |
| unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); |
| int num_active_planes = hweight32(active_planes); |
| const int fifo_size = 511; |
| int fifo_extra, fifo_left = fifo_size; |
| int sprite0_fifo_extra = 0; |
| unsigned int total_rate; |
| enum plane_id plane_id; |
| |
| /* |
| * When enabling sprite0 after sprite1 has already been enabled |
| * we tend to get an underrun unless sprite0 already has some |
| * FIFO space allcoated. Hence we always allocate at least one |
| * cacheline for sprite0 whenever sprite1 is enabled. |
| * |
| * All other plane enable sequences appear immune to this problem. |
| */ |
| if (vlv_need_sprite0_fifo_workaround(active_planes)) |
| sprite0_fifo_extra = 1; |
| |
| total_rate = raw->plane[PLANE_PRIMARY] + |
| raw->plane[PLANE_SPRITE0] + |
| raw->plane[PLANE_SPRITE1] + |
| sprite0_fifo_extra; |
| |
| if (total_rate > fifo_size) |
| return -EINVAL; |
| |
| if (total_rate == 0) |
| total_rate = 1; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| unsigned int rate; |
| |
| if ((active_planes & BIT(plane_id)) == 0) { |
| fifo_state->plane[plane_id] = 0; |
| continue; |
| } |
| |
| rate = raw->plane[plane_id]; |
| fifo_state->plane[plane_id] = fifo_size * rate / total_rate; |
| fifo_left -= fifo_state->plane[plane_id]; |
| } |
| |
| fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra; |
| fifo_left -= sprite0_fifo_extra; |
| |
| fifo_state->plane[PLANE_CURSOR] = 63; |
| |
| fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1); |
| |
| /* spread the remainder evenly */ |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| int plane_extra; |
| |
| if (fifo_left == 0) |
| break; |
| |
| if ((active_planes & BIT(plane_id)) == 0) |
| continue; |
| |
| plane_extra = min(fifo_extra, fifo_left); |
| fifo_state->plane[plane_id] += plane_extra; |
| fifo_left -= plane_extra; |
| } |
| |
| WARN_ON(active_planes != 0 && fifo_left != 0); |
| |
| /* give it all to the first plane if none are active */ |
| if (active_planes == 0) { |
| WARN_ON(fifo_left != fifo_size); |
| fifo_state->plane[PLANE_PRIMARY] = fifo_left; |
| } |
| |
| return 0; |
| } |
| |
| /* mark all levels starting from 'level' as invalid */ |
| static void vlv_invalidate_wms(struct intel_crtc *crtc, |
| struct vlv_wm_state *wm_state, int level) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| |
| for (; level < intel_wm_num_levels(dev_priv); level++) { |
| enum plane_id plane_id; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| wm_state->wm[level].plane[plane_id] = USHRT_MAX; |
| |
| wm_state->sr[level].cursor = USHRT_MAX; |
| wm_state->sr[level].plane = USHRT_MAX; |
| } |
| } |
| |
| static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size) |
| { |
| if (wm > fifo_size) |
| return USHRT_MAX; |
| else |
| return fifo_size - wm; |
| } |
| |
| /* |
| * Starting from 'level' set all higher |
| * levels to 'value' in the "raw" watermarks. |
| */ |
| static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state, |
| int level, enum plane_id plane_id, u16 value) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| int num_levels = intel_wm_num_levels(dev_priv); |
| bool dirty = false; |
| |
| for (; level < num_levels; level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; |
| |
| dirty |= raw->plane[plane_id] != value; |
| raw->plane[plane_id] = value; |
| } |
| |
| return dirty; |
| } |
| |
| static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->base.plane); |
| enum plane_id plane_id = plane->id; |
| int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); |
| int level; |
| bool dirty = false; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) { |
| dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0); |
| goto out; |
| } |
| |
| for (level = 0; level < num_levels; level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; |
| int wm = vlv_compute_wm_level(crtc_state, plane_state, level); |
| int max_wm = plane_id == PLANE_CURSOR ? 63 : 511; |
| |
| if (wm > max_wm) |
| break; |
| |
| dirty |= raw->plane[plane_id] != wm; |
| raw->plane[plane_id] = wm; |
| } |
| |
| /* mark all higher levels as invalid */ |
| dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); |
| |
| out: |
| if (dirty) |
| DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n", |
| plane->base.name, |
| crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id], |
| crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id], |
| crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]); |
| |
| return dirty; |
| } |
| |
| static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, |
| enum plane_id plane_id, int level) |
| { |
| const struct g4x_pipe_wm *raw = |
| &crtc_state->wm.vlv.raw[level]; |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| |
| return raw->plane[plane_id] <= fifo_state->plane[plane_id]; |
| } |
| |
| static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) |
| { |
| return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && |
| vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && |
| vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) && |
| vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); |
| } |
| |
| static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_atomic_state *state = |
| to_intel_atomic_state(crtc_state->base.state); |
| struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| int num_active_planes = hweight32(crtc_state->active_planes & |
| ~BIT(PLANE_CURSOR)); |
| bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base); |
| struct intel_plane_state *plane_state; |
| struct intel_plane *plane; |
| enum plane_id plane_id; |
| int level, ret, i; |
| unsigned int dirty = 0; |
| |
| for_each_intel_plane_in_state(state, plane, plane_state, i) { |
| const struct intel_plane_state *old_plane_state = |
| to_intel_plane_state(plane->base.state); |
| |
| if (plane_state->base.crtc != &crtc->base && |
| old_plane_state->base.crtc != &crtc->base) |
| continue; |
| |
| if (vlv_raw_plane_wm_compute(crtc_state, plane_state)) |
| dirty |= BIT(plane->id); |
| } |
| |
| /* |
| * DSPARB registers may have been reset due to the |
| * power well being turned off. Make sure we restore |
| * them to a consistent state even if no primary/sprite |
| * planes are initially active. |
| */ |
| if (needs_modeset) |
| crtc_state->fifo_changed = true; |
| |
| if (!dirty) |
| return 0; |
| |
| /* cursor changes don't warrant a FIFO recompute */ |
| if (dirty & ~BIT(PLANE_CURSOR)) { |
| const struct intel_crtc_state *old_crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| const struct vlv_fifo_state *old_fifo_state = |
| &old_crtc_state->wm.vlv.fifo_state; |
| |
| ret = vlv_compute_fifo(crtc_state); |
| if (ret) |
| return ret; |
| |
| if (needs_modeset || |
| memcmp(old_fifo_state, fifo_state, |
| sizeof(*fifo_state)) != 0) |
| crtc_state->fifo_changed = true; |
| } |
| |
| /* initially allow all levels */ |
| wm_state->num_levels = intel_wm_num_levels(dev_priv); |
| /* |
| * Note that enabling cxsr with no primary/sprite planes |
| * enabled can wedge the pipe. Hence we only allow cxsr |
| * with exactly one enabled primary/sprite plane. |
| */ |
| wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1; |
| |
| for (level = 0; level < wm_state->num_levels; level++) { |
| const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; |
| const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1; |
| |
| if (!vlv_raw_crtc_wm_is_valid(crtc_state, level)) |
| break; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| wm_state->wm[level].plane[plane_id] = |
| vlv_invert_wm_value(raw->plane[plane_id], |
| fifo_state->plane[plane_id]); |
| } |
| |
| wm_state->sr[level].plane = |
| vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY], |
| raw->plane[PLANE_SPRITE0], |
| raw->plane[PLANE_SPRITE1]), |
| sr_fifo_size); |
| |
| wm_state->sr[level].cursor = |
| vlv_invert_wm_value(raw->plane[PLANE_CURSOR], |
| 63); |
| } |
| |
| if (level == 0) |
| return -EINVAL; |
| |
| /* limit to only levels we can actually handle */ |
| wm_state->num_levels = level; |
| |
| /* invalidate the higher levels */ |
| vlv_invalidate_wms(crtc, wm_state, level); |
| |
| return 0; |
| } |
| |
| #define VLV_FIFO(plane, value) \ |
| (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV) |
| |
| static void vlv_atomic_update_fifo(struct intel_atomic_state *state, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| int sprite0_start, sprite1_start, fifo_size; |
| |
| if (!crtc_state->fifo_changed) |
| return; |
| |
| sprite0_start = fifo_state->plane[PLANE_PRIMARY]; |
| sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start; |
| fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start; |
| |
| WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63); |
| WARN_ON(fifo_size != 511); |
| |
| trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size); |
| |
| /* |
| * uncore.lock serves a double purpose here. It allows us to |
| * use the less expensive I915_{READ,WRITE}_FW() functions, and |
| * it protects the DSPARB registers from getting clobbered by |
| * parallel updates from multiple pipes. |
| * |
| * intel_pipe_update_start() has already disabled interrupts |
| * for us, so a plain spin_lock() is sufficient here. |
| */ |
| spin_lock(&dev_priv->uncore.lock); |
| |
| switch (crtc->pipe) { |
| uint32_t dsparb, dsparb2, dsparb3; |
| case PIPE_A: |
| dsparb = I915_READ_FW(DSPARB); |
| dsparb2 = I915_READ_FW(DSPARB2); |
| |
| dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) | |
| VLV_FIFO(SPRITEB, 0xff)); |
| dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) | |
| VLV_FIFO(SPRITEB, sprite1_start)); |
| |
| dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) | |
| VLV_FIFO(SPRITEB_HI, 0x1)); |
| dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) | |
| VLV_FIFO(SPRITEB_HI, sprite1_start >> 8)); |
| |
| I915_WRITE_FW(DSPARB, dsparb); |
| I915_WRITE_FW(DSPARB2, dsparb2); |
| break; |
| case PIPE_B: |
| dsparb = I915_READ_FW(DSPARB); |
| dsparb2 = I915_READ_FW(DSPARB2); |
| |
| dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) | |
| VLV_FIFO(SPRITED, 0xff)); |
| dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) | |
| VLV_FIFO(SPRITED, sprite1_start)); |
| |
| dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) | |
| VLV_FIFO(SPRITED_HI, 0xff)); |
| dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) | |
| VLV_FIFO(SPRITED_HI, sprite1_start >> 8)); |
| |
| I915_WRITE_FW(DSPARB, dsparb); |
| I915_WRITE_FW(DSPARB2, dsparb2); |
| break; |
| case PIPE_C: |
| dsparb3 = I915_READ_FW(DSPARB3); |
| dsparb2 = I915_READ_FW(DSPARB2); |
| |
| dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) | |
| VLV_FIFO(SPRITEF, 0xff)); |
| dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) | |
| VLV_FIFO(SPRITEF, sprite1_start)); |
| |
| dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) | |
| VLV_FIFO(SPRITEF_HI, 0xff)); |
| dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) | |
| VLV_FIFO(SPRITEF_HI, sprite1_start >> 8)); |
| |
| I915_WRITE_FW(DSPARB3, dsparb3); |
| I915_WRITE_FW(DSPARB2, dsparb2); |
| break; |
| default: |
| break; |
| } |
| |
| POSTING_READ_FW(DSPARB); |
| |
| spin_unlock(&dev_priv->uncore.lock); |
| } |
| |
| #undef VLV_FIFO |
| |
| static int vlv_compute_intermediate_wm(struct drm_device *dev, |
| struct intel_crtc *crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate; |
| const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal; |
| const struct vlv_wm_state *active = &crtc->wm.active.vlv; |
| int level; |
| |
| intermediate->num_levels = min(optimal->num_levels, active->num_levels); |
| intermediate->cxsr = optimal->cxsr && active->cxsr && |
| !crtc_state->disable_cxsr; |
| |
| for (level = 0; level < intermediate->num_levels; level++) { |
| enum plane_id plane_id; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| intermediate->wm[level].plane[plane_id] = |
| min(optimal->wm[level].plane[plane_id], |
| active->wm[level].plane[plane_id]); |
| } |
| |
| intermediate->sr[level].plane = min(optimal->sr[level].plane, |
| active->sr[level].plane); |
| intermediate->sr[level].cursor = min(optimal->sr[level].cursor, |
| active->sr[level].cursor); |
| } |
| |
| vlv_invalidate_wms(crtc, intermediate, level); |
| |
| /* |
| * If our intermediate WM are identical to the final WM, then we can |
| * omit the post-vblank programming; only update if it's different. |
| */ |
| if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) |
| crtc_state->wm.need_postvbl_update = true; |
| |
| return 0; |
| } |
| |
| static void vlv_merge_wm(struct drm_i915_private *dev_priv, |
| struct vlv_wm_values *wm) |
| { |
| struct intel_crtc *crtc; |
| int num_active_crtcs = 0; |
| |
| wm->level = dev_priv->wm.max_level; |
| wm->cxsr = true; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; |
| |
| if (!crtc->active) |
| continue; |
| |
| if (!wm_state->cxsr) |
| wm->cxsr = false; |
| |
| num_active_crtcs++; |
| wm->level = min_t(int, wm->level, wm_state->num_levels - 1); |
| } |
| |
| if (num_active_crtcs != 1) |
| wm->cxsr = false; |
| |
| if (num_active_crtcs > 1) |
| wm->level = VLV_WM_LEVEL_PM2; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; |
| enum pipe pipe = crtc->pipe; |
| |
| wm->pipe[pipe] = wm_state->wm[wm->level]; |
| if (crtc->active && wm->cxsr) |
| wm->sr = wm_state->sr[wm->level]; |
| |
| wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2; |
| wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2; |
| wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2; |
| wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2; |
| } |
| } |
| |
| static void vlv_program_watermarks(struct drm_i915_private *dev_priv) |
| { |
| struct vlv_wm_values *old_wm = &dev_priv->wm.vlv; |
| struct vlv_wm_values new_wm = {}; |
| |
| vlv_merge_wm(dev_priv, &new_wm); |
| |
| if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) |
| return; |
| |
| if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) |
| chv_set_memory_dvfs(dev_priv, false); |
| |
| if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) |
| chv_set_memory_pm5(dev_priv, false); |
| |
| if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) |
| _intel_set_memory_cxsr(dev_priv, false); |
| |
| vlv_write_wm_values(dev_priv, &new_wm); |
| |
| if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) |
| _intel_set_memory_cxsr(dev_priv, true); |
| |
| if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) |
| chv_set_memory_pm5(dev_priv, true); |
| |
| if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) |
| chv_set_memory_dvfs(dev_priv, true); |
| |
| *old_wm = new_wm; |
| } |
| |
| static void vlv_initial_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate; |
| vlv_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void vlv_optimize_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); |
| |
| if (!crtc_state->wm.need_postvbl_update) |
| return; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; |
| vlv_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void i965_update_wm(struct intel_crtc *unused_crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); |
| struct intel_crtc *crtc; |
| int srwm = 1; |
| int cursor_sr = 16; |
| bool cxsr_enabled; |
| |
| /* Calc sr entries for one plane configs */ |
| crtc = single_enabled_crtc(dev_priv); |
| if (crtc) { |
| /* self-refresh has much higher latency */ |
| static const int sr_latency_ns = 12000; |
| const struct drm_display_mode *adjusted_mode = |
| &crtc->config->base.adjusted_mode; |
| const struct drm_framebuffer *fb = |
| crtc->base.primary->state->fb; |
| int clock = adjusted_mode->crtc_clock; |
| int htotal = adjusted_mode->crtc_htotal; |
| int hdisplay = crtc->config->pipe_src_w; |
| int cpp = fb->format->cpp[0]; |
| int entries; |
| |
| entries = intel_wm_method2(clock, htotal, |
| hdisplay, cpp, sr_latency_ns / 100); |
| entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); |
| srwm = I965_FIFO_SIZE - entries; |
| if (srwm < 0) |
| srwm = 1; |
| srwm &= 0x1ff; |
| DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n", |
| entries, srwm); |
| |
| entries = intel_wm_method2(clock, htotal, |
| crtc->base.cursor->state->crtc_w, 4, |
| sr_latency_ns / 100); |
| entries = DIV_ROUND_UP(entries, |
| i965_cursor_wm_info.cacheline_size) + |
| i965_cursor_wm_info.guard_size; |
| |
| cursor_sr = i965_cursor_wm_info.fifo_size - entries; |
| if (cursor_sr > i965_cursor_wm_info.max_wm) |
| cursor_sr = i965_cursor_wm_info.max_wm; |
| |
| DRM_DEBUG_KMS("self-refresh watermark: display plane %d " |
| "cursor %d\n", srwm, cursor_sr); |
| |
| cxsr_enabled = true; |
| } else { |
| cxsr_enabled = false; |
| /* Turn off self refresh if both pipes are enabled */ |
| intel_set_memory_cxsr(dev_priv, false); |
| } |
| |
| DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", |
| srwm); |
| |
| /* 965 has limitations... */ |
| I915_WRITE(DSPFW1, FW_WM(srwm, SR) | |
| FW_WM(8, CURSORB) | |
| FW_WM(8, PLANEB) | |
| FW_WM(8, PLANEA)); |
| I915_WRITE(DSPFW2, FW_WM(8, CURSORA) | |
| FW_WM(8, PLANEC_OLD)); |
| /* update cursor SR watermark */ |
| I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR)); |
| |
| if (cxsr_enabled) |
| intel_set_memory_cxsr(dev_priv, true); |
| } |
| |
| #undef FW_WM |
| |
| static void i9xx_update_wm(struct intel_crtc *unused_crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); |
| const struct intel_watermark_params *wm_info; |
| uint32_t fwater_lo; |
| uint32_t fwater_hi; |
| int cwm, srwm = 1; |
| int fifo_size; |
| int planea_wm, planeb_wm; |
| struct intel_crtc *crtc, *enabled = NULL; |
| |
| if (IS_I945GM(dev_priv)) |
| wm_info = &i945_wm_info; |
| else if (!IS_GEN2(dev_priv)) |
| wm_info = &i915_wm_info; |
| else |
| wm_info = &i830_a_wm_info; |
| |
| fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0); |
| crtc = intel_get_crtc_for_plane(dev_priv, 0); |
| if (intel_crtc_active(crtc)) { |
| const struct drm_display_mode *adjusted_mode = |
| &crtc->config->base.adjusted_mode; |
| const struct drm_framebuffer *fb = |
| crtc->base.primary->state->fb; |
| int cpp; |
| |
| if (IS_GEN2(dev_priv)) |
| cpp = 4; |
| else |
| cpp = fb->format->cpp[0]; |
| |
| planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock, |
| wm_info, fifo_size, cpp, |
| pessimal_latency_ns); |
| enabled = crtc; |
| } else { |
| planea_wm = fifo_size - wm_info->guard_size; |
| if (planea_wm > (long)wm_info->max_wm) |
| planea_wm = wm_info->max_wm; |
| } |
| |
| if (IS_GEN2(dev_priv)) |
| wm_info = &i830_bc_wm_info; |
| |
| fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1); |
| crtc = intel_get_crtc_for_plane(dev_priv, 1); |
| if (intel_crtc_active(crtc)) { |
| const struct drm_display_mode *adjusted_mode = |
| &crtc->config->base.adjusted_mode; |
| const struct drm_framebuffer *fb = |
| crtc->base.primary->state->fb; |
| int cpp; |
| |
| if (IS_GEN2(dev_priv)) |
| cpp = 4; |
| else |
| cpp = fb->format->cpp[0]; |
| |
| planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock, |
| wm_info, fifo_size, cpp, |
| pessimal_latency_ns); |
| if (enabled == NULL) |
| enabled = crtc; |
| else |
| enabled = NULL; |
| } else { |
| planeb_wm = fifo_size - wm_info->guard_size; |
| if (planeb_wm > (long)wm_info->max_wm) |
| planeb_wm = wm_info->max_wm; |
| } |
| |
| DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); |
| |
| if (IS_I915GM(dev_priv) && enabled) { |
| struct drm_i915_gem_object *obj; |
| |
| obj = intel_fb_obj(enabled->base.primary->state->fb); |
| |
| /* self-refresh seems busted with untiled */ |
| if (!i915_gem_object_is_tiled(obj)) |
| enabled = NULL; |
| } |
| |
| /* |
| * Overlay gets an aggressive default since video jitter is bad. |
| */ |
| cwm = 2; |
| |
| /* Play safe and disable self-refresh before adjusting watermarks. */ |
| intel_set_memory_cxsr(dev_priv, false); |
| |
| /* Calc sr entries for one plane configs */ |
| if (HAS_FW_BLC(dev_priv) && enabled) { |
| /* self-refresh has much higher latency */ |
| static const int sr_latency_ns = 6000; |
| const struct drm_display_mode *adjusted_mode = |
| &enabled->config->base.adjusted_mode; |
| const struct drm_framebuffer *fb = |
| enabled->base.primary->state->fb; |
| int clock = adjusted_mode->crtc_clock; |
| int htotal = adjusted_mode->crtc_htotal; |
| int hdisplay = enabled->config->pipe_src_w; |
| int cpp; |
| int entries; |
| |
| if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv)) |
| cpp = 4; |
| else |
| cpp = fb->format->cpp[0]; |
| |
| entries = intel_wm_method2(clock, htotal, hdisplay, cpp, |
| sr_latency_ns / 100); |
| entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); |
| DRM_DEBUG_KMS("self-refresh entries: %d\n", entries); |
| srwm = wm_info->fifo_size - entries; |
| if (srwm < 0) |
| srwm = 1; |
| |
| if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) |
| I915_WRITE(FW_BLC_SELF, |
| FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); |
| else |
| I915_WRITE(FW_BLC_SELF, srwm & 0x3f); |
| } |
| |
| DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", |
| planea_wm, planeb_wm, cwm, srwm); |
| |
| fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); |
| fwater_hi = (cwm & 0x1f); |
| |
| /* Set request length to 8 cachelines per fetch */ |
| fwater_lo = fwater_lo | (1 << 24) | (1 << 8); |
| fwater_hi = fwater_hi | (1 << 8); |
| |
| I915_WRITE(FW_BLC, fwater_lo); |
| I915_WRITE(FW_BLC2, fwater_hi); |
| |
| if (enabled) |
| intel_set_memory_cxsr(dev_priv, true); |
| } |
| |
| static void i845_update_wm(struct intel_crtc *unused_crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); |
| struct intel_crtc *crtc; |
| const struct drm_display_mode *adjusted_mode; |
| uint32_t fwater_lo; |
| int planea_wm; |
| |
| crtc = single_enabled_crtc(dev_priv); |
| if (crtc == NULL) |
| return; |
| |
| adjusted_mode = &crtc->config->base.adjusted_mode; |
| planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock, |
| &i845_wm_info, |
| dev_priv->display.get_fifo_size(dev_priv, 0), |
| 4, pessimal_latency_ns); |
| fwater_lo = I915_READ(FW_BLC) & ~0xfff; |
| fwater_lo |= (3<<8) | planea_wm; |
| |
| DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm); |
| |
| I915_WRITE(FW_BLC, fwater_lo); |
| } |
| |
| /* latency must be in 0.1us units. */ |
| static unsigned int ilk_wm_method1(unsigned int pixel_rate, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| unsigned int ret; |
| |
| ret = intel_wm_method1(pixel_rate, cpp, latency); |
| ret = DIV_ROUND_UP(ret, 64) + 2; |
| |
| return ret; |
| } |
| |
| /* latency must be in 0.1us units. */ |
| static unsigned int ilk_wm_method2(unsigned int pixel_rate, |
| unsigned int htotal, |
| unsigned int width, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| unsigned int ret; |
| |
| ret = intel_wm_method2(pixel_rate, htotal, |
| width, cpp, latency); |
| ret = DIV_ROUND_UP(ret, 64) + 2; |
| |
| return ret; |
| } |
| |
| static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels, |
| uint8_t cpp) |
| { |
| /* |
| * Neither of these should be possible since this function shouldn't be |
| * called if the CRTC is off or the plane is invisible. But let's be |
| * extra paranoid to avoid a potential divide-by-zero if we screw up |
| * elsewhere in the driver. |
| */ |
| if (WARN_ON(!cpp)) |
| return 0; |
| if (WARN_ON(!horiz_pixels)) |
| return 0; |
| |
| return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2; |
| } |
| |
| struct ilk_wm_maximums { |
| uint16_t pri; |
| uint16_t spr; |
| uint16_t cur; |
| uint16_t fbc; |
| }; |
| |
| /* |
| * For both WM_PIPE and WM_LP. |
| * mem_value must be in 0.1us units. |
| */ |
| static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate, |
| const struct intel_plane_state *pstate, |
| uint32_t mem_value, |
| bool is_lp) |
| { |
| uint32_t method1, method2; |
| int cpp; |
| |
| if (!intel_wm_plane_visible(cstate, pstate)) |
| return 0; |
| |
| cpp = pstate->base.fb->format->cpp[0]; |
| |
| method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value); |
| |
| if (!is_lp) |
| return method1; |
| |
| method2 = ilk_wm_method2(cstate->pixel_rate, |
| cstate->base.adjusted_mode.crtc_htotal, |
| drm_rect_width(&pstate->base.dst), |
| cpp, mem_value); |
| |
| return min(method1, method2); |
| } |
| |
| /* |
| * For both WM_PIPE and WM_LP. |
| * mem_value must be in 0.1us units. |
| */ |
| static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate, |
| const struct intel_plane_state *pstate, |
| uint32_t mem_value) |
| { |
| uint32_t method1, method2; |
| int cpp; |
| |
| if (!intel_wm_plane_visible(cstate, pstate)) |
| return 0; |
| |
| cpp = pstate->base.fb->format->cpp[0]; |
| |
| method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value); |
| method2 = ilk_wm_method2(cstate->pixel_rate, |
| cstate->base.adjusted_mode.crtc_htotal, |
| drm_rect_width(&pstate->base.dst), |
| cpp, mem_value); |
| return min(method1, method2); |
| } |
| |
| /* |
| * For both WM_PIPE and WM_LP. |
| * mem_value must be in 0.1us units. |
| */ |
| static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate, |
| const struct intel_plane_state *pstate, |
| uint32_t mem_value) |
| { |
| int cpp; |
| |
| if (!intel_wm_plane_visible(cstate, pstate)) |
| return 0; |
| |
| cpp = pstate->base.fb->format->cpp[0]; |
| |
| return ilk_wm_method2(cstate->pixel_rate, |
| cstate->base.adjusted_mode.crtc_htotal, |
| pstate->base.crtc_w, cpp, mem_value); |
| } |
| |
| /* Only for WM_LP. */ |
| static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate, |
| const struct intel_plane_state *pstate, |
| uint32_t pri_val) |
| { |
| int cpp; |
| |
| if (!intel_wm_plane_visible(cstate, pstate)) |
| return 0; |
| |
| cpp = pstate->base.fb->format->cpp[0]; |
| |
| return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp); |
| } |
| |
| static unsigned int |
| ilk_display_fifo_size(const struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_GEN(dev_priv) >= 8) |
| return 3072; |
| else if (INTEL_GEN(dev_priv) >= 7) |
| return 768; |
| else |
| return 512; |
| } |
| |
| static unsigned int |
| ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv, |
| int level, bool is_sprite) |
| { |
| if (INTEL_GEN(dev_priv) >= 8) |
| /* BDW primary/sprite plane watermarks */ |
| return level == 0 ? 255 : 2047; |
| else if (INTEL_GEN(dev_priv) >= 7) |
| /* IVB/HSW primary/sprite plane watermarks */ |
| return level == 0 ? 127 : 1023; |
| else if (!is_sprite) |
| /* ILK/SNB primary plane watermarks */ |
| return level == 0 ? 127 : 511; |
| else |
| /* ILK/SNB sprite plane watermarks */ |
| return level == 0 ? 63 : 255; |
| } |
| |
| static unsigned int |
| ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level) |
| { |
| if (INTEL_GEN(dev_priv) >= 7) |
| return level == 0 ? 63 : 255; |
| else |
| return level == 0 ? 31 : 63; |
| } |
| |
| static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_GEN(dev_priv) >= 8) |
| return 31; |
| else |
| return 15; |
| } |
| |
| /* Calculate the maximum primary/sprite plane watermark */ |
| static unsigned int ilk_plane_wm_max(const struct drm_device *dev, |
| int level, |
| const struct intel_wm_config *config, |
| enum intel_ddb_partitioning ddb_partitioning, |
| bool is_sprite) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| unsigned int fifo_size = ilk_display_fifo_size(dev_priv); |
| |
| /* if sprites aren't enabled, sprites get nothing */ |
| if (is_sprite && !config->sprites_enabled) |
| return 0; |
| |
| /* HSW allows LP1+ watermarks even with multiple pipes */ |
| if (level == 0 || config->num_pipes_active > 1) { |
| fifo_size /= INTEL_INFO(dev_priv)->num_pipes; |
| |
| /* |
| * For some reason the non self refresh |
| * FIFO size is only half of the self |
| * refresh FIFO size on ILK/SNB. |
| */ |
| if (INTEL_GEN(dev_priv) <= 6) |
| fifo_size /= 2; |
| } |
| |
| if (config->sprites_enabled) { |
| /* level 0 is always calculated with 1:1 split */ |
| if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) { |
| if (is_sprite) |
| fifo_size *= 5; |
| fifo_size /= 6; |
| } else { |
| fifo_size /= 2; |
| } |
| } |
| |
| /* clamp to max that the registers can hold */ |
| return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite)); |
| } |
| |
| /* Calculate the maximum cursor plane watermark */ |
| static unsigned int ilk_cursor_wm_max(const struct drm_device *dev, |
| int level, |
| const struct intel_wm_config *config) |
| { |
| /* HSW LP1+ watermarks w/ multiple pipes */ |
| if (level > 0 && config->num_pipes_active > 1) |
| return 64; |
| |
| /* otherwise just report max that registers can hold */ |
| return ilk_cursor_wm_reg_max(to_i915(dev), level); |
| } |
| |
| static void ilk_compute_wm_maximums(const struct drm_device *dev, |
| int level, |
| const struct intel_wm_config *config, |
| enum intel_ddb_partitioning ddb_partitioning, |
| struct ilk_wm_maximums *max) |
| { |
| max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false); |
| max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true); |
| max->cur = ilk_cursor_wm_max(dev, level, config); |
| max->fbc = ilk_fbc_wm_reg_max(to_i915(dev)); |
| } |
| |
| static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv, |
| int level, |
| struct ilk_wm_maximums *max) |
| { |
| max->pri = ilk_plane_wm_reg_max(dev_priv, level, false); |
| max->spr = ilk_plane_wm_reg_max(dev_priv, level, true); |
| max->cur = ilk_cursor_wm_reg_max(dev_priv, level); |
| max->fbc = ilk_fbc_wm_reg_max(dev_priv); |
| } |
| |
| static bool ilk_validate_wm_level(int level, |
| const struct ilk_wm_maximums *max, |
| struct intel_wm_level *result) |
| { |
| bool ret; |
| |
| /* already determined to be invalid? */ |
| if (!result->enable) |
| return false; |
| |
| result->enable = result->pri_val <= max->pri && |
| result->spr_val <= max->spr && |
| result->cur_val <= max->cur; |
| |
| ret = result->enable; |
| |
| /* |
| * HACK until we can pre-compute everything, |
| * and thus fail gracefully if LP0 watermarks |
| * are exceeded... |
| */ |
| if (level == 0 && !result->enable) { |
| if (result->pri_val > max->pri) |
| DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n", |
| level, result->pri_val, max->pri); |
| if (result->spr_val > max->spr) |
| DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n", |
| level, result->spr_val, max->spr); |
| if (result->cur_val > max->cur) |
| DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n", |
| level, result->cur_val, max->cur); |
| |
| result->pri_val = min_t(uint32_t, result->pri_val, max->pri); |
| result->spr_val = min_t(uint32_t, result->spr_val, max->spr); |
| result->cur_val = min_t(uint32_t, result->cur_val, max->cur); |
| result->enable = true; |
| } |
| |
| return ret; |
| } |
| |
| static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv, |
| const struct intel_crtc *intel_crtc, |
| int level, |
| struct intel_crtc_state *cstate, |
| struct intel_plane_state *pristate, |
| struct intel_plane_state *sprstate, |
| struct intel_plane_state *curstate, |
| struct intel_wm_level *result) |
| { |
| uint16_t pri_latency = dev_priv->wm.pri_latency[level]; |
| uint16_t spr_latency = dev_priv->wm.spr_latency[level]; |
| uint16_t cur_latency = dev_priv->wm.cur_latency[level]; |
| |
| /* WM1+ latency values stored in 0.5us units */ |
| if (level > 0) { |
| pri_latency *= 5; |
| spr_latency *= 5; |
| cur_latency *= 5; |
| } |
| |
| if (pristate) { |
| result->pri_val = ilk_compute_pri_wm(cstate, pristate, |
| pri_latency, level); |
| result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val); |
| } |
| |
| if (sprstate) |
| result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency); |
| |
| if (curstate) |
| result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency); |
| |
| result->enable = true; |
| } |
| |
| static uint32_t |
| hsw_compute_linetime_wm(const struct intel_crtc_state *cstate) |
| { |
| const struct intel_atomic_state *intel_state = |
| to_intel_atomic_state(cstate->base.state); |
| const struct drm_display_mode *adjusted_mode = |
| &cstate->base.adjusted_mode; |
| u32 linetime, ips_linetime; |
| |
| if (!cstate->base.active) |
| return 0; |
| if (WARN_ON(adjusted_mode->crtc_clock == 0)) |
| return 0; |
| if (WARN_ON(intel_state->cdclk.logical.cdclk == 0)) |
| return 0; |
| |
| /* The WM are computed with base on how long it takes to fill a single |
| * row at the given clock rate, multiplied by 8. |
| * */ |
| linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, |
| adjusted_mode->crtc_clock); |
| ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, |
| intel_state->cdclk.logical.cdclk); |
| |
| return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) | |
| PIPE_WM_LINETIME_TIME(linetime); |
| } |
| |
| static void intel_read_wm_latency(struct drm_i915_private *dev_priv, |
| uint16_t wm[8]) |
| { |
| if (INTEL_GEN(dev_priv) >= 9) { |
| uint32_t val; |
| int ret, i; |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| |
| /* read the first set of memory latencies[0:3] */ |
| val = 0; /* data0 to be programmed to 0 for first set */ |
| mutex_lock(&dev_priv->rps.hw_lock); |
| ret = sandybridge_pcode_read(dev_priv, |
| GEN9_PCODE_READ_MEM_LATENCY, |
| &val); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| if (ret) { |
| DRM_ERROR("SKL Mailbox read error = %d\n", ret); |
| return; |
| } |
| |
| wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK; |
| wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK; |
| wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK; |
| wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK; |
| |
| /* read the second set of memory latencies[4:7] */ |
| val = 1; /* data0 to be programmed to 1 for second set */ |
| mutex_lock(&dev_priv->rps.hw_lock); |
| ret = sandybridge_pcode_read(dev_priv, |
| GEN9_PCODE_READ_MEM_LATENCY, |
| &val); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| if (ret) { |
| DRM_ERROR("SKL Mailbox read error = %d\n", ret); |
| return; |
| } |
| |
| wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK; |
| wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK; |
| wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK; |
| wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK; |
| |
| /* |
| * If a level n (n > 1) has a 0us latency, all levels m (m >= n) |
| * need to be disabled. We make sure to sanitize the values out |
| * of the punit to satisfy this requirement. |
| */ |
| for (level = 1; level <= max_level; level++) { |
| if (wm[level] == 0) { |
| for (i = level + 1; i <= max_level; i++) |
| wm[i] = 0; |
| break; |
| } |
| } |
| |
| /* |
| * WaWmMemoryReadLatency:skl+,glk |
| * |
| * punit doesn't take into account the read latency so we need |
| * to add 2us to the various latency levels we retrieve from the |
| * punit when level 0 response data us 0us. |
| */ |
| if (wm[0] == 0) { |
| wm[0] += 2; |
| for (level = 1; level <= max_level; level++) { |
| if (wm[level] == 0) |
| break; |
| wm[level] += 2; |
| } |
| } |
| |
| } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { |
| uint64_t sskpd = I915_READ64(MCH_SSKPD); |
| |
| wm[0] = (sskpd >> 56) & 0xFF; |
| if (wm[0] == 0) |
| wm[0] = sskpd & 0xF; |
| wm[1] = (sskpd >> 4) & 0xFF; |
| wm[2] = (sskpd >> 12) & 0xFF; |
| wm[3] = (sskpd >> 20) & 0x1FF; |
| wm[4] = (sskpd >> 32) & 0x1FF; |
| } else if (INTEL_GEN(dev_priv) >= 6) { |
| uint32_t sskpd = I915_READ(MCH_SSKPD); |
| |
| wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK; |
| wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK; |
| wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK; |
| wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK; |
| } else if (INTEL_GEN(dev_priv) >= 5) { |
| uint32_t mltr = I915_READ(MLTR_ILK); |
| |
| /* ILK primary LP0 latency is 700 ns */ |
| wm[0] = 7; |
| wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK; |
| wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK; |
| } else { |
| MISSING_CASE(INTEL_DEVID(dev_priv)); |
| } |
| } |
| |
| static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv, |
| uint16_t wm[5]) |
| { |
| /* ILK sprite LP0 latency is 1300 ns */ |
| if (IS_GEN5(dev_priv)) |
| wm[0] = 13; |
| } |
| |
| static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv, |
| uint16_t wm[5]) |
| { |
| /* ILK cursor LP0 latency is 1300 ns */ |
| if (IS_GEN5(dev_priv)) |
| wm[0] = 13; |
| |
| /* WaDoubleCursorLP3Latency:ivb */ |
| if (IS_IVYBRIDGE(dev_priv)) |
| wm[3] *= 2; |
| } |
| |
| int ilk_wm_max_level(const struct drm_i915_private *dev_priv) |
| { |
| /* how many WM levels are we expecting */ |
| if (INTEL_GEN(dev_priv) >= 9) |
| return 7; |
| else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| return 4; |
| else if (INTEL_GEN(dev_priv) >= 6) |
| return 3; |
| else |
| return 2; |
| } |
| |
| static void intel_print_wm_latency(struct drm_i915_private *dev_priv, |
| const char *name, |
| const uint16_t wm[8]) |
| { |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| |
| for (level = 0; level <= max_level; level++) { |
| unsigned int latency = wm[level]; |
| |
| if (latency == 0) { |
| DRM_ERROR("%s WM%d latency not provided\n", |
| name, level); |
| continue; |
| } |
| |
| /* |
| * - latencies are in us on gen9. |
| * - before then, WM1+ latency values are in 0.5us units |
| */ |
| if (INTEL_GEN(dev_priv) >= 9) |
| latency *= 10; |
| else if (level > 0) |
| latency *= 5; |
| |
| DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n", |
| name, level, wm[level], |
| latency / 10, latency % 10); |
| } |
| } |
| |
| static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv, |
| uint16_t wm[5], uint16_t min) |
| { |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| |
| if (wm[0] >= min) |
| return false; |
| |
| wm[0] = max(wm[0], min); |
| for (level = 1; level <= max_level; level++) |
| wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5)); |
| |
| return true; |
| } |
| |
| static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv) |
| { |
| bool changed; |
| |
| /* |
| * The BIOS provided WM memory latency values are often |
| * inadequate for high resolution displays. Adjust them. |
| */ |
| changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) | |
| ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) | |
| ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12); |
| |
| if (!changed) |
| return; |
| |
| DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n"); |
| intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); |
| intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); |
| intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); |
| } |
| |
| static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv) |
| { |
| intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency); |
| |
| memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency, |
| sizeof(dev_priv->wm.pri_latency)); |
| memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency, |
| sizeof(dev_priv->wm.pri_latency)); |
| |
| intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency); |
| intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency); |
| |
| intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); |
| intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); |
| intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); |
| |
| if (IS_GEN6(dev_priv)) |
| snb_wm_latency_quirk(dev_priv); |
| } |
| |
| static void skl_setup_wm_latency(struct drm_i915_private *dev_priv) |
| { |
| intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency); |
| intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency); |
| } |
| |
| static bool ilk_validate_pipe_wm(struct drm_device *dev, |
| struct intel_pipe_wm *pipe_wm) |
| { |
| /* LP0 watermark maximums depend on this pipe alone */ |
| const struct intel_wm_config config = { |
| .num_pipes_active = 1, |
| .sprites_enabled = pipe_wm->sprites_enabled, |
| .sprites_scaled = pipe_wm->sprites_scaled, |
| }; |
| struct ilk_wm_maximums max; |
| |
| /* LP0 watermarks always use 1/2 DDB partitioning */ |
| ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max); |
| |
| /* At least LP0 must be valid */ |
| if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) { |
| DRM_DEBUG_KMS("LP0 watermark invalid\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Compute new watermarks for the pipe */ |
| static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate) |
| { |
| struct drm_atomic_state *state = cstate->base.state; |
| struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); |
| struct intel_pipe_wm *pipe_wm; |
| struct drm_device *dev = state->dev; |
| const struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_plane *intel_plane; |
| struct intel_plane_state *pristate = NULL; |
| struct intel_plane_state *sprstate = NULL; |
| struct intel_plane_state *curstate = NULL; |
| int level, max_level = ilk_wm_max_level(dev_priv), usable_level; |
| struct ilk_wm_maximums max; |
| |
| pipe_wm = &cstate->wm.ilk.optimal; |
| |
| for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) { |
| struct intel_plane_state *ps; |
| |
| ps = intel_atomic_get_existing_plane_state(state, |
| intel_plane); |
| if (!ps) |
| continue; |
| |
| if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY) |
| pristate = ps; |
| else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) |
| sprstate = ps; |
| else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR) |
| curstate = ps; |
| } |
| |
| pipe_wm->pipe_enabled = cstate->base.active; |
| if (sprstate) { |
| pipe_wm->sprites_enabled = sprstate->base.visible; |
| pipe_wm->sprites_scaled = sprstate->base.visible && |
| (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 || |
| drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16); |
| } |
| |
| usable_level = max_level; |
| |
| /* ILK/SNB: LP2+ watermarks only w/o sprites */ |
| if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled) |
| usable_level = 1; |
| |
| /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */ |
| if (pipe_wm->sprites_scaled) |
| usable_level = 0; |
| |
| ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, |
| pristate, sprstate, curstate, &pipe_wm->raw_wm[0]); |
| |
| memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm)); |
| pipe_wm->wm[0] = pipe_wm->raw_wm[0]; |
| |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| pipe_wm->linetime = hsw_compute_linetime_wm(cstate); |
| |
| if (!ilk_validate_pipe_wm(dev, pipe_wm)) |
| return -EINVAL; |
| |
| ilk_compute_wm_reg_maximums(dev_priv, 1, &max); |
| |
| for (level = 1; level <= max_level; level++) { |
| struct intel_wm_level *wm = &pipe_wm->raw_wm[level]; |
| |
| ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, |
| pristate, sprstate, curstate, wm); |
| |
| /* |
| * Disable any watermark level that exceeds the |
| * register maximums since such watermarks are |
| * always invalid. |
| */ |
| if (level > usable_level) |
| continue; |
| |
| if (ilk_validate_wm_level(level, &max, wm)) |
| pipe_wm->wm[level] = *wm; |
| else |
| usable_level = level; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Build a set of 'intermediate' watermark values that satisfy both the old |
| * state and the new state. These can be programmed to the hardware |
| * immediately. |
| */ |
| static int ilk_compute_intermediate_wm(struct drm_device *dev, |
| struct intel_crtc *intel_crtc, |
| struct intel_crtc_state *newstate) |
| { |
| struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate; |
| struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk; |
| int level, max_level = ilk_wm_max_level(to_i915(dev)); |
| |
| /* |
| * Start with the final, target watermarks, then combine with the |
| * currently active watermarks to get values that are safe both before |
| * and after the vblank. |
| */ |
| *a = newstate->wm.ilk.optimal; |
| a->pipe_enabled |= b->pipe_enabled; |
| a->sprites_enabled |= b->sprites_enabled; |
| a->sprites_scaled |= b->sprites_scaled; |
| |
| for (level = 0; level <= max_level; level++) { |
| struct intel_wm_level *a_wm = &a->wm[level]; |
| const struct intel_wm_level *b_wm = &b->wm[level]; |
| |
| a_wm->enable &= b_wm->enable; |
| a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val); |
| a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val); |
| a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val); |
| a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val); |
| } |
| |
| /* |
| * We need to make sure that these merged watermark values are |
| * actually a valid configuration themselves. If they're not, |
| * there's no safe way to transition from the old state to |
| * the new state, so we need to fail the atomic transaction. |
| */ |
| if (!ilk_validate_pipe_wm(dev, a)) |
| return -EINVAL; |
| |
| /* |
| * If our intermediate WM are identical to the final WM, then we can |
| * omit the post-vblank programming; only update if it's different. |
| */ |
| if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0) |
| newstate->wm.need_postvbl_update = true; |
| |
| return 0; |
| } |
| |
| /* |
| * Merge the watermarks from all active pipes for a specific level. |
| */ |
| static void ilk_merge_wm_level(struct drm_device *dev, |
| int level, |
| struct intel_wm_level *ret_wm) |
| { |
| const struct intel_crtc *intel_crtc; |
| |
| ret_wm->enable = true; |
| |
| for_each_intel_crtc(dev, intel_crtc) { |
| const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk; |
| const struct intel_wm_level *wm = &active->wm[level]; |
| |
| if (!active->pipe_enabled) |
| continue; |
| |
| /* |
| * The watermark values may have been used in the past, |
| * so we must maintain them in the registers for some |
| * time even if the level is now disabled. |
| */ |
| if (!wm->enable) |
| ret_wm->enable = false; |
| |
| ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val); |
| ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val); |
| ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val); |
| ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val); |
| } |
| } |
| |
| /* |
| * Merge all low power watermarks for all active pipes. |
| */ |
| static void ilk_wm_merge(struct drm_device *dev, |
| const struct intel_wm_config *config, |
| const struct ilk_wm_maximums *max, |
| struct intel_pipe_wm *merged) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| int last_enabled_level = max_level; |
| |
| /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */ |
| if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) && |
| config->num_pipes_active > 1) |
| last_enabled_level = 0; |
| |
| /* ILK: FBC WM must be disabled always */ |
| merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6; |
| |
| /* merge each WM1+ level */ |
| for (level = 1; level <= max_level; level++) { |
| struct intel_wm_level *wm = &merged->wm[level]; |
| |
| ilk_merge_wm_level(dev, level, wm); |
| |
| if (level > last_enabled_level) |
| wm->enable = false; |
| else if (!ilk_validate_wm_level(level, max, wm)) |
| /* make sure all following levels get disabled */ |
| last_enabled_level = level - 1; |
| |
| /* |
| * The spec says it is preferred to disable |
| * FBC WMs instead of disabling a WM level. |
| */ |
| if (wm->fbc_val > max->fbc) { |
| if (wm->enable) |
| merged->fbc_wm_enabled = false; |
| wm->fbc_val = 0; |
| } |
| } |
| |
| /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */ |
| /* |
| * FIXME this is racy. FBC might get enabled later. |
| * What we should check here is whether FBC can be |
| * enabled sometime later. |
| */ |
| if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled && |
| intel_fbc_is_active(dev_priv)) { |
| for (level = 2; level <= max_level; level++) { |
| struct intel_wm_level *wm = &merged->wm[level]; |
| |
| wm->enable = false; |
| } |
| } |
| } |
| |
| static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm) |
| { |
| /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */ |
| return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable); |
| } |
| |
| /* The value we need to program into the WM_LPx latency field */ |
| static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| return 2 * level; |
| else |
| return dev_priv->wm.pri_latency[level]; |
| } |
| |
| static void ilk_compute_wm_results(struct drm_device *dev, |
| const struct intel_pipe_wm *merged, |
| enum intel_ddb_partitioning partitioning, |
| struct ilk_wm_values *results) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc; |
| int level, wm_lp; |
| |
| results->enable_fbc_wm = merged->fbc_wm_enabled; |
| results->partitioning = partitioning; |
| |
| /* LP1+ register values */ |
| for (wm_lp = 1; wm_lp <= 3; wm_lp++) { |
| const struct intel_wm_level *r; |
| |
| level = ilk_wm_lp_to_level(wm_lp, merged); |
| |
| r = &merged->wm[level]; |
| |
| /* |
| * Maintain the watermark values even if the level is |
| * disabled. Doing otherwise could cause underruns. |
| */ |
| results->wm_lp[wm_lp - 1] = |
| (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) | |
| (r->pri_val << WM1_LP_SR_SHIFT) | |
| r->cur_val; |
| |
| if (r->enable) |
| results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN; |
| |
| if (INTEL_GEN(dev_priv) >= 8) |
| results->wm_lp[wm_lp - 1] |= |
| r->fbc_val << WM1_LP_FBC_SHIFT_BDW; |
| else |
| results->wm_lp[wm_lp - 1] |= |
| r->fbc_val << WM1_LP_FBC_SHIFT; |
| |
| /* |
| * Always set WM1S_LP_EN when spr_val != 0, even if the |
| * level is disabled. Doing otherwise could cause underruns. |
| */ |
| if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) { |
| WARN_ON(wm_lp != 1); |
| results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val; |
| } else |
| results->wm_lp_spr[wm_lp - 1] = r->spr_val; |
| } |
| |
| /* LP0 register values */ |
| for_each_intel_crtc(dev, intel_crtc) { |
| enum pipe pipe = intel_crtc->pipe; |
| const struct intel_wm_level *r = |
| &intel_crtc->wm.active.ilk.wm[0]; |
| |
| if (WARN_ON(!r->enable)) |
| continue; |
| |
| results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime; |
| |
| results->wm_pipe[pipe] = |
| (r->pri_val << WM0_PIPE_PLANE_SHIFT) | |
| (r->spr_val << WM0_PIPE_SPRITE_SHIFT) | |
| r->cur_val; |
| } |
| } |
| |
| /* Find the result with the highest level enabled. Check for enable_fbc_wm in |
| * case both are at the same level. Prefer r1 in case they're the same. */ |
| static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev, |
| struct intel_pipe_wm *r1, |
| struct intel_pipe_wm *r2) |
| { |
| int level, max_level = ilk_wm_max_level(to_i915(dev)); |
| int level1 = 0, level2 = 0; |
| |
| for (level = 1; level <= max_level; level++) { |
| if (r1->wm[level].enable) |
| level1 = level; |
| if (r2->wm[level].enable) |
| level2 = level; |
| } |
| |
| if (level1 == level2) { |
| if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled) |
| return r2; |
| else |
| return r1; |
| } else if (level1 > level2) { |
| return r1; |
| } else { |
| return r2; |
| } |
| } |
| |
| /* dirty bits used to track which watermarks need changes */ |
| #define WM_DIRTY_PIPE(pipe) (1 << (pipe)) |
| #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe))) |
| #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp))) |
| #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3)) |
| #define WM_DIRTY_FBC (1 << 24) |
| #define WM_DIRTY_DDB (1 << 25) |
| |
| static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv, |
| const struct ilk_wm_values *old, |
| const struct ilk_wm_values *new) |
| { |
| unsigned int dirty = 0; |
| enum pipe pipe; |
| int wm_lp; |
| |
| for_each_pipe(dev_priv, pipe) { |
| if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) { |
| dirty |= WM_DIRTY_LINETIME(pipe); |
| /* Must disable LP1+ watermarks too */ |
| dirty |= WM_DIRTY_LP_ALL; |
| } |
| |
| if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) { |
| dirty |= WM_DIRTY_PIPE(pipe); |
| /* Must disable LP1+ watermarks too */ |
| dirty |= WM_DIRTY_LP_ALL; |
| } |
| } |
| |
| if (old->enable_fbc_wm != new->enable_fbc_wm) { |
| dirty |= WM_DIRTY_FBC; |
| /* Must disable LP1+ watermarks too */ |
| dirty |= WM_DIRTY_LP_ALL; |
| } |
| |
| if (old->partitioning != new->partitioning) { |
| dirty |= WM_DIRTY_DDB; |
| /* Must disable LP1+ watermarks too */ |
| dirty |= WM_DIRTY_LP_ALL; |
| } |
| |
| /* LP1+ watermarks already deemed dirty, no need to continue */ |
| if (dirty & WM_DIRTY_LP_ALL) |
| return dirty; |
| |
| /* Find the lowest numbered LP1+ watermark in need of an update... */ |
| for (wm_lp = 1; wm_lp <= 3; wm_lp++) { |
| if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] || |
| old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1]) |
| break; |
| } |
| |
| /* ...and mark it and all higher numbered LP1+ watermarks as dirty */ |
| for (; wm_lp <= 3; wm_lp++) |
| dirty |= WM_DIRTY_LP(wm_lp); |
| |
| return dirty; |
| } |
| |
| static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv, |
| unsigned int dirty) |
| { |
| struct ilk_wm_values *previous = &dev_priv->wm.hw; |
| bool changed = false; |
| |
| if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) { |
| previous->wm_lp[2] &= ~WM1_LP_SR_EN; |
| I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]); |
| changed = true; |
| } |
| if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) { |
| previous->wm_lp[1] &= ~WM1_LP_SR_EN; |
| I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]); |
| changed = true; |
| } |
| if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) { |
| previous->wm_lp[0] &= ~WM1_LP_SR_EN; |
| I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]); |
| changed = true; |
| } |
| |
| /* |
| * Don't touch WM1S_LP_EN here. |
| * Doing so could cause underruns. |
| */ |
| |
| return changed; |
| } |
| |
| /* |
| * The spec says we shouldn't write when we don't need, because every write |
| * causes WMs to be re-evaluated, expending some power. |
| */ |
| static void ilk_write_wm_values(struct drm_i915_private *dev_priv, |
| struct ilk_wm_values *results) |
| { |
| struct ilk_wm_values *previous = &dev_priv->wm.hw; |
| unsigned int dirty; |
| uint32_t val; |
| |
| dirty = ilk_compute_wm_dirty(dev_priv, previous, results); |
| if (!dirty) |
| return; |
| |
| _ilk_disable_lp_wm(dev_priv, dirty); |
| |
| if (dirty & WM_DIRTY_PIPE(PIPE_A)) |
| I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]); |
| if (dirty & WM_DIRTY_PIPE(PIPE_B)) |
| I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]); |
| if (dirty & WM_DIRTY_PIPE(PIPE_C)) |
| I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]); |
| |
| if (dirty & WM_DIRTY_LINETIME(PIPE_A)) |
| I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]); |
| if (dirty & WM_DIRTY_LINETIME(PIPE_B)) |
| I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]); |
| if (dirty & WM_DIRTY_LINETIME(PIPE_C)) |
| I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]); |
| |
| if (dirty & WM_DIRTY_DDB) { |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { |
| val = I915_READ(WM_MISC); |
| if (results->partitioning == INTEL_DDB_PART_1_2) |
| val &= ~WM_MISC_DATA_PARTITION_5_6; |
| else |
| val |= WM_MISC_DATA_PARTITION_5_6; |
| I915_WRITE(WM_MISC, val); |
| } else { |
| val = I915_READ(DISP_ARB_CTL2); |
| if (results->partitioning == INTEL_DDB_PART_1_2) |
| val &= ~DISP_DATA_PARTITION_5_6; |
| else |
| val |= DISP_DATA_PARTITION_5_6; |
| I915_WRITE(DISP_ARB_CTL2, val); |
| } |
| } |
| |
| if (dirty & WM_DIRTY_FBC) { |
| val = I915_READ(DISP_ARB_CTL); |
| if (results->enable_fbc_wm) |
| val &= ~DISP_FBC_WM_DIS; |
| else |
| val |= DISP_FBC_WM_DIS; |
| I915_WRITE(DISP_ARB_CTL, val); |
| } |
| |
| if (dirty & WM_DIRTY_LP(1) && |
| previous->wm_lp_spr[0] != results->wm_lp_spr[0]) |
| I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]); |
| |
| if (INTEL_GEN(dev_priv) >= 7) { |
| if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1]) |
| I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]); |
| if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2]) |
| I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]); |
| } |
| |
| if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0]) |
| I915_WRITE(WM1_LP_ILK, results->wm_lp[0]); |
| if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1]) |
| I915_WRITE(WM2_LP_ILK, results->wm_lp[1]); |
| if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2]) |
| I915_WRITE(WM3_LP_ILK, results->wm_lp[2]); |
| |
| dev_priv->wm.hw = *results; |
| } |
| |
| bool ilk_disable_lp_wm(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL); |
| } |
| |
| /* |
| * FIXME: We still don't have the proper code detect if we need to apply the WA, |
| * so assume we'll always need it in order to avoid underruns. |
| */ |
| static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| |
| if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool |
| intel_has_sagv(struct drm_i915_private *dev_priv) |
| { |
| if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || |
| IS_CANNONLAKE(dev_priv)) |
| return true; |
| |
| if (IS_SKYLAKE(dev_priv) && |
| dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * SAGV dynamically adjusts the system agent voltage and clock frequencies |
| * depending on power and performance requirements. The display engine access |
| * to system memory is blocked during the adjustment time. Because of the |
| * blocking time, having this enabled can cause full system hangs and/or pipe |
| * underruns if we don't meet all of the following requirements: |
| * |
| * - <= 1 pipe enabled |
| * - All planes can enable watermarks for latencies >= SAGV engine block time |
| * - We're not using an interlaced display configuration |
| */ |
| int |
| intel_enable_sagv(struct drm_i915_private *dev_priv) |
| { |
| int ret; |
| |
| if (!intel_has_sagv(dev_priv)) |
| return 0; |
| |
| if (dev_priv->sagv_status == I915_SAGV_ENABLED) |
| return 0; |
| |
| DRM_DEBUG_KMS("Enabling the SAGV\n"); |
| mutex_lock(&dev_priv->rps.hw_lock); |
| |
| ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL, |
| GEN9_SAGV_ENABLE); |
| |
| /* We don't need to wait for the SAGV when enabling */ |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| /* |
| * Some skl systems, pre-release machines in particular, |
| * don't actually have an SAGV. |
| */ |
| if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) { |
| DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n"); |
| dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; |
| return 0; |
| } else if (ret < 0) { |
| DRM_ERROR("Failed to enable the SAGV\n"); |
| return ret; |
| } |
| |
| dev_priv->sagv_status = I915_SAGV_ENABLED; |
| return 0; |
| } |
| |
| int |
| intel_disable_sagv(struct drm_i915_private *dev_priv) |
| { |
| int ret; |
| |
| if (!intel_has_sagv(dev_priv)) |
| return 0; |
| |
| if (dev_priv->sagv_status == I915_SAGV_DISABLED) |
| return 0; |
| |
| DRM_DEBUG_KMS("Disabling the SAGV\n"); |
| mutex_lock(&dev_priv->rps.hw_lock); |
| |
| /* bspec says to keep retrying for at least 1 ms */ |
| ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL, |
| GEN9_SAGV_DISABLE, |
| GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED, |
| 1); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| /* |
| * Some skl systems, pre-release machines in particular, |
| * don't actually have an SAGV. |
| */ |
| if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) { |
| DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n"); |
| dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; |
| return 0; |
| } else if (ret < 0) { |
| DRM_ERROR("Failed to disable the SAGV (%d)\n", ret); |
| return ret; |
| } |
| |
| dev_priv->sagv_status = I915_SAGV_DISABLED; |
| return 0; |
| } |
| |
| bool intel_can_enable_sagv(struct drm_atomic_state *state) |
| { |
| struct drm_device *dev = state->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct intel_crtc *crtc; |
| struct intel_plane *plane; |
| struct intel_crtc_state *cstate; |
| enum pipe pipe; |
| int level, latency; |
| int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20; |
| |
| if (!intel_has_sagv(dev_priv)) |
| return false; |
| |
| /* |
| * SKL+ workaround: bspec recommends we disable the SAGV when we have |
| * more then one pipe enabled |
| * |
| * If there are no active CRTCs, no additional checks need be performed |
| */ |
| if (hweight32(intel_state->active_crtcs) == 0) |
| return true; |
| else if (hweight32(intel_state->active_crtcs) > 1) |
| return false; |
| |
| /* Since we're now guaranteed to only have one active CRTC... */ |
| pipe = ffs(intel_state->active_crtcs) - 1; |
| crtc = intel_get_crtc_for_pipe(dev_priv, pipe); |
| cstate = to_intel_crtc_state(crtc->base.state); |
| |
| if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) |
| return false; |
| |
| for_each_intel_plane_on_crtc(dev, crtc, plane) { |
| struct skl_plane_wm *wm = |
| &cstate->wm.skl.optimal.planes[plane->id]; |
| |
| /* Skip this plane if it's not enabled */ |
| if (!wm->wm[0].plane_en) |
| continue; |
| |
| /* Find the highest enabled wm level for this plane */ |
| for (level = ilk_wm_max_level(dev_priv); |
| !wm->wm[level].plane_en; --level) |
| { } |
| |
| latency = dev_priv->wm.skl_latency[level]; |
| |
| if (skl_needs_memory_bw_wa(intel_state) && |
| plane->base.state->fb->modifier == |
| I915_FORMAT_MOD_X_TILED) |
| latency += 15; |
| |
| /* |
| * If any of the planes on this pipe don't enable wm levels that |
| * incur memory latencies higher than sagv_block_time_us we |
| * can't enable the SAGV. |
| */ |
| if (latency < sagv_block_time_us) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void |
| skl_ddb_get_pipe_allocation_limits(struct drm_device *dev, |
| const struct intel_crtc_state *cstate, |
| struct skl_ddb_entry *alloc, /* out */ |
| int *num_active /* out */) |
| { |
| struct drm_atomic_state *state = cstate->base.state; |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_crtc *for_crtc = cstate->base.crtc; |
| unsigned int pipe_size, ddb_size; |
| int nth_active_pipe; |
| |
| if (WARN_ON(!state) || !cstate->base.active) { |
| alloc->start = 0; |
| alloc->end = 0; |
| *num_active = hweight32(dev_priv->active_crtcs); |
| return; |
| } |
| |
| if (intel_state->active_pipe_changes) |
| *num_active = hweight32(intel_state->active_crtcs); |
| else |
| *num_active = hweight32(dev_priv->active_crtcs); |
| |
| ddb_size = INTEL_INFO(dev_priv)->ddb_size; |
| WARN_ON(ddb_size == 0); |
| |
| ddb_size -= 4; /* 4 blocks for bypass path allocation */ |
| |
| /* |
| * If the state doesn't change the active CRTC's, then there's |
| * no need to recalculate; the existing pipe allocation limits |
| * should remain unchanged. Note that we're safe from racing |
| * commits since any racing commit that changes the active CRTC |
| * list would need to grab _all_ crtc locks, including the one |
| * we currently hold. |
| */ |
| if (!intel_state->active_pipe_changes) { |
| /* |
| * alloc may be cleared by clear_intel_crtc_state, |
| * copy from old state to be sure |
| */ |
| *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb; |
| return; |
| } |
| |
| nth_active_pipe = hweight32(intel_state->active_crtcs & |
| (drm_crtc_mask(for_crtc) - 1)); |
| pipe_size = ddb_size / hweight32(intel_state->active_crtcs); |
| alloc->start = nth_active_pipe * ddb_size / *num_active; |
| alloc->end = alloc->start + pipe_size; |
| } |
| |
| static unsigned int skl_cursor_allocation(int num_active) |
| { |
| if (num_active == 1) |
| return 32; |
| |
| return 8; |
| } |
| |
| static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg) |
| { |
| entry->start = reg & 0x3ff; |
| entry->end = (reg >> 16) & 0x3ff; |
| if (entry->end) |
| entry->end += 1; |
| } |
| |
| void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv, |
| struct skl_ddb_allocation *ddb /* out */) |
| { |
| struct intel_crtc *crtc; |
| |
| memset(ddb, 0, sizeof(*ddb)); |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| enum intel_display_power_domain power_domain; |
| enum plane_id plane_id; |
| enum pipe pipe = crtc->pipe; |
| |
| power_domain = POWER_DOMAIN_PIPE(pipe); |
| if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) |
| continue; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| u32 val; |
| |
| if (plane_id != PLANE_CURSOR) |
| val = I915_READ(PLANE_BUF_CFG(pipe, plane_id)); |
| else |
| val = I915_READ(CUR_BUF_CFG(pipe)); |
| |
| skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val); |
| } |
| |
| intel_display_power_put(dev_priv, power_domain); |
| } |
| } |
| |
| /* |
| * Determines the downscale amount of a plane for the purposes of watermark calculations. |
| * The bspec defines downscale amount as: |
| * |
| * """ |
| * Horizontal down scale amount = maximum[1, Horizontal source size / |
| * Horizontal destination size] |
| * Vertical down scale amount = maximum[1, Vertical source size / |
| * Vertical destination size] |
| * Total down scale amount = Horizontal down scale amount * |
| * Vertical down scale amount |
| * """ |
| * |
| * Return value is provided in 16.16 fixed point form to retain fractional part. |
| * Caller should take care of dividing & rounding off the value. |
| */ |
| static uint_fixed_16_16_t |
| skl_plane_downscale_amount(const struct intel_crtc_state *cstate, |
| const struct intel_plane_state *pstate) |
| { |
| struct intel_plane *plane = to_intel_plane(pstate->base.plane); |
| uint32_t src_w, src_h, dst_w, dst_h; |
| uint_fixed_16_16_t fp_w_ratio, fp_h_ratio; |
| uint_fixed_16_16_t downscale_h, downscale_w; |
| |
| if (WARN_ON(!intel_wm_plane_visible(cstate, pstate))) |
| return u32_to_fixed16(0); |
| |
| /* n.b., src is 16.16 fixed point, dst is whole integer */ |
| if (plane->id == PLANE_CURSOR) { |
| /* |
| * Cursors only support 0/180 degree rotation, |
| * hence no need to account for rotation here. |
| */ |
| src_w = pstate->base.src_w >> 16; |
| src_h = pstate->base.src_h >> 16; |
| dst_w = pstate->base.crtc_w; |
| dst_h = pstate->base.crtc_h; |
| } else { |
| /* |
| * Src coordinates are already rotated by 270 degrees for |
| * the 90/270 degree plane rotation cases (to match the |
| * GTT mapping), hence no need to account for rotation here. |
| */ |
| src_w = drm_rect_width(&pstate->base.src) >> 16; |
| src_h = drm_rect_height(&pstate->base.src) >> 16; |
| dst_w = drm_rect_width(&pstate->base.dst); |
| dst_h = drm_rect_height(&pstate->base.dst); |
| } |
| |
| fp_w_ratio = div_fixed16(src_w, dst_w); |
| fp_h_ratio = div_fixed16(src_h, dst_h); |
| downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1)); |
| downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1)); |
| |
| return mul_fixed16(downscale_w, downscale_h); |
| } |
| |
| static uint_fixed_16_16_t |
| skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state) |
| { |
| uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1); |
| |
| if (!crtc_state->base.enable) |
| return pipe_downscale; |
| |
| if (crtc_state->pch_pfit.enabled) { |
| uint32_t src_w, src_h, dst_w, dst_h; |
| uint32_t pfit_size = crtc_state->pch_pfit.size; |
| uint_fixed_16_16_t fp_w_ratio, fp_h_ratio; |
| uint_fixed_16_16_t downscale_h, downscale_w; |
| |
| src_w = crtc_state->pipe_src_w; |
| src_h = crtc_state->pipe_src_h; |
| dst_w = pfit_size >> 16; |
| dst_h = pfit_size & 0xffff; |
| |
| if (!dst_w || !dst_h) |
| return pipe_downscale; |
| |
| fp_w_ratio = div_fixed16(src_w, dst_w); |
| fp_h_ratio = div_fixed16(src_h, dst_h); |
| downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1)); |
| downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1)); |
| |
| pipe_downscale = mul_fixed16(downscale_w, downscale_h); |
| } |
| |
| return pipe_downscale; |
| } |
| |
| int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc, |
| struct intel_crtc_state *cstate) |
| { |
| struct drm_crtc_state *crtc_state = &cstate->base; |
| struct drm_atomic_state *state = crtc_state->state; |
| struct drm_plane *plane; |
| const struct drm_plane_state *pstate; |
| struct intel_plane_state *intel_pstate; |
| int crtc_clock, dotclk; |
| uint32_t pipe_max_pixel_rate; |
| uint_fixed_16_16_t pipe_downscale; |
| uint_fixed_16_16_t max_downscale = u32_to_fixed16(1); |
| |
| if (!cstate->base.enable) |
| return 0; |
| |
| drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { |
| uint_fixed_16_16_t plane_downscale; |
| uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8); |
| int bpp; |
| |
| if (!intel_wm_plane_visible(cstate, |
| to_intel_plane_state(pstate))) |
| continue; |
| |
| if (WARN_ON(!pstate->fb)) |
| return -EINVAL; |
| |
| intel_pstate = to_intel_plane_state(pstate); |
| plane_downscale = skl_plane_downscale_amount(cstate, |
| intel_pstate); |
| bpp = pstate->fb->format->cpp[0] * 8; |
| if (bpp == 64) |
| plane_downscale = mul_fixed16(plane_downscale, |
| fp_9_div_8); |
| |
| max_downscale = max_fixed16(plane_downscale, max_downscale); |
| } |
| pipe_downscale = skl_pipe_downscale_amount(cstate); |
| |
| pipe_downscale = mul_fixed16(pipe_downscale, max_downscale); |
| |
| crtc_clock = crtc_state->adjusted_mode.crtc_clock; |
| dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk; |
| |
| if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev))) |
| dotclk *= 2; |
| |
| pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale); |
| |
| if (pipe_max_pixel_rate < crtc_clock) { |
| DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static unsigned int |
| skl_plane_relative_data_rate(const struct intel_crtc_state *cstate, |
| const struct drm_plane_state *pstate, |
| int y) |
| { |
| struct intel_plane *plane = to_intel_plane(pstate->plane); |
| struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate); |
| uint32_t data_rate; |
| uint32_t width = 0, height = 0; |
| struct drm_framebuffer *fb; |
| u32 format; |
| uint_fixed_16_16_t down_scale_amount; |
| |
| if (!intel_pstate->base.visible) |
| return 0; |
| |
| fb = pstate->fb; |
| format = fb->format->format; |
| |
| if (plane->id == PLANE_CURSOR) |
| return 0; |
| if (y && format != DRM_FORMAT_NV12) |
| return 0; |
| |
| /* |
| * Src coordinates are already rotated by 270 degrees for |
| * the 90/270 degree plane rotation cases (to match the |
| * GTT mapping), hence no need to account for rotation here. |
| */ |
| width = drm_rect_width(&intel_pstate->base.src) >> 16; |
| height = drm_rect_height(&intel_pstate->base.src) >> 16; |
| |
| /* for planar format */ |
| if (format == DRM_FORMAT_NV12) { |
| if (y) /* y-plane data rate */ |
| data_rate = width * height * |
| fb->format->cpp[0]; |
| else /* uv-plane data rate */ |
| data_rate = (width / 2) * (height / 2) * |
| fb->format->cpp[1]; |
| } else { |
| /* for packed formats */ |
| data_rate = width * height * fb->format->cpp[0]; |
| } |
| |
| down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate); |
| |
| return mul_round_up_u32_fixed16(data_rate, down_scale_amount); |
| } |
| |
| /* |
| * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching |
| * a 8192x4096@32bpp framebuffer: |
| * 3 * 4096 * 8192 * 4 < 2^32 |
| */ |
| static unsigned int |
| skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate, |
| unsigned *plane_data_rate, |
| unsigned *plane_y_data_rate) |
| { |
| struct drm_crtc_state *cstate = &intel_cstate->base; |
| struct drm_atomic_state *state = cstate->state; |
| struct drm_plane *plane; |
| const struct drm_plane_state *pstate; |
| unsigned int total_data_rate = 0; |
| |
| if (WARN_ON(!state)) |
| return 0; |
| |
| /* Calculate and cache data rate for each plane */ |
| drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) { |
| enum plane_id plane_id = to_intel_plane(plane)->id; |
| unsigned int rate; |
| |
| /* packed/uv */ |
| rate = skl_plane_relative_data_rate(intel_cstate, |
| pstate, 0); |
| plane_data_rate[plane_id] = rate; |
| |
| total_data_rate += rate; |
| |
| /* y-plane */ |
| rate = skl_plane_relative_data_rate(intel_cstate, |
| pstate, 1); |
| plane_y_data_rate[plane_id] = rate; |
| |
| total_data_rate += rate; |
| } |
| |
| return total_data_rate; |
| } |
| |
| static uint16_t |
| skl_ddb_min_alloc(const struct drm_plane_state *pstate, |
| const int y) |
| { |
| struct drm_framebuffer *fb = pstate->fb; |
| struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate); |
| uint32_t src_w, src_h; |
| uint32_t min_scanlines = 8; |
| uint8_t plane_bpp; |
| |
| if (WARN_ON(!fb)) |
| return 0; |
| |
| /* For packed formats, no y-plane, return 0 */ |
| if (y && fb->format->format != DRM_FORMAT_NV12) |
| return 0; |
| |
| /* For Non Y-tile return 8-blocks */ |
| if (fb->modifier != I915_FORMAT_MOD_Y_TILED && |
| fb->modifier != I915_FORMAT_MOD_Yf_TILED && |
| fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS && |
| fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS) |
| return 8; |
| |
| /* |
| * Src coordinates are already rotated by 270 degrees for |
| * the 90/270 degree plane rotation cases (to match the |
| * GTT mapping), hence no need to account for rotation here. |
| */ |
| src_w = drm_rect_width(&intel_pstate->base.src) >> 16; |
| src_h = drm_rect_height(&intel_pstate->base.src) >> 16; |
| |
| /* Halve UV plane width and height for NV12 */ |
| if (fb->format->format == DRM_FORMAT_NV12 && !y) { |
| src_w /= 2; |
| src_h /= 2; |
| } |
| |
| if (fb->format->format == DRM_FORMAT_NV12 && !y) |
| plane_bpp = fb->format->cpp[1]; |
| else |
| plane_bpp = fb->format->cpp[0]; |
| |
| if (drm_rotation_90_or_270(pstate->rotation)) { |
| switch (plane_bpp) { |
| case 1: |
| min_scanlines = 32; |
| break; |
| case 2: |
| min_scanlines = 16; |
| break; |
| case 4: |
| min_scanlines = 8; |
| break; |
| case 8: |
| min_scanlines = 4; |
| break; |
| default: |
| WARN(1, "Unsupported pixel depth %u for rotation", |
| plane_bpp); |
| min_scanlines = 32; |
| } |
| } |
| |
| return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3; |
| } |
| |
| static void |
| skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active, |
| uint16_t *minimum, uint16_t *y_minimum) |
| { |
| const struct drm_plane_state *pstate; |
| struct drm_plane *plane; |
| |
| drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) { |
| enum plane_id plane_id = to_intel_plane(plane)->id; |
| |
| if (plane_id == PLANE_CURSOR) |
| continue; |
| |
| if (!pstate->visible) |
| continue; |
| |
| minimum[plane_id] = skl_ddb_min_alloc(pstate, 0); |
| y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1); |
| } |
| |
| minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active); |
| } |
| |
| static int |
| skl_allocate_pipe_ddb(struct intel_crtc_state *cstate, |
| struct skl_ddb_allocation *ddb /* out */) |
| { |
| struct drm_atomic_state *state = cstate->base.state; |
| struct drm_crtc *crtc = cstate->base.crtc; |
| struct drm_device *dev = crtc->dev; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum pipe pipe = intel_crtc->pipe; |
| struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb; |
| uint16_t alloc_size, start; |
| uint16_t minimum[I915_MAX_PLANES] = {}; |
| uint16_t y_minimum[I915_MAX_PLANES] = {}; |
| unsigned int total_data_rate; |
| enum plane_id plane_id; |
| int num_active; |
| unsigned plane_data_rate[I915_MAX_PLANES] = {}; |
| unsigned plane_y_data_rate[I915_MAX_PLANES] = {}; |
| uint16_t total_min_blocks = 0; |
| |
| /* Clear the partitioning for disabled planes. */ |
| memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe])); |
| memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe])); |
| |
| if (WARN_ON(!state)) |
| return 0; |
| |
| if (!cstate->base.active) { |
| alloc->start = alloc->end = 0; |
| return 0; |
| } |
| |
| skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active); |
| alloc_size = skl_ddb_entry_size(alloc); |
| if (alloc_size == 0) |
| return 0; |
| |
| skl_ddb_calc_min(cstate, num_active, minimum, y_minimum); |
| |
| /* |
| * 1. Allocate the mininum required blocks for each active plane |
| * and allocate the cursor, it doesn't require extra allocation |
| * proportional to the data rate. |
| */ |
| |
| for_each_plane_id_on_crtc(intel_crtc, plane_id) { |
| total_min_blocks += minimum[plane_id]; |
| total_min_blocks += y_minimum[plane_id]; |
| } |
| |
| if (total_min_blocks > alloc_size) { |
| DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations"); |
| DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks, |
| alloc_size); |
| return -EINVAL; |
| } |
| |
| alloc_size -= total_min_blocks; |
| ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR]; |
| ddb->plane[pipe][PLANE_CURSOR].end = alloc->end; |
| |
| /* |
| * 2. Distribute the remaining space in proportion to the amount of |
| * data each plane needs to fetch from memory. |
| * |
| * FIXME: we may not allocate every single block here. |
| */ |
| total_data_rate = skl_get_total_relative_data_rate(cstate, |
| plane_data_rate, |
| plane_y_data_rate); |
| if (total_data_rate == 0) |
| return 0; |
| |
| start = alloc->start; |
| for_each_plane_id_on_crtc(intel_crtc, plane_id) { |
| unsigned int data_rate, y_data_rate; |
| uint16_t plane_blocks, y_plane_blocks = 0; |
| |
| if (plane_id == PLANE_CURSOR) |
| continue; |
| |
| data_rate = plane_data_rate[plane_id]; |
| |
| /* |
| * allocation for (packed formats) or (uv-plane part of planar format): |
| * promote the expression to 64 bits to avoid overflowing, the |
| * result is < available as data_rate / total_data_rate < 1 |
| */ |
| plane_blocks = minimum[plane_id]; |
| plane_blocks += div_u64((uint64_t)alloc_size * data_rate, |
| total_data_rate); |
| |
| /* Leave disabled planes at (0,0) */ |
| if (data_rate) { |
| ddb->plane[pipe][plane_id].start = start; |
| ddb->plane[pipe][plane_id].end = start + plane_blocks; |
| } |
| |
| start += plane_blocks; |
| |
| /* |
| * allocation for y_plane part of planar format: |
| */ |
| y_data_rate = plane_y_data_rate[plane_id]; |
| |
| y_plane_blocks = y_minimum[plane_id]; |
| y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate, |
| total_data_rate); |
| |
| if (y_data_rate) { |
| ddb->y_plane[pipe][plane_id].start = start; |
| ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks; |
| } |
| |
| start += y_plane_blocks; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * The max latency should be 257 (max the punit can code is 255 and we add 2us |
| * for the read latency) and cpp should always be <= 8, so that |
| * should allow pixel_rate up to ~2 GHz which seems sufficient since max |
| * 2xcdclk is 1350 MHz and the pixel rate should never exceed that. |
| */ |
| static uint_fixed_16_16_t |
| skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate, |
| uint8_t cpp, uint32_t latency) |
| { |
| uint32_t wm_intermediate_val; |
| uint_fixed_16_16_t ret; |
| |
| if (latency == 0) |
| return FP_16_16_MAX; |
| |
| wm_intermediate_val = latency * pixel_rate * cpp; |
| ret = div_fixed16(wm_intermediate_val, 1000 * 512); |
| |
| if (INTEL_GEN(dev_priv) >= 10) |
| ret = add_fixed16_u32(ret, 1); |
| |
| return ret; |
| } |
| |
| static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate, |
| uint32_t pipe_htotal, |
| uint32_t latency, |
| uint_fixed_16_16_t plane_blocks_per_line) |
| { |
| uint32_t wm_intermediate_val; |
| uint_fixed_16_16_t ret; |
| |
| if (latency == 0) |
| return FP_16_16_MAX; |
| |
| wm_intermediate_val = latency * pixel_rate; |
| wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val, |
| pipe_htotal * 1000); |
| ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line); |
| return ret; |
| } |
| |
| static uint_fixed_16_16_t |
| intel_get_linetime_us(struct intel_crtc_state *cstate) |
| { |
| uint32_t pixel_rate; |
| uint32_t crtc_htotal; |
| uint_fixed_16_16_t linetime_us; |
| |
| if (!cstate->base.active) |
| return u32_to_fixed16(0); |
| |
| pixel_rate = cstate->pixel_rate; |
| |
| if (WARN_ON(pixel_rate == 0)) |
| return u32_to_fixed16(0); |
| |
| crtc_htotal = cstate->base.adjusted_mode.crtc_htotal; |
| linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate); |
| |
| return linetime_us; |
| } |
| |
| static uint32_t |
| skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate, |
| const struct intel_plane_state *pstate) |
| { |
| uint64_t adjusted_pixel_rate; |
| uint_fixed_16_16_t downscale_amount; |
| |
| /* Shouldn't reach here on disabled planes... */ |
| if (WARN_ON(!intel_wm_plane_visible(cstate, pstate))) |
| return 0; |
| |
| /* |
| * Adjusted plane pixel rate is just the pipe's adjusted pixel rate |
| * with additional adjustments for plane-specific scaling. |
| */ |
| adjusted_pixel_rate = cstate->pixel_rate; |
| downscale_amount = skl_plane_downscale_amount(cstate, pstate); |
| |
| return mul_round_up_u32_fixed16(adjusted_pixel_rate, |
| downscale_amount); |
| } |
| |
| static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv, |
| struct intel_crtc_state *cstate, |
| const struct intel_plane_state *intel_pstate, |
| uint16_t ddb_allocation, |
| int level, |
| uint16_t *out_blocks, /* out */ |
| uint8_t *out_lines, /* out */ |
| bool *enabled /* out */) |
| { |
| struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane); |
| const struct drm_plane_state *pstate = &intel_pstate->base; |
| const struct drm_framebuffer *fb = pstate->fb; |
| uint32_t latency = dev_priv->wm.skl_latency[level]; |
| uint_fixed_16_16_t method1, method2; |
| uint_fixed_16_16_t plane_blocks_per_line; |
| uint_fixed_16_16_t selected_result; |
| uint32_t interm_pbpl; |
| uint32_t plane_bytes_per_line; |
| uint32_t res_blocks, res_lines; |
| uint8_t cpp; |
| uint32_t width = 0; |
| uint32_t plane_pixel_rate; |
| uint_fixed_16_16_t y_tile_minimum; |
| uint32_t y_min_scanlines; |
| struct intel_atomic_state *state = |
| to_intel_atomic_state(cstate->base.state); |
| bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state); |
| bool y_tiled, x_tiled; |
| |
| if (latency == 0 || |
| !intel_wm_plane_visible(cstate, intel_pstate)) { |
| *enabled = false; |
| return 0; |
| } |
| |
| y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED || |
| fb->modifier == I915_FORMAT_MOD_Yf_TILED || |
| fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS || |
| fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS; |
| x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED; |
| |
| /* Display WA #1141: kbl,cfl */ |
| if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) && |
| dev_priv->ipc_enabled) |
| latency += 4; |
| |
| if (apply_memory_bw_wa && x_tiled) |
| latency += 15; |
| |
| if (plane->id == PLANE_CURSOR) { |
| width = intel_pstate->base.crtc_w; |
| } else { |
| /* |
| * Src coordinates are already rotated by 270 degrees for |
| * the 90/270 degree plane rotation cases (to match the |
| * GTT mapping), hence no need to account for rotation here. |
| */ |
| width = drm_rect_width(&intel_pstate->base.src) >> 16; |
| } |
| |
| cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] : |
| fb->format->cpp[0]; |
| plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate); |
| |
| if (drm_rotation_90_or_270(pstate->rotation)) { |
| |
| switch (cpp) { |
| case 1: |
| y_min_scanlines = 16; |
| break; |
| case 2: |
| y_min_scanlines = 8; |
| break; |
| case 4: |
| y_min_scanlines = 4; |
| break; |
| default: |
| MISSING_CASE(cpp); |
| return -EINVAL; |
| } |
| } else { |
| y_min_scanlines = 4; |
| } |
| |
| if (apply_memory_bw_wa) |
| y_min_scanlines *= 2; |
| |
| plane_bytes_per_line = width * cpp; |
| if (y_tiled) { |
| interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line * |
| y_min_scanlines, 512); |
| |
| if (INTEL_GEN(dev_priv) >= 10) |
| interm_pbpl++; |
| |
| plane_blocks_per_line = div_fixed16(interm_pbpl, |
| y_min_scanlines); |
| } else if (x_tiled && INTEL_GEN(dev_priv) == 9) { |
| interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512); |
| plane_blocks_per_line = u32_to_fixed16(interm_pbpl); |
| } else { |
| interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1; |
| plane_blocks_per_line = u32_to_fixed16(interm_pbpl); |
| } |
| |
| method1 = skl_wm_method1(dev_priv, plane_pixel_rate, cpp, latency); |
| method2 = skl_wm_method2(plane_pixel_rate, |
| cstate->base.adjusted_mode.crtc_htotal, |
| latency, |
| plane_blocks_per_line); |
| |
| y_tile_minimum = mul_u32_fixed16(y_min_scanlines, |
| plane_blocks_per_line); |
| |
| if (y_tiled) { |
| selected_result = max_fixed16(method2, y_tile_minimum); |
| } else { |
| uint32_t linetime_us; |
| |
| linetime_us = fixed16_to_u32_round_up( |
| intel_get_linetime_us(cstate)); |
| if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) && |
| (plane_bytes_per_line / 512 < 1)) |
| selected_result = method2; |
| else if (ddb_allocation >= |
| fixed16_to_u32_round_up(plane_blocks_per_line)) |
| selected_result = min_fixed16(method1, method2); |
| else if (latency >= linetime_us) |
| selected_result = min_fixed16(method1, method2); |
| else |
| selected_result = method1; |
| } |
| |
| res_blocks = fixed16_to_u32_round_up(selected_result) + 1; |
| res_lines = div_round_up_fixed16(selected_result, |
| plane_blocks_per_line); |
| |
| /* Display WA #1125: skl,bxt,kbl,glk */ |
| if (level == 0 && |
| (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS || |
| fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS)) |
| res_blocks += fixed16_to_u32_round_up(y_tile_minimum); |
| |
| /* Display WA #1126: skl,bxt,kbl,glk */ |
| if (level >= 1 && level <= 7) { |
| if (y_tiled) { |
| res_blocks += fixed16_to_u32_round_up(y_tile_minimum); |
| res_lines += y_min_scanlines; |
| } else { |
| res_blocks++; |
| } |
| } |
| |
| if (res_blocks >= ddb_allocation || res_lines > 31) { |
| *enabled = false; |
| |
| /* |
| * If there are no valid level 0 watermarks, then we can't |
| * support this display configuration. |
| */ |
| if (level) { |
| return 0; |
| } else { |
| struct drm_plane *plane = pstate->plane; |
| |
| DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n"); |
| DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n", |
| plane->base.id, plane->name, |
| res_blocks, ddb_allocation, res_lines); |
| return -EINVAL; |
| } |
| } |
| |
| *out_blocks = res_blocks; |
| *out_lines = res_lines; |
| *enabled = true; |
| |
| return 0; |
| } |
| |
| static int |
| skl_compute_wm_levels(const struct drm_i915_private *dev_priv, |
| struct skl_ddb_allocation *ddb, |
| struct intel_crtc_state *cstate, |
| const struct intel_plane_state *intel_pstate, |
| struct skl_plane_wm *wm) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); |
| struct drm_plane *plane = intel_pstate->base.plane; |
| struct intel_plane *intel_plane = to_intel_plane(plane); |
| uint16_t ddb_blocks; |
| enum pipe pipe = intel_crtc->pipe; |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| int ret; |
| |
| if (WARN_ON(!intel_pstate->base.fb)) |
| return -EINVAL; |
| |
| ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]); |
| |
| for (level = 0; level <= max_level; level++) { |
| struct skl_wm_level *result = &wm->wm[level]; |
| |
| ret = skl_compute_plane_wm(dev_priv, |
| cstate, |
| intel_pstate, |
| ddb_blocks, |
| level, |
| &result->plane_res_b, |
| &result->plane_res_l, |
| &result->plane_en); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static uint32_t |
| skl_compute_linetime_wm(struct intel_crtc_state *cstate) |
| { |
| struct drm_atomic_state *state = cstate->base.state; |
| struct drm_i915_private *dev_priv = to_i915(state->dev); |
| uint_fixed_16_16_t linetime_us; |
| uint32_t linetime_wm; |
| |
| linetime_us = intel_get_linetime_us(cstate); |
| |
| if (is_fixed16_zero(linetime_us)) |
| return 0; |
| |
| linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us)); |
| |
| /* Display WA #1135: bxt. */ |
| if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled) |
| linetime_wm = DIV_ROUND_UP(linetime_wm, 2); |
| |
| return linetime_wm; |
| } |
| |
| static void skl_compute_transition_wm(struct intel_crtc_state *cstate, |
| struct skl_wm_level *trans_wm /* out */) |
| { |
| if (!cstate->base.active) |
| return; |
| |
| /* Until we know more, just disable transition WMs */ |
| trans_wm->plane_en = false; |
| } |
| |
| static int skl_build_pipe_wm(struct intel_crtc_state *cstate, |
| struct skl_ddb_allocation *ddb, |
| struct skl_pipe_wm *pipe_wm) |
| { |
| struct drm_device *dev = cstate->base.crtc->dev; |
| struct drm_crtc_state *crtc_state = &cstate->base; |
| const struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_plane *plane; |
| const struct drm_plane_state *pstate; |
| struct skl_plane_wm *wm; |
| int ret; |
| |
| /* |
| * We'll only calculate watermarks for planes that are actually |
| * enabled, so make sure all other planes are set as disabled. |
| */ |
| memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes)); |
| |
| drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { |
| const struct intel_plane_state *intel_pstate = |
| to_intel_plane_state(pstate); |
| enum plane_id plane_id = to_intel_plane(plane)->id; |
| |
| wm = &pipe_wm->planes[plane_id]; |
| |
| ret = skl_compute_wm_levels(dev_priv, ddb, cstate, |
| intel_pstate, wm); |
| if (ret) |
| return ret; |
| skl_compute_transition_wm(cstate, &wm->trans_wm); |
| } |
| pipe_wm->linetime = skl_compute_linetime_wm(cstate); |
| |
| return 0; |
| } |
| |
| static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, |
| i915_reg_t reg, |
| const struct skl_ddb_entry *entry) |
| { |
| if (entry->end) |
| I915_WRITE(reg, (entry->end - 1) << 16 | entry->start); |
| else |
| I915_WRITE(reg, 0); |
| } |
| |
| static void skl_write_wm_level(struct drm_i915_private *dev_priv, |
| i915_reg_t reg, |
| const struct skl_wm_level *level) |
| { |
| uint32_t val = 0; |
| |
| if (level->plane_en) { |
| val |= PLANE_WM_EN; |
| val |= level->plane_res_b; |
| val |= level->plane_res_l << PLANE_WM_LINES_SHIFT; |
| } |
| |
| I915_WRITE(reg, val); |
| } |
| |
| static void skl_write_plane_wm(struct intel_crtc *intel_crtc, |
| const struct skl_plane_wm *wm, |
| const struct skl_ddb_allocation *ddb, |
| enum plane_id plane_id) |
| { |
| struct drm_crtc *crtc = &intel_crtc->base; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| enum pipe pipe = intel_crtc->pipe; |
| |
| for (level = 0; level <= max_level; level++) { |
| skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level), |
| &wm->wm[level]); |
| } |
| skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id), |
| &wm->trans_wm); |
| |
| skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id), |
| &ddb->plane[pipe][plane_id]); |
| skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id), |
| &ddb->y_plane[pipe][plane_id]); |
| } |
| |
| static void skl_write_cursor_wm(struct intel_crtc *intel_crtc, |
| const struct skl_plane_wm *wm, |
| const struct skl_ddb_allocation *ddb) |
| { |
| struct drm_crtc *crtc = &intel_crtc->base; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| enum pipe pipe = intel_crtc->pipe; |
| |
| for (level = 0; level <= max_level; level++) { |
| skl_write_wm_level(dev_priv, CUR_WM(pipe, level), |
| &wm->wm[level]); |
| } |
| skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm); |
| |
| skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), |
| &ddb->plane[pipe][PLANE_CURSOR]); |
| } |
| |
| bool skl_wm_level_equals(const struct skl_wm_level *l1, |
| const struct skl_wm_level *l2) |
| { |
| if (l1->plane_en != l2->plane_en) |
| return false; |
| |
| /* If both planes aren't enabled, the rest shouldn't matter */ |
| if (!l1->plane_en) |
| return true; |
| |
| return (l1->plane_res_l == l2->plane_res_l && |
| l1->plane_res_b == l2->plane_res_b); |
| } |
| |
| static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a, |
| const struct skl_ddb_entry *b) |
| { |
| return a->start < b->end && b->start < a->end; |
| } |
| |
| bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries, |
| const struct skl_ddb_entry *ddb, |
| int ignore) |
| { |
| int i; |
| |
| for (i = 0; i < I915_MAX_PIPES; i++) |
| if (i != ignore && entries[i] && |
| skl_ddb_entries_overlap(ddb, entries[i])) |
| return true; |
| |
| return false; |
| } |
| |
| static int skl_update_pipe_wm(struct drm_crtc_state *cstate, |
| const struct skl_pipe_wm *old_pipe_wm, |
| struct skl_pipe_wm *pipe_wm, /* out */ |
| struct skl_ddb_allocation *ddb, /* out */ |
| bool *changed /* out */) |
| { |
| struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate); |
| int ret; |
| |
| ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm); |
| if (ret) |
| return ret; |
| |
| if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm))) |
| *changed = false; |
| else |
| *changed = true; |
| |
| return 0; |
| } |
| |
| static uint32_t |
| pipes_modified(struct drm_atomic_state *state) |
| { |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *cstate; |
| uint32_t i, ret = 0; |
| |
| for_each_new_crtc_in_state(state, crtc, cstate, i) |
| ret |= drm_crtc_mask(crtc); |
| |
| return ret; |
| } |
| |
| static int |
| skl_ddb_add_affected_planes(struct intel_crtc_state *cstate) |
| { |
| struct drm_atomic_state *state = cstate->base.state; |
| struct drm_device *dev = state->dev; |
| struct drm_crtc *crtc = cstate->base.crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb; |
| struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb; |
| struct drm_plane_state *plane_state; |
| struct drm_plane *plane; |
| enum pipe pipe = intel_crtc->pipe; |
| |
| WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc)); |
| |
| drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) { |
| enum plane_id plane_id = to_intel_plane(plane)->id; |
| |
| if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id], |
| &new_ddb->plane[pipe][plane_id]) && |
| skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id], |
| &new_ddb->y_plane[pipe][plane_id])) |
| continue; |
| |
| plane_state = drm_atomic_get_plane_state(state, plane); |
| if (IS_ERR(plane_state)) |
| return PTR_ERR(plane_state); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| skl_compute_ddb(struct drm_atomic_state *state) |
| { |
| struct drm_device *dev = state->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct intel_crtc *intel_crtc; |
| struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb; |
| uint32_t realloc_pipes = pipes_modified(state); |
| int ret; |
| |
| /* |
| * If this is our first atomic update following hardware readout, |
| * we can't trust the DDB that the BIOS programmed for us. Let's |
| * pretend that all pipes switched active status so that we'll |
| * ensure a full DDB recompute. |
| */ |
| if (dev_priv->wm.distrust_bios_wm) { |
| ret = drm_modeset_lock(&dev->mode_config.connection_mutex, |
| state->acquire_ctx); |
| if (ret) |
| return ret; |
| |
| intel_state->active_pipe_changes = ~0; |
| |
| /* |
| * We usually only initialize intel_state->active_crtcs if we |
| * we're doing a modeset; make sure this field is always |
| * initialized during the sanitization process that happens |
| * on the first commit too. |
| */ |
| if (!intel_state->modeset) |
| intel_state->active_crtcs = dev_priv->active_crtcs; |
| } |
| |
| /* |
| * If the modeset changes which CRTC's are active, we need to |
| * recompute the DDB allocation for *all* active pipes, even |
| * those that weren't otherwise being modified in any way by this |
| * atomic commit. Due to the shrinking of the per-pipe allocations |
| * when new active CRTC's are added, it's possible for a pipe that |
| * we were already using and aren't changing at all here to suddenly |
| * become invalid if its DDB needs exceeds its new allocation. |
| * |
| * Note that if we wind up doing a full DDB recompute, we can't let |
| * any other display updates race with this transaction, so we need |
| * to grab the lock on *all* CRTC's. |
| */ |
| if (intel_state->active_pipe_changes) { |
| realloc_pipes = ~0; |
| intel_state->wm_results.dirty_pipes = ~0; |
| } |
| |
| /* |
| * We're not recomputing for the pipes not included in the commit, so |
| * make sure we start with the current state. |
| */ |
| memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb)); |
| |
| for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) { |
| struct intel_crtc_state *cstate; |
| |
| cstate = intel_atomic_get_crtc_state(state, intel_crtc); |
| if (IS_ERR(cstate)) |
| return PTR_ERR(cstate); |
| |
| ret = skl_allocate_pipe_ddb(cstate, ddb); |
| if (ret) |
| return ret; |
| |
| ret = skl_ddb_add_affected_planes(cstate); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| skl_copy_wm_for_pipe(struct skl_wm_values *dst, |
| struct skl_wm_values *src, |
| enum pipe pipe) |
| { |
| memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe], |
| sizeof(dst->ddb.y_plane[pipe])); |
| memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe], |
| sizeof(dst->ddb.plane[pipe])); |
| } |
| |
| static void |
| skl_print_wm_changes(const struct drm_atomic_state *state) |
| { |
| const struct drm_device *dev = state->dev; |
| const struct drm_i915_private *dev_priv = to_i915(dev); |
| const struct intel_atomic_state *intel_state = |
| to_intel_atomic_state(state); |
| const struct drm_crtc *crtc; |
| const struct drm_crtc_state *cstate; |
| const struct intel_plane *intel_plane; |
| const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb; |
| const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb; |
| int i; |
| |
| for_each_new_crtc_in_state(state, crtc, cstate, i) { |
| const struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum pipe pipe = intel_crtc->pipe; |
| |
| for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) { |
| enum plane_id plane_id = intel_plane->id; |
| const struct skl_ddb_entry *old, *new; |
| |
| old = &old_ddb->plane[pipe][plane_id]; |
| new = &new_ddb->plane[pipe][plane_id]; |
| |
| if (skl_ddb_entry_equal(old, new)) |
| continue; |
| |
| DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n", |
| intel_plane->base.base.id, |
| intel_plane->base.name, |
| old->start, old->end, |
| new->start, new->end); |
| } |
| } |
| } |
| |
| static int |
| skl_compute_wm(struct drm_atomic_state *state) |
| { |
| struct drm_crtc *crtc; |
| struct drm_crtc_state *cstate; |
| struct intel_atomic_state *intel_state = to_intel_atomic_state(state); |
| struct skl_wm_values *results = &intel_state->wm_results; |
| struct drm_device *dev = state->dev; |
| struct skl_pipe_wm *pipe_wm; |
| bool changed = false; |
| int ret, i; |
| |
| /* |
| * When we distrust bios wm we always need to recompute to set the |
| * expected DDB allocations for each CRTC. |
| */ |
| if (to_i915(dev)->wm.distrust_bios_wm) |
| changed = true; |
| |
| /* |
| * If this transaction isn't actually touching any CRTC's, don't |
| * bother with watermark calculation. Note that if we pass this |
| * test, we're guaranteed to hold at least one CRTC state mutex, |
| * which means we can safely use values like dev_priv->active_crtcs |
| * since any racing commits that want to update them would need to |
| * hold _all_ CRTC state mutexes. |
| */ |
| for_each_new_crtc_in_state(state, crtc, cstate, i) |
| changed = true; |
| |
| if (!changed) |
| return 0; |
| |
| /* Clear all dirty flags */ |
| results->dirty_pipes = 0; |
| |
| ret = skl_compute_ddb(state); |
| if (ret) |
| return ret; |
| |
| /* |
| * Calculate WM's for all pipes that are part of this transaction. |
| * Note that the DDB allocation above may have added more CRTC's that |
| * weren't otherwise being modified (and set bits in dirty_pipes) if |
| * pipe allocations had to change. |
| * |
| * FIXME: Now that we're doing this in the atomic check phase, we |
| * should allow skl_update_pipe_wm() to return failure in cases where |
| * no suitable watermark values can be found. |
| */ |
| for_each_new_crtc_in_state(state, crtc, cstate, i) { |
| struct intel_crtc_state *intel_cstate = |
| to_intel_crtc_state(cstate); |
| const struct skl_pipe_wm *old_pipe_wm = |
| &to_intel_crtc_state(crtc->state)->wm.skl.optimal; |
| |
| pipe_wm = &intel_cstate->wm.skl.optimal; |
| ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm, |
| &results->ddb, &changed); |
| if (ret) |
| return ret; |
| |
| if (changed) |
| results->dirty_pipes |= drm_crtc_mask(crtc); |
| |
| if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0) |
| /* This pipe's WM's did not change */ |
| continue; |
| |
| intel_cstate->update_wm_pre = true; |
| } |
| |
| skl_print_wm_changes(state); |
| |
| return 0; |
| } |
| |
| static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state, |
| struct intel_crtc_state *cstate) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal; |
| const struct skl_ddb_allocation *ddb = &state->wm_results.ddb; |
| enum pipe pipe = crtc->pipe; |
| enum plane_id plane_id; |
| |
| if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base))) |
| return; |
| |
| I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime); |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| if (plane_id != PLANE_CURSOR) |
| skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id], |
| ddb, plane_id); |
| else |
| skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id], |
| ddb); |
| } |
| } |
| |
| static void skl_initial_wm(struct intel_atomic_state *state, |
| struct intel_crtc_state *cstate) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct skl_wm_values *results = &state->wm_results; |
| struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw; |
| enum pipe pipe = intel_crtc->pipe; |
| |
| if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0) |
| return; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| |
| if (cstate->base.active_changed) |
| skl_atomic_update_crtc_wm(state, cstate); |
| |
| skl_copy_wm_for_pipe(hw_vals, results, pipe); |
| |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void ilk_compute_wm_config(struct drm_device *dev, |
| struct intel_wm_config *config) |
| { |
| struct intel_crtc *crtc; |
| |
| /* Compute the currently _active_ config */ |
| for_each_intel_crtc(dev, crtc) { |
| const struct intel_pipe_wm *wm = &crtc->wm.active.ilk; |
| |
| if (!wm->pipe_enabled) |
| continue; |
| |
| config->sprites_enabled |= wm->sprites_enabled; |
| config->sprites_scaled |= wm->sprites_scaled; |
| config->num_pipes_active++; |
| } |
| } |
| |
| static void ilk_program_watermarks(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm; |
| struct ilk_wm_maximums max; |
| struct intel_wm_config config = {}; |
| struct ilk_wm_values results = {}; |
| enum intel_ddb_partitioning partitioning; |
| |
| ilk_compute_wm_config(dev, &config); |
| |
| ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max); |
| ilk_wm_merge(dev, &config, &max, &lp_wm_1_2); |
| |
| /* 5/6 split only in single pipe config on IVB+ */ |
| if (INTEL_GEN(dev_priv) >= 7 && |
| config.num_pipes_active == 1 && config.sprites_enabled) { |
| ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max); |
| ilk_wm_merge(dev, &config, &max, &lp_wm_5_6); |
| |
| best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6); |
| } else { |
| best_lp_wm = &lp_wm_1_2; |
| } |
| |
| partitioning = (best_lp_wm == &lp_wm_1_2) ? |
| INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6; |
| |
| ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results); |
| |
| ilk_write_wm_values(dev_priv, &results); |
| } |
| |
| static void ilk_initial_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc_state *cstate) |
| { |
| struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate; |
| ilk_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void ilk_optimize_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc_state *cstate) |
| { |
| struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc); |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| if (cstate->wm.need_postvbl_update) { |
| intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal; |
| ilk_program_watermarks(dev_priv); |
| } |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static inline void skl_wm_level_from_reg_val(uint32_t val, |
| struct skl_wm_level *level) |
| { |
| level->plane_en = val & PLANE_WM_EN; |
| level->plane_res_b = val & PLANE_WM_BLOCKS_MASK; |
| level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) & |
| PLANE_WM_LINES_MASK; |
| } |
| |
| void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc, |
| struct skl_pipe_wm *out) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum pipe pipe = intel_crtc->pipe; |
| int level, max_level; |
| enum plane_id plane_id; |
| uint32_t val; |
| |
| max_level = ilk_wm_max_level(dev_priv); |
| |
| for_each_plane_id_on_crtc(intel_crtc, plane_id) { |
| struct skl_plane_wm *wm = &out->planes[plane_id]; |
| |
| for (level = 0; level <= max_level; level++) { |
| if (plane_id != PLANE_CURSOR) |
| val = I915_READ(PLANE_WM(pipe, plane_id, level)); |
| else |
| val = I915_READ(CUR_WM(pipe, level)); |
| |
| skl_wm_level_from_reg_val(val, &wm->wm[level]); |
| } |
| |
| if (plane_id != PLANE_CURSOR) |
| val = I915_READ(PLANE_WM_TRANS(pipe, plane_id)); |
| else |
| val = I915_READ(CUR_WM_TRANS(pipe)); |
| |
| skl_wm_level_from_reg_val(val, &wm->trans_wm); |
| } |
| |
| if (!intel_crtc->active) |
| return; |
| |
| out->linetime = I915_READ(PIPE_WM_LINETIME(pipe)); |
| } |
| |
| void skl_wm_get_hw_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct skl_wm_values *hw = &dev_priv->wm.skl_hw; |
| struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb; |
| struct drm_crtc *crtc; |
| struct intel_crtc *intel_crtc; |
| struct intel_crtc_state *cstate; |
| |
| skl_ddb_get_hw_state(dev_priv, ddb); |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| intel_crtc = to_intel_crtc(crtc); |
| cstate = to_intel_crtc_state(crtc->state); |
| |
| skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal); |
| |
| if (intel_crtc->active) |
| hw->dirty_pipes |= drm_crtc_mask(crtc); |
| } |
| |
| if (dev_priv->active_crtcs) { |
| /* Fully recompute DDB on first atomic commit */ |
| dev_priv->wm.distrust_bios_wm = true; |
| } else { |
| /* Easy/common case; just sanitize DDB now if everything off */ |
| memset(ddb, 0, sizeof(*ddb)); |
| } |
| } |
| |
| static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct ilk_wm_values *hw = &dev_priv->wm.hw; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state); |
| struct intel_pipe_wm *active = &cstate->wm.ilk.optimal; |
| enum pipe pipe = intel_crtc->pipe; |
| static const i915_reg_t wm0_pipe_reg[] = { |
| [PIPE_A] = WM0_PIPEA_ILK, |
| [PIPE_B] = WM0_PIPEB_ILK, |
| [PIPE_C] = WM0_PIPEC_IVB, |
| }; |
| |
| hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]); |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe)); |
| |
| memset(active, 0, sizeof(*active)); |
| |
| active->pipe_enabled = intel_crtc->active; |
| |
| if (active->pipe_enabled) { |
| u32 tmp = hw->wm_pipe[pipe]; |
| |
| /* |
| * For active pipes LP0 watermark is marked as |
| * enabled, and LP1+ watermaks as disabled since |
| * we can't really reverse compute them in case |
| * multiple pipes are active. |
| */ |
| active->wm[0].enable = true; |
| active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT; |
| active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT; |
| active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK; |
| active->linetime = hw->wm_linetime[pipe]; |
| } else { |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| |
| /* |
| * For inactive pipes, all watermark levels |
| * should be marked as enabled but zeroed, |
| * which is what we'd compute them to. |
| */ |
| for (level = 0; level <= max_level; level++) |
| active->wm[level].enable = true; |
| } |
| |
| intel_crtc->wm.active.ilk = *active; |
| } |
| |
| #define _FW_WM(value, plane) \ |
| (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT) |
| #define _FW_WM_VLV(value, plane) \ |
| (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT) |
| |
| static void g4x_read_wm_values(struct drm_i915_private *dev_priv, |
| struct g4x_wm_values *wm) |
| { |
| uint32_t tmp; |
| |
| tmp = I915_READ(DSPFW1); |
| wm->sr.plane = _FW_WM(tmp, SR); |
| wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); |
| wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB); |
| wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA); |
| |
| tmp = I915_READ(DSPFW2); |
| wm->fbc_en = tmp & DSPFW_FBC_SR_EN; |
| wm->sr.fbc = _FW_WM(tmp, FBC_SR); |
| wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR); |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB); |
| wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA); |
| |
| tmp = I915_READ(DSPFW3); |
| wm->hpll_en = tmp & DSPFW_HPLL_SR_EN; |
| wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); |
| wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR); |
| wm->hpll.plane = _FW_WM(tmp, HPLL_SR); |
| } |
| |
| static void vlv_read_wm_values(struct drm_i915_private *dev_priv, |
| struct vlv_wm_values *wm) |
| { |
| enum pipe pipe; |
| uint32_t tmp; |
| |
| for_each_pipe(dev_priv, pipe) { |
| tmp = I915_READ(VLV_DDL(pipe)); |
| |
| wm->ddl[pipe].plane[PLANE_PRIMARY] = |
| (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); |
| wm->ddl[pipe].plane[PLANE_CURSOR] = |
| (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); |
| wm->ddl[pipe].plane[PLANE_SPRITE0] = |
| (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); |
| wm->ddl[pipe].plane[PLANE_SPRITE1] = |
| (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); |
| } |
| |
| tmp = I915_READ(DSPFW1); |
| wm->sr.plane = _FW_WM(tmp, SR); |
| wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); |
| wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB); |
| wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA); |
| |
| tmp = I915_READ(DSPFW2); |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB); |
| wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA); |
| |
| tmp = I915_READ(DSPFW3); |
| wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); |
| |
| if (IS_CHERRYVIEW(dev_priv)) { |
| tmp = I915_READ(DSPFW7_CHV); |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); |
| |
| tmp = I915_READ(DSPFW8_CHV); |
| wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF); |
| wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE); |
| |
| tmp = I915_READ(DSPFW9_CHV); |
| wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC); |
| wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC); |
| |
| tmp = I915_READ(DSPHOWM); |
| wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; |
| wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8; |
| wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8; |
| wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8; |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; |
| wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; |
| wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; |
| } else { |
| tmp = I915_READ(DSPFW7); |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); |
| |
| tmp = I915_READ(DSPHOWM); |
| wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; |
| wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; |
| wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; |
| } |
| } |
| |
| #undef _FW_WM |
| #undef _FW_WM_VLV |
| |
| void g4x_wm_get_hw_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct g4x_wm_values *wm = &dev_priv->wm.g4x; |
| struct intel_crtc *crtc; |
| |
| g4x_read_wm_values(dev_priv, wm); |
| |
| wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; |
| |
| for_each_intel_crtc(dev, crtc) { |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| struct g4x_wm_state *active = &crtc->wm.active.g4x; |
| struct g4x_pipe_wm *raw; |
| enum pipe pipe = crtc->pipe; |
| enum plane_id plane_id; |
| int level, max_level; |
| |
| active->cxsr = wm->cxsr; |
| active->hpll_en = wm->hpll_en; |
| active->fbc_en = wm->fbc_en; |
| |
| active->sr = wm->sr; |
| active->hpll = wm->hpll; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| active->wm.plane[plane_id] = |
| wm->pipe[pipe].plane[plane_id]; |
| } |
| |
| if (wm->cxsr && wm->hpll_en) |
| max_level = G4X_WM_LEVEL_HPLL; |
| else if (wm->cxsr) |
| max_level = G4X_WM_LEVEL_SR; |
| else |
| max_level = G4X_WM_LEVEL_NORMAL; |
| |
| level = G4X_WM_LEVEL_NORMAL; |
| raw = &crtc_state->wm.g4x.raw[level]; |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| raw->plane[plane_id] = active->wm.plane[plane_id]; |
| |
| if (++level > max_level) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| raw->plane[PLANE_PRIMARY] = active->sr.plane; |
| raw->plane[PLANE_CURSOR] = active->sr.cursor; |
| raw->plane[PLANE_SPRITE0] = 0; |
| raw->fbc = active->sr.fbc; |
| |
| if (++level > max_level) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| raw->plane[PLANE_PRIMARY] = active->hpll.plane; |
| raw->plane[PLANE_CURSOR] = active->hpll.cursor; |
| raw->plane[PLANE_SPRITE0] = 0; |
| raw->fbc = active->hpll.fbc; |
| |
| out: |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| g4x_raw_plane_wm_set(crtc_state, level, |
| plane_id, USHRT_MAX); |
| g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); |
| |
| crtc_state->wm.g4x.optimal = *active; |
| crtc_state->wm.g4x.intermediate = *active; |
| |
| DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n", |
| pipe_name(pipe), |
| wm->pipe[pipe].plane[PLANE_PRIMARY], |
| wm->pipe[pipe].plane[PLANE_CURSOR], |
| wm->pipe[pipe].plane[PLANE_SPRITE0]); |
| } |
| |
| DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n", |
| wm->sr.plane, wm->sr.cursor, wm->sr.fbc); |
| DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n", |
| wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc); |
| DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n", |
| yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en)); |
| } |
| |
| void g4x_wm_sanitize(struct drm_i915_private *dev_priv) |
| { |
| struct intel_plane *plane; |
| struct intel_crtc *crtc; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| |
| for_each_intel_plane(&dev_priv->drm, plane) { |
| struct intel_crtc *crtc = |
| intel_get_crtc_for_pipe(dev_priv, plane->pipe); |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| struct intel_plane_state *plane_state = |
| to_intel_plane_state(plane->base.state); |
| struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; |
| enum plane_id plane_id = plane->id; |
| int level; |
| |
| if (plane_state->base.visible) |
| continue; |
| |
| for (level = 0; level < 3; level++) { |
| struct g4x_pipe_wm *raw = |
| &crtc_state->wm.g4x.raw[level]; |
| |
| raw->plane[plane_id] = 0; |
| wm_state->wm.plane[plane_id] = 0; |
| } |
| |
| if (plane_id == PLANE_PRIMARY) { |
| for (level = 0; level < 3; level++) { |
| struct g4x_pipe_wm *raw = |
| &crtc_state->wm.g4x.raw[level]; |
| raw->fbc = 0; |
| } |
| |
| wm_state->sr.fbc = 0; |
| wm_state->hpll.fbc = 0; |
| wm_state->fbc_en = false; |
| } |
| } |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| |
| crtc_state->wm.g4x.intermediate = |
| crtc_state->wm.g4x.optimal; |
| crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; |
| } |
| |
| g4x_program_watermarks(dev_priv); |
| |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| void vlv_wm_get_hw_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct vlv_wm_values *wm = &dev_priv->wm.vlv; |
| struct intel_crtc *crtc; |
| u32 val; |
| |
| vlv_read_wm_values(dev_priv, wm); |
| |
| wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; |
| wm->level = VLV_WM_LEVEL_PM2; |
| |
| if (IS_CHERRYVIEW(dev_priv)) { |
| mutex_lock(&dev_priv->rps.hw_lock); |
| |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); |
| if (val & DSP_MAXFIFO_PM5_ENABLE) |
| wm->level = VLV_WM_LEVEL_PM5; |
| |
| /* |
| * If DDR DVFS is disabled in the BIOS, Punit |
| * will never ack the request. So if that happens |
| * assume we don't have to enable/disable DDR DVFS |
| * dynamically. To test that just set the REQ_ACK |
| * bit to poke the Punit, but don't change the |
| * HIGH/LOW bits so that we don't actually change |
| * the current state. |
| */ |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); |
| val |= FORCE_DDR_FREQ_REQ_ACK; |
| vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); |
| |
| if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & |
| FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) { |
| DRM_DEBUG_KMS("Punit not acking DDR DVFS request, " |
| "assuming DDR DVFS is disabled\n"); |
| dev_priv->wm.max_level = VLV_WM_LEVEL_PM5; |
| } else { |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); |
| if ((val & FORCE_DDR_HIGH_FREQ) == 0) |
| wm->level = VLV_WM_LEVEL_DDR_DVFS; |
| } |
| |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| } |
| |
| for_each_intel_crtc(dev, crtc) { |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| struct vlv_wm_state *active = &crtc->wm.active.vlv; |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| enum pipe pipe = crtc->pipe; |
| enum plane_id plane_id; |
| int level; |
| |
| vlv_get_fifo_size(crtc_state); |
| |
| active->num_levels = wm->level + 1; |
| active->cxsr = wm->cxsr; |
| |
| for (level = 0; level < active->num_levels; level++) { |
| struct g4x_pipe_wm *raw = |
| &crtc_state->wm.vlv.raw[level]; |
| |
| active->sr[level].plane = wm->sr.plane; |
| active->sr[level].cursor = wm->sr.cursor; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| active->wm[level].plane[plane_id] = |
| wm->pipe[pipe].plane[plane_id]; |
| |
| raw->plane[plane_id] = |
| vlv_invert_wm_value(active->wm[level].plane[plane_id], |
| fifo_state->plane[plane_id]); |
| } |
| } |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| vlv_raw_plane_wm_set(crtc_state, level, |
| plane_id, USHRT_MAX); |
| vlv_invalidate_wms(crtc, active, level); |
| |
| crtc_state->wm.vlv.optimal = *active; |
| crtc_state->wm.vlv.intermediate = *active; |
| |
| DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n", |
| pipe_name(pipe), |
| wm->pipe[pipe].plane[PLANE_PRIMARY], |
| wm->pipe[pipe].plane[PLANE_CURSOR], |
| wm->pipe[pipe].plane[PLANE_SPRITE0], |
| wm->pipe[pipe].plane[PLANE_SPRITE1]); |
| } |
| |
| DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n", |
| wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr); |
| } |
| |
| void vlv_wm_sanitize(struct drm_i915_private *dev_priv) |
| { |
| struct intel_plane *plane; |
| struct intel_crtc *crtc; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| |
| for_each_intel_plane(&dev_priv->drm, plane) { |
| struct intel_crtc *crtc = |
| intel_get_crtc_for_pipe(dev_priv, plane->pipe); |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| struct intel_plane_state *plane_state = |
| to_intel_plane_state(plane->base.state); |
| struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| enum plane_id plane_id = plane->id; |
| int level; |
| |
| if (plane_state->base.visible) |
| continue; |
| |
| for (level = 0; level < wm_state->num_levels; level++) { |
| struct g4x_pipe_wm *raw = |
| &crtc_state->wm.vlv.raw[level]; |
| |
| raw->plane[plane_id] = 0; |
| |
| wm_state->wm[level].plane[plane_id] = |
| vlv_invert_wm_value(raw->plane[plane_id], |
| fifo_state->plane[plane_id]); |
| } |
| } |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| |
| crtc_state->wm.vlv.intermediate = |
| crtc_state->wm.vlv.optimal; |
| crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; |
| } |
| |
| vlv_program_watermarks(dev_priv); |
| |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| void ilk_wm_get_hw_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct ilk_wm_values *hw = &dev_priv->wm.hw; |
| struct drm_crtc *crtc; |
| |
| for_each_crtc(dev, crtc) |
| ilk_pipe_wm_get_hw_state(crtc); |
| |
| hw->wm_lp[0] = I915_READ(WM1_LP_ILK); |
| hw->wm_lp[1] = I915_READ(WM2_LP_ILK); |
| hw->wm_lp[2] = I915_READ(WM3_LP_ILK); |
| |
| hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK); |
| if (INTEL_GEN(dev_priv) >= 7) { |
| hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB); |
| hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB); |
| } |
| |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ? |
| INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; |
| else if (IS_IVYBRIDGE(dev_priv)) |
| hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ? |
| INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; |
| |
| hw->enable_fbc_wm = |
| !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS); |
| } |
| |
| /** |
| * intel_update_watermarks - update FIFO watermark values based on current modes |
| * |
| * Calculate watermark values for the various WM regs based on current mode |
| * and plane configuration. |
| * |
| * There are several cases to deal with here: |
| * - normal (i.e. non-self-refresh) |
| * - self-refresh (SR) mode |
| * - lines are large relative to FIFO size (buffer can hold up to 2) |
| * - lines are small relative to FIFO size (buffer can hold more than 2 |
| * lines), so need to account for TLB latency |
| * |
| * The normal calculation is: |
| * watermark = dotclock * bytes per pixel * latency |
| * where latency is platform & configuration dependent (we assume pessimal |
| * values here). |
| * |
| * The SR calculation is: |
| * watermark = (trunc(latency/line time)+1) * surface width * |
| * bytes per pixel |
| * where |
| * line time = htotal / dotclock |
| * surface width = hdisplay for normal plane and 64 for cursor |
| * and latency is assumed to be high, as above. |
| * |
| * The final value programmed to the register should always be rounded up, |
| * and include an extra 2 entries to account for clock crossings. |
| * |
| * We don't use the sprite, so we can ignore that. And on Crestline we have |
| * to set the non-SR watermarks to 8. |
| */ |
| void intel_update_watermarks(struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| |
| if (dev_priv->display.update_wm) |
| dev_priv->display.update_wm(crtc); |
| } |
| |
| /* |
| * Lock protecting IPS related data structures |
| */ |
| DEFINE_SPINLOCK(mchdev_lock); |
| |
| /* Global for IPS driver to get at the current i915 device. Protected by |
| * mchdev_lock. */ |
| static struct drm_i915_private *i915_mch_dev; |
| |
| bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val) |
| { |
| u16 rgvswctl; |
| |
| lockdep_assert_held(&mchdev_lock); |
| |
| rgvswctl = I915_READ16(MEMSWCTL); |
| if (rgvswctl & MEMCTL_CMD_STS) { |
| DRM_DEBUG("gpu busy, RCS change rejected\n"); |
| return false; /* still busy with another command */ |
| } |
| |
| rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | |
| (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM; |
| I915_WRITE16(MEMSWCTL, rgvswctl); |
| POSTING_READ16(MEMSWCTL); |
| |
| rgvswctl |= MEMCTL_CMD_STS; |
| I915_WRITE16(MEMSWCTL, rgvswctl); |
| |
| return true; |
| } |
| |
| static void ironlake_enable_drps(struct drm_i915_private *dev_priv) |
| { |
| u32 rgvmodectl; |
| u8 fmax, fmin, fstart, vstart; |
| |
| spin_lock_irq(&mchdev_lock); |
| |
| rgvmodectl = I915_READ(MEMMODECTL); |
| |
| /* Enable temp reporting */ |
| I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN); |
| I915_WRITE16(TSC1, I915_READ(TSC1) | TSE); |
| |
| /* 100ms RC evaluation intervals */ |
| I915_WRITE(RCUPEI, 100000); |
| I915_WRITE(RCDNEI, 100000); |
| |
| /* Set max/min thresholds to 90ms and 80ms respectively */ |
| I915_WRITE(RCBMAXAVG, 90000); |
| I915_WRITE(RCBMINAVG, 80000); |
| |
| I915_WRITE(MEMIHYST, 1); |
| |
| /* Set up min, max, and cur for interrupt handling */ |
| fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; |
| fmin = (rgvmodectl & MEMMODE_FMIN_MASK); |
| fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> |
| MEMMODE_FSTART_SHIFT; |
| |
| vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >> |
| PXVFREQ_PX_SHIFT; |
| |
| dev_priv->ips.fmax = fmax; /* IPS callback will increase this */ |
| dev_priv->ips.fstart = fstart; |
| |
| dev_priv->ips.max_delay = fstart; |
| dev_priv->ips.min_delay = fmin; |
| dev_priv->ips.cur_delay = fstart; |
| |
| DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", |
| fmax, fmin, fstart); |
| |
| I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); |
| |
| /* |
| * Interrupts will be enabled in ironlake_irq_postinstall |
| */ |
| |
| I915_WRITE(VIDSTART, vstart); |
| POSTING_READ(VIDSTART); |
| |
| rgvmodectl |= MEMMODE_SWMODE_EN; |
| I915_WRITE(MEMMODECTL, rgvmodectl); |
| |
| if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10)) |
| DRM_ERROR("stuck trying to change perf mode\n"); |
| mdelay(1); |
| |
| ironlake_set_drps(dev_priv, fstart); |
| |
| dev_priv->ips.last_count1 = I915_READ(DMIEC) + |
| I915_READ(DDREC) + I915_READ(CSIEC); |
| dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies); |
| dev_priv->ips.last_count2 = I915_READ(GFXEC); |
| dev_priv->ips.last_time2 = ktime_get_raw_ns(); |
| |
| spin_unlock_irq(&mchdev_lock); |
| } |
| |
| static void ironlake_disable_drps(struct drm_i915_private *dev_priv) |
| { |
| u16 rgvswctl; |
| |
| spin_lock_irq(&mchdev_lock); |
| |
| rgvswctl = I915_READ16(MEMSWCTL); |
| |
| /* Ack interrupts, disable EFC interrupt */ |
| I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN); |
| I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG); |
| I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT); |
| I915_WRITE(DEIIR, DE_PCU_EVENT); |
| I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT); |
| |
| /* Go back to the starting frequency */ |
| ironlake_set_drps(dev_priv, dev_priv->ips.fstart); |
| mdelay(1); |
| rgvswctl |= MEMCTL_CMD_STS; |
| I915_WRITE(MEMSWCTL, rgvswctl); |
| mdelay(1); |
| |
| spin_unlock_irq(&mchdev_lock); |
| } |
| |
| /* There's a funny hw issue where the hw returns all 0 when reading from |
| * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value |
| * ourselves, instead of doing a rmw cycle (which might result in us clearing |
| * all limits and the gpu stuck at whatever frequency it is at atm). |
| */ |
| static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val) |
| { |
| u32 limits; |
| |
| /* Only set the down limit when we've reached the lowest level to avoid |
| * getting more interrupts, otherwise leave this clear. This prevents a |
| * race in the hw when coming out of rc6: There's a tiny window where |
| * the hw runs at the minimal clock before selecting the desired |
| * frequency, if the down threshold expires in that window we will not |
| * receive a down interrupt. */ |
| if (INTEL_GEN(dev_priv) >= 9) { |
| limits = (dev_priv->rps.max_freq_softlimit) << 23; |
| if (val <= dev_priv->rps.min_freq_softlimit) |
| limits |= (dev_priv->rps.min_freq_softlimit) << 14; |
| } else { |
| limits = dev_priv->rps.max_freq_softlimit << 24; |
| if (val <= dev_priv->rps.min_freq_softlimit) |
| limits |= dev_priv->rps.min_freq_softlimit << 16; |
| } |
| |
| return limits; |
| } |
| |
| static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val) |
| { |
| int new_power; |
| u32 threshold_up = 0, threshold_down = 0; /* in % */ |
| u32 ei_up = 0, ei_down = 0; |
| |
| new_power = dev_priv->rps.power; |
| switch (dev_priv->rps.power) { |
| case LOW_POWER: |
| if (val > dev_priv->rps.efficient_freq + 1 && |
| val > dev_priv->rps.cur_freq) |
| new_power = BETWEEN; |
| break; |
| |
| case BETWEEN: |
| if (val <= dev_priv->rps.efficient_freq && |
| val < dev_priv->rps.cur_freq) |
| new_power = LOW_POWER; |
| else if (val >= dev_priv->rps.rp0_freq && |
| val > dev_priv->rps.cur_freq) |
| new_power = HIGH_POWER; |
| break; |
| |
| case HIGH_POWER: |
| if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && |
| val < dev_priv->rps.cur_freq) |
| new_power = BETWEEN; |
| break; |
| } |
| /* Max/min bins are special */ |
| if (val <= dev_priv->rps.min_freq_softlimit) |
| new_power = LOW_POWER; |
| if (val >= dev_priv->rps.max_freq_softlimit) |
| new_power = HIGH_POWER; |
| if (new_power == dev_priv->rps.power) |
| return; |
| |
| /* Note the units here are not exactly 1us, but 1280ns. */ |
| switch (new_power) { |
| case LOW_POWER: |
| /* Upclock if more than 95% busy over 16ms */ |
| ei_up = 16000; |
| threshold_up = 95; |
| |
| /* Downclock if less than 85% busy over 32ms */ |
| ei_down = 32000; |
| threshold_down = 85; |
| break; |
| |
| case BETWEEN: |
| /* Upclock if more than 90% busy over 13ms */ |
| ei_up = 13000; |
| threshold_up = 90; |
| |
| /* Downclock if less than 75% busy over 32ms */ |
| ei_down = 32000; |
| threshold_down = 75; |
| break; |
| |
| case HIGH_POWER: |
| /* Upclock if more than 85% busy over 10ms */ |
| ei_up = 10000; |
| threshold_up = 85; |
| |
| /* Downclock if less than 60% busy over 32ms */ |
| ei_down = 32000; |
| threshold_down = 60; |
| break; |
| } |
| |
| /* When byt can survive without system hang with dynamic |
| * sw freq adjustments, this restriction can be lifted. |
| */ |
| if (IS_VALLEYVIEW(dev_priv)) |
| goto skip_hw_write; |
| |
| I915_WRITE(GEN6_RP_UP_EI, |
| GT_INTERVAL_FROM_US(dev_priv, ei_up)); |
| I915_WRITE(GEN6_RP_UP_THRESHOLD, |
| GT_INTERVAL_FROM_US(dev_priv, |
| ei_up * threshold_up / 100)); |
| |
| I915_WRITE(GEN6_RP_DOWN_EI, |
| GT_INTERVAL_FROM_US(dev_priv, ei_down)); |
| I915_WRITE(GEN6_RP_DOWN_THRESHOLD, |
| GT_INTERVAL_FROM_US(dev_priv, |
| ei_down * threshold_down / 100)); |
| |
| I915_WRITE(GEN6_RP_CONTROL, |
| GEN6_RP_MEDIA_TURBO | |
| GEN6_RP_MEDIA_HW_NORMAL_MODE | |
| GEN6_RP_MEDIA_IS_GFX | |
| GEN6_RP_ENABLE | |
| GEN6_RP_UP_BUSY_AVG | |
| GEN6_RP_DOWN_IDLE_AVG); |
| |
| skip_hw_write: |
| dev_priv->rps.power = new_power; |
| dev_priv->rps.up_threshold = threshold_up; |
| dev_priv->rps.down_threshold = threshold_down; |
| dev_priv->rps.last_adj = 0; |
| } |
| |
| static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val) |
| { |
| u32 mask = 0; |
| |
| /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */ |
| if (val > dev_priv->rps.min_freq_softlimit) |
| mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT; |
| if (val < dev_priv->rps.max_freq_softlimit) |
| mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD; |
| |
| mask &= dev_priv->pm_rps_events; |
| |
| return gen6_sanitize_rps_pm_mask(dev_priv, ~mask); |
| } |
| |
| /* gen6_set_rps is called to update the frequency request, but should also be |
| * called when the range (min_delay and max_delay) is modified so that we can |
| * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */ |
| static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val) |
| { |
| /* min/max delay may still have been modified so be sure to |
| * write the limits value. |
| */ |
| if (val != dev_priv->rps.cur_freq) { |
| gen6_set_rps_thresholds(dev_priv, val); |
| |
| if (INTEL_GEN(dev_priv) >= 9) |
| I915_WRITE(GEN6_RPNSWREQ, |
| GEN9_FREQUENCY(val)); |
| else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| I915_WRITE(GEN6_RPNSWREQ, |
| HSW_FREQUENCY(val)); |
| else |
| I915_WRITE(GEN6_RPNSWREQ, |
| GEN6_FREQUENCY(val) | |
| GEN6_OFFSET(0) | |
| GEN6_AGGRESSIVE_TURBO); |
| } |
| |
| /* Make sure we continue to get interrupts |
| * until we hit the minimum or maximum frequencies. |
| */ |
| I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val)); |
| I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val)); |
| |
| dev_priv->rps.cur_freq = val; |
| trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val)); |
| |
| return 0; |
| } |
| |
| static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val) |
| { |
| int err; |
| |
| if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1), |
| "Odd GPU freq value\n")) |
| val &= ~1; |
| |
| I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val)); |
| |
| if (val != dev_priv->rps.cur_freq) { |
| err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val); |
| if (err) |
| return err; |
| |
| gen6_set_rps_thresholds(dev_priv, val); |
| } |
| |
| dev_priv->rps.cur_freq = val; |
| trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val)); |
| |
| return 0; |
| } |
| |
| /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down |
| * |
| * * If Gfx is Idle, then |
| * 1. Forcewake Media well. |
| * 2. Request idle freq. |
| * 3. Release Forcewake of Media well. |
| */ |
| static void vlv_set_rps_idle(struct drm_i915_private *dev_priv) |
| { |
| u32 val = dev_priv->rps.idle_freq; |
| int err; |
| |
| if (dev_priv->rps.cur_freq <= val) |
| return; |
| |
| /* The punit delays the write of the frequency and voltage until it |
| * determines the GPU is awake. During normal usage we don't want to |
| * waste power changing the frequency if the GPU is sleeping (rc6). |
| * However, the GPU and driver is now idle and we do not want to delay |
| * switching to minimum voltage (reducing power whilst idle) as we do |
| * not expect to be woken in the near future and so must flush the |
| * change by waking the device. |
| * |
| * We choose to take the media powerwell (either would do to trick the |
| * punit into committing the voltage change) as that takes a lot less |
| * power than the render powerwell. |
| */ |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA); |
| err = valleyview_set_rps(dev_priv, val); |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA); |
| |
| if (err) |
| DRM_ERROR("Failed to set RPS for idle\n"); |
| } |
| |
| void gen6_rps_busy(struct drm_i915_private *dev_priv) |
| { |
| mutex_lock(&dev_priv->rps.hw_lock); |
| if (dev_priv->rps.enabled) { |
| u8 freq; |
| |
| if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED) |
| gen6_rps_reset_ei(dev_priv); |
| I915_WRITE(GEN6_PMINTRMSK, |
| gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq)); |
| |
| gen6_enable_rps_interrupts(dev_priv); |
| |
| /* Use the user's desired frequency as a guide, but for better |
| * performance, jump directly to RPe as our starting frequency. |
| */ |
| freq = max(dev_priv->rps.cur_freq, |
| dev_priv->rps.efficient_freq); |
| |
| if (intel_set_rps(dev_priv, |
| clamp(freq, |
| dev_priv->rps.min_freq_softlimit, |
| dev_priv->rps.max_freq_softlimit))) |
| DRM_DEBUG_DRIVER("Failed to set idle frequency\n"); |
| } |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| } |
| |
| void gen6_rps_idle(struct drm_i915_private *dev_priv) |
| { |
| /* Flush our bottom-half so that it does not race with us |
| * setting the idle frequency and so that it is bounded by |
| * our rpm wakeref. And then disable the interrupts to stop any |
| * futher RPS reclocking whilst we are asleep. |
| */ |
| gen6_disable_rps_interrupts(dev_priv); |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| if (dev_priv->rps.enabled) { |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| vlv_set_rps_idle(dev_priv); |
| else |
| gen6_set_rps(dev_priv, dev_priv->rps.idle_freq); |
| dev_priv->rps.last_adj = 0; |
| I915_WRITE(GEN6_PMINTRMSK, |
| gen6_sanitize_rps_pm_mask(dev_priv, ~0)); |
| } |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| } |
| |
| void gen6_rps_boost(struct drm_i915_gem_request *rq, |
| struct intel_rps_client *rps) |
| { |
| struct drm_i915_private *i915 = rq->i915; |
| bool boost; |
| |
| /* This is intentionally racy! We peek at the state here, then |
| * validate inside the RPS worker. |
| */ |
| if (!i915->rps.enabled) |
| return; |
| |
| boost = false; |
| spin_lock_irq(&rq->lock); |
| if (!rq->waitboost && !i915_gem_request_completed(rq)) { |
| atomic_inc(&i915->rps.num_waiters); |
| rq->waitboost = true; |
| boost = true; |
| } |
| spin_unlock_irq(&rq->lock); |
| if (!boost) |
| return; |
| |
| if (READ_ONCE(i915->rps.cur_freq) < i915->rps.boost_freq) |
| schedule_work(&i915->rps.work); |
| |
| atomic_inc(rps ? &rps->boosts : &i915->rps.boosts); |
| } |
| |
| int intel_set_rps(struct drm_i915_private *dev_priv, u8 val) |
| { |
| int err; |
| |
| lockdep_assert_held(&dev_priv->rps.hw_lock); |
| GEM_BUG_ON(val > dev_priv->rps.max_freq); |
| GEM_BUG_ON(val < dev_priv->rps.min_freq); |
| |
| if (!dev_priv->rps.enabled) { |
| dev_priv->rps.cur_freq = val; |
| return 0; |
| } |
| |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| err = valleyview_set_rps(dev_priv, val); |
| else |
| err = gen6_set_rps(dev_priv, val); |
| |
| return err; |
| } |
| |
| static void gen9_disable_rc6(struct drm_i915_private *dev_priv) |
| { |
| I915_WRITE(GEN6_RC_CONTROL, 0); |
| I915_WRITE(GEN9_PG_ENABLE, 0); |
| } |
| |
| static void gen9_disable_rps(struct drm_i915_private *dev_priv) |
| { |
| I915_WRITE(GEN6_RP_CONTROL, 0); |
| } |
| |
| static void gen6_disable_rps(struct drm_i915_private *dev_priv) |
| { |
| I915_WRITE(GEN6_RC_CONTROL, 0); |
| I915_WRITE(GEN6_RPNSWREQ, 1 << 31); |
| I915_WRITE(GEN6_RP_CONTROL, 0); |
| } |
| |
| static void cherryview_disable_rps(struct drm_i915_private *dev_priv) |
| { |
| I915_WRITE(GEN6_RC_CONTROL, 0); |
| } |
| |
| static void valleyview_disable_rps(struct drm_i915_private *dev_priv) |
| { |
| /* we're doing forcewake before Disabling RC6, |
| * This what the BIOS expects when going into suspend */ |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| I915_WRITE(GEN6_RC_CONTROL, 0); |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| } |
| |
| static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode) |
| { |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { |
| if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1))) |
| mode = GEN6_RC_CTL_RC6_ENABLE; |
| else |
| mode = 0; |
| } |
| if (HAS_RC6p(dev_priv)) |
| DRM_DEBUG_DRIVER("Enabling RC6 states: " |
| "RC6 %s RC6p %s RC6pp %s\n", |
| onoff(mode & GEN6_RC_CTL_RC6_ENABLE), |
| onoff(mode & GEN6_RC_CTL_RC6p_ENABLE), |
| onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE)); |
| |
| else |
| DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n", |
| onoff(mode & GEN6_RC_CTL_RC6_ENABLE)); |
| } |
| |
| static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| bool enable_rc6 = true; |
| unsigned long rc6_ctx_base; |
| u32 rc_ctl; |
| int rc_sw_target; |
| |
| rc_ctl = I915_READ(GEN6_RC_CONTROL); |
| rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >> |
| RC_SW_TARGET_STATE_SHIFT; |
| DRM_DEBUG_DRIVER("BIOS enabled RC states: " |
| "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n", |
| onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE), |
| onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE), |
| rc_sw_target); |
| |
| if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) { |
| DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n"); |
| enable_rc6 = false; |
| } |
| |
| /* |
| * The exact context size is not known for BXT, so assume a page size |
| * for this check. |
| */ |
| rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK; |
| if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) && |
| (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base + |
| ggtt->stolen_reserved_size))) { |
| DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n"); |
| enable_rc6 = false; |
| } |
| |
| if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) && |
| ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) && |
| ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) && |
| ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) { |
| DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n"); |
| enable_rc6 = false; |
| } |
| |
| if (!I915_READ(GEN8_PUSHBUS_CONTROL) || |
| !I915_READ(GEN8_PUSHBUS_ENABLE) || |
| !I915_READ(GEN8_PUSHBUS_SHIFT)) { |
| DRM_DEBUG_DRIVER("Pushbus not setup properly.\n"); |
| enable_rc6 = false; |
| } |
| |
| if (!I915_READ(GEN6_GFXPAUSE)) { |
| DRM_DEBUG_DRIVER("GFX pause not setup properly.\n"); |
| enable_rc6 = false; |
| } |
| |
| if (!I915_READ(GEN8_MISC_CTRL0)) { |
| DRM_DEBUG_DRIVER("GPM control not setup properly.\n"); |
| enable_rc6 = false; |
| } |
| |
| return enable_rc6; |
| } |
| |
| int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6) |
| { |
| /* No RC6 before Ironlake and code is gone for ilk. */ |
| if (INTEL_INFO(dev_priv)->gen < 6) |
| return 0; |
| |
| if (!enable_rc6) |
| return 0; |
| |
| if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) { |
| DRM_INFO("RC6 disabled by BIOS\n"); |
| return 0; |
| } |
| |
| /* Respect the kernel parameter if it is set */ |
| if (enable_rc6 >= 0) { |
| int mask; |
| |
| if (HAS_RC6p(dev_priv)) |
| mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE | |
| INTEL_RC6pp_ENABLE; |
| else |
| mask = INTEL_RC6_ENABLE; |
| |
| if ((enable_rc6 & mask) != enable_rc6) |
| DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d " |
| "(requested %d, valid %d)\n", |
| enable_rc6 & mask, enable_rc6, mask); |
| |
| return enable_rc6 & mask; |
| } |
| |
| if (IS_IVYBRIDGE(dev_priv)) |
| return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE); |
| |
| return INTEL_RC6_ENABLE; |
| } |
| |
| static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv) |
| { |
| /* All of these values are in units of 50MHz */ |
| |
| /* static values from HW: RP0 > RP1 > RPn (min_freq) */ |
| if (IS_GEN9_LP(dev_priv)) { |
| u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP); |
| dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff; |
| dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff; |
| dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff; |
| } else { |
| u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); |
| dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff; |
| dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff; |
| dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff; |
| } |
| /* hw_max = RP0 until we check for overclocking */ |
| dev_priv->rps.max_freq = dev_priv->rps.rp0_freq; |
| |
| dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq; |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) || |
| IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) { |
| u32 ddcc_status = 0; |
| |
| if (sandybridge_pcode_read(dev_priv, |
| HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL, |
| &ddcc_status) == 0) |
| dev_priv->rps.efficient_freq = |
| clamp_t(u8, |
| ((ddcc_status >> 8) & 0xff), |
| dev_priv->rps.min_freq, |
| dev_priv->rps.max_freq); |
| } |
| |
| if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) { |
| /* Store the frequency values in 16.66 MHZ units, which is |
| * the natural hardware unit for SKL |
| */ |
| dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER; |
| dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER; |
| dev_priv->rps.min_freq *= GEN9_FREQ_SCALER; |
| dev_priv->rps.max_freq *= GEN9_FREQ_SCALER; |
| dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER; |
| } |
| } |
| |
| static void reset_rps(struct drm_i915_private *dev_priv, |
| int (*set)(struct drm_i915_private *, u8)) |
| { |
| u8 freq = dev_priv->rps.cur_freq; |
| |
| /* force a reset */ |
| dev_priv->rps.power = -1; |
| dev_priv->rps.cur_freq = -1; |
| |
| if (set(dev_priv, freq)) |
| DRM_ERROR("Failed to reset RPS to initial values\n"); |
| } |
| |
| /* See the Gen9_GT_PM_Programming_Guide doc for the below */ |
| static void gen9_enable_rps(struct drm_i915_private *dev_priv) |
| { |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| /* Program defaults and thresholds for RPS*/ |
| I915_WRITE(GEN6_RC_VIDEO_FREQ, |
| GEN9_FREQUENCY(dev_priv->rps.rp1_freq)); |
| |
| /* 1 second timeout*/ |
| I915_WRITE(GEN6_RP_DOWN_TIMEOUT, |
| GT_INTERVAL_FROM_US(dev_priv, 1000000)); |
| |
| I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa); |
| |
| /* Leaning on the below call to gen6_set_rps to program/setup the |
| * Up/Down EI & threshold registers, as well as the RP_CONTROL, |
| * RP_INTERRUPT_LIMITS & RPNSWREQ registers */ |
| reset_rps(dev_priv, gen6_set_rps); |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| } |
| |
| static void gen9_enable_rc6(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| uint32_t rc6_mask = 0; |
| |
| /* 1a: Software RC state - RC0 */ |
| I915_WRITE(GEN6_RC_STATE, 0); |
| |
| /* 1b: Get forcewake during program sequence. Although the driver |
| * hasn't enabled a state yet where we need forcewake, BIOS may have.*/ |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| /* 2a: Disable RC states. */ |
| I915_WRITE(GEN6_RC_CONTROL, 0); |
| |
| /* 2b: Program RC6 thresholds.*/ |
| |
| /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */ |
| if (IS_SKYLAKE(dev_priv)) |
| I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16); |
| else |
| I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16); |
| I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ |
| I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ |
| for_each_engine(engine, dev_priv, id) |
| I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); |
| |
| if (HAS_GUC(dev_priv)) |
| I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA); |
| |
| I915_WRITE(GEN6_RC_SLEEP, 0); |
| |
| /* 2c: Program Coarse Power Gating Policies. */ |
| I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25); |
| I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25); |
| |
| /* 3a: Enable RC6 */ |
| if (intel_enable_rc6() & INTEL_RC6_ENABLE) |
| rc6_mask = GEN6_RC_CTL_RC6_ENABLE; |
| DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE)); |
| I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */ |
| I915_WRITE(GEN6_RC_CONTROL, |
| GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask); |
| |
| /* |
| * 3b: Enable Coarse Power Gating only when RC6 is enabled. |
| * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6. |
| */ |
| if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv)) |
| I915_WRITE(GEN9_PG_ENABLE, 0); |
| else |
| I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? |
| (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0); |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| } |
| |
| static void gen8_enable_rps(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| uint32_t rc6_mask = 0; |
| |
| /* 1a: Software RC state - RC0 */ |
| I915_WRITE(GEN6_RC_STATE, 0); |
| |
| /* 1c & 1d: Get forcewake during program sequence. Although the driver |
| * hasn't enabled a state yet where we need forcewake, BIOS may have.*/ |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| /* 2a: Disable RC states. */ |
| I915_WRITE(GEN6_RC_CONTROL, 0); |
| |
| /* 2b: Program RC6 thresholds.*/ |
| I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); |
| I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ |
| I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ |
| for_each_engine(engine, dev_priv, id) |
| I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); |
| I915_WRITE(GEN6_RC_SLEEP, 0); |
| if (IS_BROADWELL(dev_priv)) |
| I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */ |
| else |
| I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */ |
| |
| /* 3: Enable RC6 */ |
| if (intel_enable_rc6() & INTEL_RC6_ENABLE) |
| rc6_mask = GEN6_RC_CTL_RC6_ENABLE; |
| intel_print_rc6_info(dev_priv, rc6_mask); |
| if (IS_BROADWELL(dev_priv)) |
| I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE | |
| GEN7_RC_CTL_TO_MODE | |
| rc6_mask); |
| else |
| I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE | |
| GEN6_RC_CTL_EI_MODE(1) | |
| rc6_mask); |
| |
| /* 4 Program defaults and thresholds for RPS*/ |
| I915_WRITE(GEN6_RPNSWREQ, |
| HSW_FREQUENCY(dev_priv->rps.rp1_freq)); |
| I915_WRITE(GEN6_RC_VIDEO_FREQ, |
| HSW_FREQUENCY(dev_priv->rps.rp1_freq)); |
| /* NB: Docs say 1s, and 1000000 - which aren't equivalent */ |
| I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */ |
| |
| /* Docs recommend 900MHz, and 300 MHz respectively */ |
| I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, |
| dev_priv->rps.max_freq_softlimit << 24 | |
| dev_priv->rps.min_freq_softlimit << 16); |
| |
| I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */ |
| I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/ |
| I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */ |
| I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */ |
| |
| I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); |
| |
| /* 5: Enable RPS */ |
| I915_WRITE(GEN6_RP_CONTROL, |
| GEN6_RP_MEDIA_TURBO | |
| GEN6_RP_MEDIA_HW_NORMAL_MODE | |
| GEN6_RP_MEDIA_IS_GFX | |
| GEN6_RP_ENABLE | |
| GEN6_RP_UP_BUSY_AVG | |
| GEN6_RP_DOWN_IDLE_AVG); |
| |
| /* 6: Ring frequency + overclocking (our driver does this later */ |
| |
| reset_rps(dev_priv, gen6_set_rps); |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| } |
| |
| static void gen6_enable_rps(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| u32 rc6vids, rc6_mask = 0; |
| u32 gtfifodbg; |
| int rc6_mode; |
| int ret; |
| |
| WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); |
| |
| /* Here begins a magic sequence of register writes to enable |
| * auto-downclocking. |
| * |
| * Perhaps there might be some value in exposing these to |
| * userspace... |
| */ |
| I915_WRITE(GEN6_RC_STATE, 0); |
| |
| /* Clear the DBG now so we don't confuse earlier errors */ |
| gtfifodbg = I915_READ(GTFIFODBG); |
| if (gtfifodbg) { |
| DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg); |
| I915_WRITE(GTFIFODBG, gtfifodbg); |
| } |
| |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| /* disable the counters and set deterministic thresholds */ |
| I915_WRITE(GEN6_RC_CONTROL, 0); |
| |
| I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16); |
| I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30); |
| I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30); |
| I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); |
| I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); |
| |
| for_each_engine(engine, dev_priv, id) |
| I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); |
| |
| I915_WRITE(GEN6_RC_SLEEP, 0); |
| I915_WRITE(GEN6_RC1e_THRESHOLD, 1000); |
| if (IS_IVYBRIDGE(dev_priv)) |
| I915_WRITE(GEN6_RC6_THRESHOLD, 125000); |
| else |
| I915_WRITE(GEN6_RC6_THRESHOLD, 50000); |
| I915_WRITE(GEN6_RC6p_THRESHOLD, 150000); |
| I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */ |
| |
| /* Check if we are enabling RC6 */ |
| rc6_mode = intel_enable_rc6(); |
| if (rc6_mode & INTEL_RC6_ENABLE) |
| rc6_mask |= GEN6_RC_CTL_RC6_ENABLE; |
| |
| /* We don't use those on Haswell */ |
| if (!IS_HASWELL(dev_priv)) { |
| if (rc6_mode & INTEL_RC6p_ENABLE) |
| rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE; |
| |
| if (rc6_mode & INTEL_RC6pp_ENABLE) |
| rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE; |
| } |
| |
| intel_print_rc6_info(dev_priv, rc6_mask); |
| |
| I915_WRITE(GEN6_RC_CONTROL, |
| rc6_mask | |
| GEN6_RC_CTL_EI_MODE(1) | |
| GEN6_RC_CTL_HW_ENABLE); |
| |
| /* Power down if completely idle for over 50ms */ |
| I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000); |
| I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); |
| |
| reset_rps(dev_priv, gen6_set_rps); |
| |
| rc6vids = 0; |
| ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids); |
| if (IS_GEN6(dev_priv) && ret) { |
| DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n"); |
| } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) { |
| DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n", |
| GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450); |
| rc6vids &= 0xffff00; |
| rc6vids |= GEN6_ENCODE_RC6_VID(450); |
| ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids); |
| if (ret) |
| DRM_ERROR("Couldn't fix incorrect rc6 voltage\n"); |
| } |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| } |
| |
| static void gen6_update_ring_freq(struct drm_i915_private *dev_priv) |
| { |
| int min_freq = 15; |
| unsigned int gpu_freq; |
| unsigned int max_ia_freq, min_ring_freq; |
| unsigned int max_gpu_freq, min_gpu_freq; |
| int scaling_factor = 180; |
| struct cpufreq_policy *policy; |
| |
| WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); |
| |
| policy = cpufreq_cpu_get(0); |
| if (policy) { |
| max_ia_freq = policy->cpuinfo.max_freq; |
| cpufreq_cpu_put(policy); |
| } else { |
| /* |
| * Default to measured freq if none found, PCU will ensure we |
| * don't go over |
| */ |
| max_ia_freq = tsc_khz; |
| } |
| |
| /* Convert from kHz to MHz */ |
| max_ia_freq /= 1000; |
| |
| min_ring_freq = I915_READ(DCLK) & 0xf; |
| /* convert DDR frequency from units of 266.6MHz to bandwidth */ |
| min_ring_freq = mult_frac(min_ring_freq, 8, 3); |
| |
| if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) { |
| /* Convert GT frequency to 50 HZ units */ |
| min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER; |
| max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER; |
| } else { |
| min_gpu_freq = dev_priv->rps.min_freq; |
| max_gpu_freq = dev_priv->rps.max_freq; |
| } |
| |
| /* |
| * For each potential GPU frequency, load a ring frequency we'd like |
| * to use for memory access. We do this by specifying the IA frequency |
| * the PCU should use as a reference to determine the ring frequency. |
| */ |
| for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) { |
| int diff = max_gpu_freq - gpu_freq; |
| unsigned int ia_freq = 0, ring_freq = 0; |
| |
| if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) { |
| /* |
| * ring_freq = 2 * GT. ring_freq is in 100MHz units |
| * No floor required for ring frequency on SKL. |
| */ |
| ring_freq = gpu_freq; |
| } else if (INTEL_INFO(dev_priv)->gen >= 8) { |
| /* max(2 * GT, DDR). NB: GT is 50MHz units */ |
| ring_freq = max(min_ring_freq, gpu_freq); |
| } else if (IS_HASWELL(dev_priv)) { |
| ring_freq = mult_frac(gpu_freq, 5, 4); |
| ring_freq = max(min_ring_freq, ring_freq); |
| /* leave ia_freq as the default, chosen by cpufreq */ |
| } else { |
| /* On older processors, there is no separate ring |
| * clock domain, so in order to boost the bandwidth |
| * of the ring, we need to upclock the CPU (ia_freq). |
| * |
| * For GPU frequencies less than 750MHz, |
| * just use the lowest ring freq. |
| */ |
| if (gpu_freq < min_freq) |
| ia_freq = 800; |
| else |
| ia_freq = max_ia_freq - ((diff * scaling_factor) / 2); |
| ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100); |
| } |
| |
| sandybridge_pcode_write(dev_priv, |
| GEN6_PCODE_WRITE_MIN_FREQ_TABLE, |
| ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT | |
| ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT | |
| gpu_freq); |
| } |
| } |
| |
| static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv) |
| { |
| u32 val, rp0; |
| |
| val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE); |
| |
| switch (INTEL_INFO(dev_priv)->sseu.eu_total) { |
| case 8: |
| /* (2 * 4) config */ |
| rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT); |
| break; |
| case 12: |
| /* (2 * 6) config */ |
| rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT); |
| break; |
| case 16: |
| /* (2 * 8) config */ |
| default: |
| /* Setting (2 * 8) Min RP0 for any other combination */ |
| rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT); |
| break; |
| } |
| |
| rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK); |
| |
| return rp0; |
| } |
| |
| static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv) |
| { |
| u32 val, rpe; |
| |
| val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG); |
| rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK; |
| |
| return rpe; |
| } |
| |
| static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv) |
| { |
| u32 val, rp1; |
| |
| val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE); |
| rp1 = (val & FB_GFX_FREQ_FUSE_MASK); |
| |
| return rp1; |
| } |
| |
| static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv) |
| { |
| u32 val, rpn; |
| |
| val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE); |
| rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) & |
| FB_GFX_FREQ_FUSE_MASK); |
| |
| return rpn; |
| } |
| |
| static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv) |
| { |
| u32 val, rp1; |
| |
| val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE); |
| |
| rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT; |
| |
| return rp1; |
| } |
| |
| static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv) |
| { |
| u32 val, rp0; |
| |
| val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE); |
| |
| rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT; |
| /* Clamp to max */ |
| rp0 = min_t(u32, rp0, 0xea); |
| |
| return rp0; |
| } |
| |
| static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv) |
| { |
| u32 val, rpe; |
| |
| val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO); |
| rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT; |
| val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI); |
| rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5; |
| |
| return rpe; |
| } |
| |
| static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| |
| val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff; |
| /* |
| * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value |
| * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on |
| * a BYT-M B0 the above register contains 0xbf. Moreover when setting |
| * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0 |
| * to make sure it matches what Punit accepts. |
| */ |
| return max_t(u32, val, 0xc0); |
| } |
| |
| /* Check that the pctx buffer wasn't move under us. */ |
| static void valleyview_check_pctx(struct drm_i915_private *dev_priv) |
| { |
| unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095; |
| |
| WARN_ON(pctx_addr != dev_priv->mm.stolen_base + |
| dev_priv->vlv_pctx->stolen->start); |
| } |
| |
| |
| /* Check that the pcbr address is not empty. */ |
| static void cherryview_check_pctx(struct drm_i915_private *dev_priv) |
| { |
| unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095; |
| |
| WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0); |
| } |
| |
| static void cherryview_setup_pctx(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| unsigned long pctx_paddr, paddr; |
| u32 pcbr; |
| int pctx_size = 32*1024; |
| |
| pcbr = I915_READ(VLV_PCBR); |
| if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) { |
| DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n"); |
| paddr = (dev_priv->mm.stolen_base + |
| (ggtt->stolen_size - pctx_size)); |
| |
| pctx_paddr = (paddr & (~4095)); |
| I915_WRITE(VLV_PCBR, pctx_paddr); |
| } |
| |
| DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR)); |
| } |
| |
| static void valleyview_setup_pctx(struct drm_i915_private *dev_priv) |
| { |
| struct drm_i915_gem_object *pctx; |
| unsigned long pctx_paddr; |
| u32 pcbr; |
| int pctx_size = 24*1024; |
| |
| pcbr = I915_READ(VLV_PCBR); |
| if (pcbr) { |
| /* BIOS set it up already, grab the pre-alloc'd space */ |
| int pcbr_offset; |
| |
| pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base; |
| pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv, |
| pcbr_offset, |
| I915_GTT_OFFSET_NONE, |
| pctx_size); |
| goto out; |
| } |
| |
| DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n"); |
| |
| /* |
| * From the Gunit register HAS: |
| * The Gfx driver is expected to program this register and ensure |
| * proper allocation within Gfx stolen memory. For example, this |
| * register should be programmed such than the PCBR range does not |
| * overlap with other ranges, such as the frame buffer, protected |
| * memory, or any other relevant ranges. |
| */ |
| pctx = i915_gem_object_create_stolen(dev_priv, pctx_size); |
| if (!pctx) { |
| DRM_DEBUG("not enough stolen space for PCTX, disabling\n"); |
| goto out; |
| } |
| |
| pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start; |
| I915_WRITE(VLV_PCBR, pctx_paddr); |
| |
| out: |
| DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR)); |
| dev_priv->vlv_pctx = pctx; |
| } |
| |
| static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv) |
| { |
| if (WARN_ON(!dev_priv->vlv_pctx)) |
| return; |
| |
| i915_gem_object_put(dev_priv->vlv_pctx); |
| dev_priv->vlv_pctx = NULL; |
| } |
| |
| static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv) |
| { |
| dev_priv->rps.gpll_ref_freq = |
| vlv_get_cck_clock(dev_priv, "GPLL ref", |
| CCK_GPLL_CLOCK_CONTROL, |
| dev_priv->czclk_freq); |
| |
| DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n", |
| dev_priv->rps.gpll_ref_freq); |
| } |
| |
| static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| |
| valleyview_setup_pctx(dev_priv); |
| |
| vlv_init_gpll_ref_freq(dev_priv); |
| |
| val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); |
| switch ((val >> 6) & 3) { |
| case 0: |
| case 1: |
| dev_priv->mem_freq = 800; |
| break; |
| case 2: |
| dev_priv->mem_freq = 1066; |
| break; |
| case 3: |
| dev_priv->mem_freq = 1333; |
| break; |
| } |
| DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq); |
| |
| dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv); |
| dev_priv->rps.rp0_freq = dev_priv->rps.max_freq; |
| DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(dev_priv, dev_priv->rps.max_freq), |
| dev_priv->rps.max_freq); |
| |
| dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv); |
| DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq), |
| dev_priv->rps.efficient_freq); |
| |
| dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv); |
| DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq), |
| dev_priv->rps.rp1_freq); |
| |
| dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv); |
| DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(dev_priv, dev_priv->rps.min_freq), |
| dev_priv->rps.min_freq); |
| } |
| |
| static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| |
| cherryview_setup_pctx(dev_priv); |
| |
| vlv_init_gpll_ref_freq(dev_priv); |
| |
| mutex_lock(&dev_priv->sb_lock); |
| val = vlv_cck_read(dev_priv, CCK_FUSE_REG); |
| mutex_unlock(&dev_priv->sb_lock); |
| |
| switch ((val >> 2) & 0x7) { |
| case 3: |
| dev_priv->mem_freq = 2000; |
| break; |
| default: |
| dev_priv->mem_freq = 1600; |
| break; |
| } |
| DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq); |
| |
| dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv); |
| dev_priv->rps.rp0_freq = dev_priv->rps.max_freq; |
| DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(dev_priv, dev_priv->rps.max_freq), |
| dev_priv->rps.max_freq); |
| |
| dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv); |
| DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq), |
| dev_priv->rps.efficient_freq); |
| |
| dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv); |
| DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq), |
| dev_priv->rps.rp1_freq); |
| |
| dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv); |
| DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n", |
| intel_gpu_freq(dev_priv, dev_priv->rps.min_freq), |
| dev_priv->rps.min_freq); |
| |
| WARN_ONCE((dev_priv->rps.max_freq | |
| dev_priv->rps.efficient_freq | |
| dev_priv->rps.rp1_freq | |
| dev_priv->rps.min_freq) & 1, |
| "Odd GPU freq values\n"); |
| } |
| |
| static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv) |
| { |
| valleyview_cleanup_pctx(dev_priv); |
| } |
| |
| static void cherryview_enable_rps(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| u32 gtfifodbg, val, rc6_mode = 0, pcbr; |
| |
| WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); |
| |
| gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV | |
| GT_FIFO_FREE_ENTRIES_CHV); |
| if (gtfifodbg) { |
| DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n", |
| gtfifodbg); |
| I915_WRITE(GTFIFODBG, gtfifodbg); |
| } |
| |
| cherryview_check_pctx(dev_priv); |
| |
| /* 1a & 1b: Get forcewake during program sequence. Although the driver |
| * hasn't enabled a state yet where we need forcewake, BIOS may have.*/ |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| /* Disable RC states. */ |
| I915_WRITE(GEN6_RC_CONTROL, 0); |
| |
| /* 2a: Program RC6 thresholds.*/ |
| I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); |
| I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ |
| I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ |
| |
| for_each_engine(engine, dev_priv, id) |
| I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); |
| I915_WRITE(GEN6_RC_SLEEP, 0); |
| |
| /* TO threshold set to 500 us ( 0x186 * 1.28 us) */ |
| I915_WRITE(GEN6_RC6_THRESHOLD, 0x186); |
| |
| /* allows RC6 residency counter to work */ |
| I915_WRITE(VLV_COUNTER_CONTROL, |
| _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | |
| VLV_MEDIA_RC6_COUNT_EN | |
| VLV_RENDER_RC6_COUNT_EN)); |
| |
| /* For now we assume BIOS is allocating and populating the PCBR */ |
| pcbr = I915_READ(VLV_PCBR); |
| |
| /* 3: Enable RC6 */ |
| if ((intel_enable_rc6() & INTEL_RC6_ENABLE) && |
| (pcbr >> VLV_PCBR_ADDR_SHIFT)) |
| rc6_mode = GEN7_RC_CTL_TO_MODE; |
| |
| I915_WRITE(GEN6_RC_CONTROL, rc6_mode); |
| |
| /* 4 Program defaults and thresholds for RPS*/ |
| I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000); |
| I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400); |
| I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000); |
| I915_WRITE(GEN6_RP_UP_EI, 66000); |
| I915_WRITE(GEN6_RP_DOWN_EI, 350000); |
| |
| I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); |
| |
| /* 5: Enable RPS */ |
| I915_WRITE(GEN6_RP_CONTROL, |
| GEN6_RP_MEDIA_HW_NORMAL_MODE | |
| GEN6_RP_MEDIA_IS_GFX | |
| GEN6_RP_ENABLE | |
| GEN6_RP_UP_BUSY_AVG | |
| GEN6_RP_DOWN_IDLE_AVG); |
| |
| /* Setting Fixed Bias */ |
| val = VLV_OVERRIDE_EN | |
| VLV_SOC_TDP_EN | |
| CHV_BIAS_CPU_50_SOC_50; |
| vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val); |
| |
| val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); |
| |
| /* RPS code assumes GPLL is used */ |
| WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n"); |
| |
| DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE)); |
| DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val); |
| |
| reset_rps(dev_priv, valleyview_set_rps); |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| } |
| |
| static void valleyview_enable_rps(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| u32 gtfifodbg, val, rc6_mode = 0; |
| |
| WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); |
| |
| valleyview_check_pctx(dev_priv); |
| |
| gtfifodbg = I915_READ(GTFIFODBG); |
| if (gtfifodbg) { |
| DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n", |
| gtfifodbg); |
| I915_WRITE(GTFIFODBG, gtfifodbg); |
| } |
| |
| /* If VLV, Forcewake all wells, else re-direct to regular path */ |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| /* Disable RC states. */ |
| I915_WRITE(GEN6_RC_CONTROL, 0); |
| |
| I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000); |
| I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400); |
| I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000); |
| I915_WRITE(GEN6_RP_UP_EI, 66000); |
| I915_WRITE(GEN6_RP_DOWN_EI, 350000); |
| |
| I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); |
| |
| I915_WRITE(GEN6_RP_CONTROL, |
| GEN6_RP_MEDIA_TURBO | |
| GEN6_RP_MEDIA_HW_NORMAL_MODE | |
| GEN6_RP_MEDIA_IS_GFX | |
| GEN6_RP_ENABLE | |
| GEN6_RP_UP_BUSY_AVG | |
| GEN6_RP_DOWN_IDLE_CONT); |
| |
| I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000); |
| I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); |
| I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); |
| |
| for_each_engine(engine, dev_priv, id) |
| I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10); |
| |
| I915_WRITE(GEN6_RC6_THRESHOLD, 0x557); |
| |
| /* allows RC6 residency counter to work */ |
| I915_WRITE(VLV_COUNTER_CONTROL, |
| _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | |
| VLV_MEDIA_RC0_COUNT_EN | |
| VLV_RENDER_RC0_COUNT_EN | |
| VLV_MEDIA_RC6_COUNT_EN | |
| VLV_RENDER_RC6_COUNT_EN)); |
| |
| if (intel_enable_rc6() & INTEL_RC6_ENABLE) |
| rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL; |
| |
| intel_print_rc6_info(dev_priv, rc6_mode); |
| |
| I915_WRITE(GEN6_RC_CONTROL, rc6_mode); |
| |
| /* Setting Fixed Bias */ |
| val = VLV_OVERRIDE_EN | |
| VLV_SOC_TDP_EN | |
| VLV_BIAS_CPU_125_SOC_875; |
| vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val); |
| |
| val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); |
| |
| /* RPS code assumes GPLL is used */ |
| WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n"); |
| |
| DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE)); |
| DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val); |
| |
| reset_rps(dev_priv, valleyview_set_rps); |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| } |
| |
| static unsigned long intel_pxfreq(u32 vidfreq) |
| { |
| unsigned long freq; |
| int div = (vidfreq & 0x3f0000) >> 16; |
| int post = (vidfreq & 0x3000) >> 12; |
| int pre = (vidfreq & 0x7); |
| |
| if (!pre) |
| return 0; |
| |
| freq = ((div * 133333) / ((1<<post) * pre)); |
| |
| return freq; |
| } |
| |
| static const struct cparams { |
| u16 i; |
| u16 t; |
| u16 m; |
| u16 c; |
| } cparams[] = { |
| { 1, 1333, 301, 28664 }, |
| { 1, 1066, 294, 24460 }, |
| { 1, 800, 294, 25192 }, |
| { 0, 1333, 276, 27605 }, |
| { 0, 1066, 276, 27605 }, |
| { 0, 800, 231, 23784 }, |
| }; |
| |
| static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv) |
| { |
| u64 total_count, diff, ret; |
| u32 count1, count2, count3, m = 0, c = 0; |
| unsigned long now = jiffies_to_msecs(jiffies), diff1; |
| int i; |
| |
| lockdep_assert_held(&mchdev_lock); |
| |
| diff1 = now - dev_priv->ips.last_time1; |
| |
| /* Prevent division-by-zero if we are asking too fast. |
| * Also, we don't get interesting results if we are polling |
| * faster than once in 10ms, so just return the saved value |
| * in such cases. |
| */ |
| if (diff1 <= 10) |
| return dev_priv->ips.chipset_power; |
| |
| count1 = I915_READ(DMIEC); |
| count2 = I915_READ(DDREC); |
| count3 = I915_READ(CSIEC); |
| |
| total_count = count1 + count2 + count3; |
| |
| /* FIXME: handle per-counter overflow */ |
| if (total_count < dev_priv->ips.last_count1) { |
| diff = ~0UL - dev_priv->ips.last_count1; |
| diff += total_count; |
| } else { |
| diff = total_count - dev_priv->ips.last_count1; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(cparams); i++) { |
| if (cparams[i].i == dev_priv->ips.c_m && |
| cparams[i].t == dev_priv->ips.r_t) { |
| m = cparams[i].m; |
| c = cparams[i].c; |
| break; |
| } |
| } |
| |
| diff = div_u64(diff, diff1); |
| ret = ((m * diff) + c); |
| ret = div_u64(ret, 10); |
| |
| dev_priv->ips.last_count1 = total_count; |
| dev_priv->ips.last_time1 = now; |
| |
| dev_priv->ips.chipset_power = ret; |
| |
| return ret; |
| } |
| |
| unsigned long i915_chipset_val(struct drm_i915_private *dev_priv) |
| { |
| unsigned long val; |
| |
| if (INTEL_INFO(dev_priv)->gen != 5) |
| return 0; |
| |
| spin_lock_irq(&mchdev_lock); |
| |
| val = __i915_chipset_val(dev_priv); |
| |
| spin_unlock_irq(&mchdev_lock); |
| |
| return val; |
| } |
| |
| unsigned long i915_mch_val(struct drm_i915_private *dev_priv) |
| { |
| unsigned long m, x, b; |
| u32 tsfs; |
| |
| tsfs = I915_READ(TSFS); |
| |
| m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT); |
| x = I915_READ8(TR1); |
| |
| b = tsfs & TSFS_INTR_MASK; |
| |
| return ((m * x) / 127) - b; |
| } |
| |
| static int _pxvid_to_vd(u8 pxvid) |
| { |
| if (pxvid == 0) |
| return 0; |
| |
| if (pxvid >= 8 && pxvid < 31) |
| pxvid = 31; |
| |
| return (pxvid + 2) * 125; |
| } |
| |
| static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid) |
| { |
| const int vd = _pxvid_to_vd(pxvid); |
| const int vm = vd - 1125; |
| |
| if (INTEL_INFO(dev_priv)->is_mobile) |
| return vm > 0 ? vm : 0; |
| |
| return vd; |
| } |
| |
| static void __i915_update_gfx_val(struct drm_i915_private *dev_priv) |
| { |
| u64 now, diff, diffms; |
| u32 count; |
| |
| lockdep_assert_held(&mchdev_lock); |
| |
| now = ktime_get_raw_ns(); |
| diffms = now - dev_priv->ips.last_time2; |
| do_div(diffms, NSEC_PER_MSEC); |
| |
| /* Don't divide by 0 */ |
| if (!diffms) |
| return; |
| |
| count = I915_READ(GFXEC); |
| |
| if (count < dev_priv->ips.last_count2) { |
| diff = ~0UL - dev_priv->ips.last_count2; |
| diff += count; |
| } else { |
| diff = count - dev_priv->ips.last_count2; |
| } |
| |
| dev_priv->ips.last_count2 = count; |
| dev_priv->ips.last_time2 = now; |
| |
| /* More magic constants... */ |
| diff = diff * 1181; |
| diff = div_u64(diff, diffms * 10); |
| dev_priv->ips.gfx_power = diff; |
| } |
| |
| void i915_update_gfx_val(struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_INFO(dev_priv)->gen != 5) |
| return; |
| |
| spin_lock_irq(&mchdev_lock); |
| |
| __i915_update_gfx_val(dev_priv); |
| |
| spin_unlock_irq(&mchdev_lock); |
| } |
| |
| static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv) |
| { |
| unsigned long t, corr, state1, corr2, state2; |
| u32 pxvid, ext_v; |
| |
| lockdep_assert_held(&mchdev_lock); |
| |
| pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq)); |
| pxvid = (pxvid >> 24) & 0x7f; |
| ext_v = pvid_to_extvid(dev_priv, pxvid); |
| |
| state1 = ext_v; |
| |
| t = i915_mch_val(dev_priv); |
| |
| /* Revel in the empirically derived constants */ |
| |
| /* Correction factor in 1/100000 units */ |
| if (t > 80) |
| corr = ((t * 2349) + 135940); |
| else if (t >= 50) |
| corr = ((t * 964) + 29317); |
| else /* < 50 */ |
| corr = ((t * 301) + 1004); |
| |
| corr = corr * ((150142 * state1) / 10000 - 78642); |
| corr /= 100000; |
| corr2 = (corr * dev_priv->ips.corr); |
| |
| state2 = (corr2 * state1) / 10000; |
| state2 /= 100; /* convert to mW */ |
| |
| __i915_update_gfx_val(dev_priv); |
| |
| return dev_priv->ips.gfx_power + state2; |
| } |
| |
| unsigned long i915_gfx_val(struct drm_i915_private *dev_priv) |
| { |
| unsigned long val; |
| |
| if (INTEL_INFO(dev_priv)->gen != 5) |
| return 0; |
| |
| spin_lock_irq(&mchdev_lock); |
| |
| val = __i915_gfx_val(dev_priv); |
| |
| spin_unlock_irq(&mchdev_lock); |
| |
| return val; |
| } |
| |
| /** |
| * i915_read_mch_val - return value for IPS use |
| * |
| * Calculate and return a value for the IPS driver to use when deciding whether |
| * we have thermal and power headroom to increase CPU or GPU power budget. |
| */ |
| unsigned long i915_read_mch_val(void) |
| { |
| struct drm_i915_private *dev_priv; |
| unsigned long chipset_val, graphics_val, ret = 0; |
| |
| spin_lock_irq(&mchdev_lock); |
| if (!i915_mch_dev) |
| goto out_unlock; |
| dev_priv = i915_mch_dev; |
| |
| chipset_val = __i915_chipset_val(dev_priv); |
| graphics_val = __i915_gfx_val(dev_priv); |
| |
| ret = chipset_val + graphics_val; |
| |
| out_unlock: |
| spin_unlock_irq(&mchdev_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(i915_read_mch_val); |
| |
| /** |
| * i915_gpu_raise - raise GPU frequency limit |
| * |
| * Raise the limit; IPS indicates we have thermal headroom. |
| */ |
| bool i915_gpu_raise(void) |
| { |
| struct drm_i915_private *dev_priv; |
| bool ret = true; |
| |
| spin_lock_irq(&mchdev_lock); |
| if (!i915_mch_dev) { |
| ret = false; |
| goto out_unlock; |
| } |
| dev_priv = i915_mch_dev; |
| |
| if (dev_priv->ips.max_delay > dev_priv->ips.fmax) |
| dev_priv->ips.max_delay--; |
| |
| out_unlock: |
| spin_unlock_irq(&mchdev_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(i915_gpu_raise); |
| |
| /** |
| * i915_gpu_lower - lower GPU frequency limit |
| * |
| * IPS indicates we're close to a thermal limit, so throttle back the GPU |
| * frequency maximum. |
| */ |
| bool i915_gpu_lower(void) |
| { |
| struct drm_i915_private *dev_priv; |
| bool ret = true; |
| |
| spin_lock_irq(&mchdev_lock); |
| if (!i915_mch_dev) { |
| ret = false; |
| goto out_unlock; |
| } |
| dev_priv = i915_mch_dev; |
| |
| if (dev_priv->ips.max_delay < dev_priv->ips.min_delay) |
| dev_priv->ips.max_delay++; |
| |
| out_unlock: |
| spin_unlock_irq(&mchdev_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(i915_gpu_lower); |
| |
| /** |
| * i915_gpu_busy - indicate GPU business to IPS |
| * |
| * Tell the IPS driver whether or not the GPU is busy. |
| */ |
| bool i915_gpu_busy(void) |
| { |
| bool ret = false; |
| |
| spin_lock_irq(&mchdev_lock); |
| if (i915_mch_dev) |
| ret = i915_mch_dev->gt.awake; |
| spin_unlock_irq(&mchdev_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(i915_gpu_busy); |
| |
| /** |
| * i915_gpu_turbo_disable - disable graphics turbo |
| * |
| * Disable graphics turbo by resetting the max frequency and setting the |
| * current frequency to the default. |
| */ |
| bool i915_gpu_turbo_disable(void) |
| { |
| struct drm_i915_private *dev_priv; |
| bool ret = true; |
| |
| spin_lock_irq(&mchdev_lock); |
| if (!i915_mch_dev) { |
| ret = false; |
| goto out_unlock; |
| } |
| dev_priv = i915_mch_dev; |
| |
| dev_priv->ips.max_delay = dev_priv->ips.fstart; |
| |
| if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart)) |
| ret = false; |
| |
| out_unlock: |
| spin_unlock_irq(&mchdev_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable); |
| |
| /** |
| * Tells the intel_ips driver that the i915 driver is now loaded, if |
| * IPS got loaded first. |
| * |
| * This awkward dance is so that neither module has to depend on the |
| * other in order for IPS to do the appropriate communication of |
| * GPU turbo limits to i915. |
| */ |
| static void |
| ips_ping_for_i915_load(void) |
| { |
| void (*link)(void); |
| |
| link = symbol_get(ips_link_to_i915_driver); |
| if (link) { |
| link(); |
| symbol_put(ips_link_to_i915_driver); |
| } |
| } |
| |
| void intel_gpu_ips_init(struct drm_i915_private *dev_priv) |
| { |
| /* We only register the i915 ips part with intel-ips once everything is |
| * set up, to avoid intel-ips sneaking in and reading bogus values. */ |
| spin_lock_irq(&mchdev_lock); |
| i915_mch_dev = dev_priv; |
| spin_unlock_irq(&mchdev_lock); |
| |
| ips_ping_for_i915_load(); |
| } |
| |
| void intel_gpu_ips_teardown(void) |
| { |
| spin_lock_irq(&mchdev_lock); |
| i915_mch_dev = NULL; |
| spin_unlock_irq(&mchdev_lock); |
| } |
| |
| static void intel_init_emon(struct drm_i915_private *dev_priv) |
| { |
| u32 lcfuse; |
| u8 pxw[16]; |
| int i; |
| |
| /* Disable to program */ |
| I915_WRITE(ECR, 0); |
| POSTING_READ(ECR); |
| |
| /* Program energy weights for various events */ |
| I915_WRITE(SDEW, 0x15040d00); |
| I915_WRITE(CSIEW0, 0x007f0000); |
| I915_WRITE(CSIEW1, 0x1e220004); |
| I915_WRITE(CSIEW2, 0x04000004); |
| |
| for (i = 0; i < 5; i++) |
| I915_WRITE(PEW(i), 0); |
| for (i = 0; i < 3; i++) |
| I915_WRITE(DEW(i), 0); |
| |
| /* Program P-state weights to account for frequency power adjustment */ |
| for (i = 0; i < 16; i++) { |
| u32 pxvidfreq = I915_READ(PXVFREQ(i)); |
| unsigned long freq = intel_pxfreq(pxvidfreq); |
| unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >> |
| PXVFREQ_PX_SHIFT; |
| unsigned long val; |
| |
| val = vid * vid; |
| val *= (freq / 1000); |
| val *= 255; |
| val /= (127*127*900); |
| if (val > 0xff) |
| DRM_ERROR("bad pxval: %ld\n", val); |
| pxw[i] = val; |
| } |
| /* Render standby states get 0 weight */ |
| pxw[14] = 0; |
| pxw[15] = 0; |
| |
| for (i = 0; i < 4; i++) { |
| u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) | |
| (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]); |
| I915_WRITE(PXW(i), val); |
| } |
| |
| /* Adjust magic regs to magic values (more experimental results) */ |
| I915_WRITE(OGW0, 0); |
| I915_WRITE(OGW1, 0); |
| I915_WRITE(EG0, 0x00007f00); |
| I915_WRITE(EG1, 0x0000000e); |
| I915_WRITE(EG2, 0x000e0000); |
| I915_WRITE(EG3, 0x68000300); |
| I915_WRITE(EG4, 0x42000000); |
| I915_WRITE(EG5, 0x00140031); |
| I915_WRITE(EG6, 0); |
| I915_WRITE(EG7, 0); |
| |
| for (i = 0; i < 8; i++) |
| I915_WRITE(PXWL(i), 0); |
| |
| /* Enable PMON + select events */ |
| I915_WRITE(ECR, 0x80000019); |
| |
| lcfuse = I915_READ(LCFUSE02); |
| |
| dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK); |
| } |
| |
| void intel_init_gt_powersave(struct drm_i915_private *dev_priv) |
| { |
| /* |
| * RPM depends on RC6 to save restore the GT HW context, so make RC6 a |
| * requirement. |
| */ |
| if (!i915.enable_rc6) { |
| DRM_INFO("RC6 disabled, disabling runtime PM support\n"); |
| intel_runtime_pm_get(dev_priv); |
| } |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| mutex_lock(&dev_priv->rps.hw_lock); |
| |
| /* Initialize RPS limits (for userspace) */ |
| if (IS_CHERRYVIEW(dev_priv)) |
| cherryview_init_gt_powersave(dev_priv); |
| else if (IS_VALLEYVIEW(dev_priv)) |
| valleyview_init_gt_powersave(dev_priv); |
| else if (INTEL_GEN(dev_priv) >= 6) |
| gen6_init_rps_frequencies(dev_priv); |
| |
| /* Derive initial user preferences/limits from the hardware limits */ |
| dev_priv->rps.idle_freq = dev_priv->rps.min_freq; |
| dev_priv->rps.cur_freq = dev_priv->rps.idle_freq; |
| |
| dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq; |
| dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq; |
| |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| dev_priv->rps.min_freq_softlimit = |
| max_t(int, |
| dev_priv->rps.efficient_freq, |
| intel_freq_opcode(dev_priv, 450)); |
| |
| /* After setting max-softlimit, find the overclock max freq */ |
| if (IS_GEN6(dev_priv) || |
| IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) { |
| u32 params = 0; |
| |
| sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, ¶ms); |
| if (params & BIT(31)) { /* OC supported */ |
| DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n", |
| (dev_priv->rps.max_freq & 0xff) * 50, |
| (params & 0xff) * 50); |
| dev_priv->rps.max_freq = params & 0xff; |
| } |
| } |
| |
| /* Finally allow us to boost to max by default */ |
| dev_priv->rps.boost_freq = dev_priv->rps.max_freq; |
| |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| intel_autoenable_gt_powersave(dev_priv); |
| } |
| |
| void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv) |
| { |
| if (IS_VALLEYVIEW(dev_priv)) |
| valleyview_cleanup_gt_powersave(dev_priv); |
| |
| if (!i915.enable_rc6) |
| intel_runtime_pm_put(dev_priv); |
| } |
| |
| /** |
| * intel_suspend_gt_powersave - suspend PM work and helper threads |
| * @dev_priv: i915 device |
| * |
| * We don't want to disable RC6 or other features here, we just want |
| * to make sure any work we've queued has finished and won't bother |
| * us while we're suspended. |
| */ |
| void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_GEN(dev_priv) < 6) |
| return; |
| |
| if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work)) |
| intel_runtime_pm_put(dev_priv); |
| |
| /* gen6_rps_idle() will be called later to disable interrupts */ |
| } |
| |
| void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv) |
| { |
| dev_priv->rps.enabled = true; /* force disabling */ |
| intel_disable_gt_powersave(dev_priv); |
| |
| gen6_reset_rps_interrupts(dev_priv); |
| } |
| |
| void intel_disable_gt_powersave(struct drm_i915_private *dev_priv) |
| { |
| if (!READ_ONCE(dev_priv->rps.enabled)) |
| return; |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| |
| if (INTEL_GEN(dev_priv) >= 9) { |
| gen9_disable_rc6(dev_priv); |
| gen9_disable_rps(dev_priv); |
| } else if (IS_CHERRYVIEW(dev_priv)) { |
| cherryview_disable_rps(dev_priv); |
| } else if (IS_VALLEYVIEW(dev_priv)) { |
| valleyview_disable_rps(dev_priv); |
| } else if (INTEL_GEN(dev_priv) >= 6) { |
| gen6_disable_rps(dev_priv); |
| } else if (IS_IRONLAKE_M(dev_priv)) { |
| ironlake_disable_drps(dev_priv); |
| } |
| |
| dev_priv->rps.enabled = false; |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| } |
| |
| void intel_enable_gt_powersave(struct drm_i915_private *dev_priv) |
| { |
| /* We shouldn't be disabling as we submit, so this should be less |
| * racy than it appears! |
| */ |
| if (READ_ONCE(dev_priv->rps.enabled)) |
| return; |
| |
| /* Powersaving is controlled by the host when inside a VM */ |
| if (intel_vgpu_active(dev_priv)) |
| return; |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| |
| if (IS_CHERRYVIEW(dev_priv)) { |
| cherryview_enable_rps(dev_priv); |
| } else if (IS_VALLEYVIEW(dev_priv)) { |
| valleyview_enable_rps(dev_priv); |
| } else if (INTEL_GEN(dev_priv) >= 9) { |
| gen9_enable_rc6(dev_priv); |
| gen9_enable_rps(dev_priv); |
| if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) |
| gen6_update_ring_freq(dev_priv); |
| } else if (IS_BROADWELL(dev_priv)) { |
| gen8_enable_rps(dev_priv); |
| gen6_update_ring_freq(dev_priv); |
| } else if (INTEL_GEN(dev_priv) >= 6) { |
| gen6_enable_rps(dev_priv); |
| gen6_update_ring_freq(dev_priv); |
| } else if (IS_IRONLAKE_M(dev_priv)) { |
| ironlake_enable_drps(dev_priv); |
| intel_init_emon(dev_priv); |
| } |
| |
| WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq); |
| WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq); |
| |
| WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq); |
| WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq); |
| |
| dev_priv->rps.enabled = true; |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| } |
| |
| static void __intel_autoenable_gt_powersave(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, typeof(*dev_priv), rps.autoenable_work.work); |
| struct intel_engine_cs *rcs; |
| struct drm_i915_gem_request *req; |
| |
| if (READ_ONCE(dev_priv->rps.enabled)) |
| goto out; |
| |
| rcs = dev_priv->engine[RCS]; |
| if (rcs->last_retired_context) |
| goto out; |
| |
| if (!rcs->init_context) |
| goto out; |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| |
| req = i915_gem_request_alloc(rcs, dev_priv->kernel_context); |
| if (IS_ERR(req)) |
| goto unlock; |
| |
| if (!i915.enable_execlists && i915_switch_context(req) == 0) |
| rcs->init_context(req); |
| |
| /* Mark the device busy, calling intel_enable_gt_powersave() */ |
| i915_add_request(req); |
| |
| unlock: |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| out: |
| intel_runtime_pm_put(dev_priv); |
| } |
| |
| void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv) |
| { |
| if (READ_ONCE(dev_priv->rps.enabled)) |
| return; |
| |
| if (IS_IRONLAKE_M(dev_priv)) { |
| ironlake_enable_drps(dev_priv); |
| intel_init_emon(dev_priv); |
| } else if (INTEL_INFO(dev_priv)->gen >= 6) { |
| /* |
| * PCU communication is slow and this doesn't need to be |
| * done at any specific time, so do this out of our fast path |
| * to make resume and init faster. |
| * |
| * We depend on the HW RC6 power context save/restore |
| * mechanism when entering D3 through runtime PM suspend. So |
| * disable RPM until RPS/RC6 is properly setup. We can only |
| * get here via the driver load/system resume/runtime resume |
| * paths, so the _noresume version is enough (and in case of |
| * runtime resume it's necessary). |
| */ |
| if (queue_delayed_work(dev_priv->wq, |
| &dev_priv->rps.autoenable_work, |
| round_jiffies_up_relative(HZ))) |
| intel_runtime_pm_get_noresume(dev_priv); |
| } |
| } |
| |
| static void ibx_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* |
| * On Ibex Peak and Cougar Point, we need to disable clock |
| * gating for the panel power sequencer or it will fail to |
| * start up when no ports are active. |
| */ |
| I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE); |
| } |
| |
| static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv) |
| { |
| enum pipe pipe; |
| |
| for_each_pipe(dev_priv, pipe) { |
| I915_WRITE(DSPCNTR(pipe), |
| I915_READ(DSPCNTR(pipe)) | |
| DISPPLANE_TRICKLE_FEED_DISABLE); |
| |
| I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe))); |
| POSTING_READ(DSPSURF(pipe)); |
| } |
| } |
| |
| static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv) |
| { |
| I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN); |
| I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN); |
| I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN); |
| |
| /* |
| * Don't touch WM1S_LP_EN here. |
| * Doing so could cause underruns. |
| */ |
| } |
| |
| static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; |
| |
| /* |
| * Required for FBC |
| * WaFbcDisableDpfcClockGating:ilk |
| */ |
| dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE | |
| ILK_DPFCUNIT_CLOCK_GATE_DISABLE | |
| ILK_DPFDUNIT_CLOCK_GATE_ENABLE; |
| |
| I915_WRITE(PCH_3DCGDIS0, |
| MARIUNIT_CLOCK_GATE_DISABLE | |
| SVSMUNIT_CLOCK_GATE_DISABLE); |
| I915_WRITE(PCH_3DCGDIS1, |
| VFMUNIT_CLOCK_GATE_DISABLE); |
| |
| /* |
| * According to the spec the following bits should be set in |
| * order to enable memory self-refresh |
| * The bit 22/21 of 0x42004 |
| * The bit 5 of 0x42020 |
| * The bit 15 of 0x45000 |
| */ |
| I915_WRITE(ILK_DISPLAY_CHICKEN2, |
| (I915_READ(ILK_DISPLAY_CHICKEN2) | |
| ILK_DPARB_GATE | ILK_VSDPFD_FULL)); |
| dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE; |
| I915_WRITE(DISP_ARB_CTL, |
| (I915_READ(DISP_ARB_CTL) | |
| DISP_FBC_WM_DIS)); |
| |
| ilk_init_lp_watermarks(dev_priv); |
| |
| /* |
| * Based on the document from hardware guys the following bits |
| * should be set unconditionally in order to enable FBC. |
| * The bit 22 of 0x42000 |
| * The bit 22 of 0x42004 |
| * The bit 7,8,9 of 0x42020. |
| */ |
| if (IS_IRONLAKE_M(dev_priv)) { |
| /* WaFbcAsynchFlipDisableFbcQueue:ilk */ |
| I915_WRITE(ILK_DISPLAY_CHICKEN1, |
| I915_READ(ILK_DISPLAY_CHICKEN1) | |
| ILK_FBCQ_DIS); |
| I915_WRITE(ILK_DISPLAY_CHICKEN2, |
| I915_READ(ILK_DISPLAY_CHICKEN2) | |
| ILK_DPARB_GATE); |
| } |
| |
| I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate); |
| |
| I915_WRITE(ILK_DISPLAY_CHICKEN2, |
| I915_READ(ILK_DISPLAY_CHICKEN2) | |
| ILK_ELPIN_409_SELECT); |
| I915_WRITE(_3D_CHICKEN2, |
| _3D_CHICKEN2_WM_READ_PIPELINED << 16 | |
| _3D_CHICKEN2_WM_READ_PIPELINED); |
| |
| /* WaDisableRenderCachePipelinedFlush:ilk */ |
| I915_WRITE(CACHE_MODE_0, |
| _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE)); |
| |
| /* WaDisable_RenderCache_OperationalFlush:ilk */ |
| I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); |
| |
| g4x_disable_trickle_feed(dev_priv); |
| |
| ibx_init_clock_gating(dev_priv); |
| } |
| |
| static void cpt_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| int pipe; |
| uint32_t val; |
| |
| /* |
| * On Ibex Peak and Cougar Point, we need to disable clock |
| * gating for the panel power sequencer or it will fail to |
| * start up when no ports are active. |
| */ |
| I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE | |
| PCH_DPLUNIT_CLOCK_GATE_DISABLE | |
| PCH_CPUNIT_CLOCK_GATE_DISABLE); |
| I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) | |
| DPLS_EDP_PPS_FIX_DIS); |
| /* The below fixes the weird display corruption, a few pixels shifted |
| * downward, on (only) LVDS of some HP laptops with IVY. |
| */ |
| for_each_pipe(dev_priv, pipe) { |
| val = I915_READ(TRANS_CHICKEN2(pipe)); |
| val |= TRANS_CHICKEN2_TIMING_OVERRIDE; |
| val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED; |
| if (dev_priv->vbt.fdi_rx_polarity_inverted) |
| val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED; |
| val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; |
| val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER; |
| val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH; |
| I915_WRITE(TRANS_CHICKEN2(pipe), val); |
| } |
| /* WADP0ClockGatingDisable */ |
| for_each_pipe(dev_priv, pipe) { |
| I915_WRITE(TRANS_CHICKEN1(pipe), |
| TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); |
| } |
| } |
| |
| static void gen6_check_mch_setup(struct drm_i915_private *dev_priv) |
| { |
| uint32_t tmp; |
| |
| tmp = I915_READ(MCH_SSKPD); |
| if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) |
| DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n", |
| tmp); |
| } |
| |
| static void gen6_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; |
| |
| I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate); |
| |
| I915_WRITE(ILK_DISPLAY_CHICKEN2, |
| I915_READ(ILK_DISPLAY_CHICKEN2) | |
| ILK_ELPIN_409_SELECT); |
| |
| /* WaDisableHiZPlanesWhenMSAAEnabled:snb */ |
| I915_WRITE(_3D_CHICKEN, |
| _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB)); |
| |
| /* WaDisable_RenderCache_OperationalFlush:snb */ |
| I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); |
| |
| /* |
| * BSpec recoomends 8x4 when MSAA is used, |
| * however in practice 16x4 seems fastest. |
| * |
| * Note that PS/WM thread counts depend on the WIZ hashing |
| * disable bit, which we don't touch here, but it's good |
| * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). |
| */ |
| I915_WRITE(GEN6_GT_MODE, |
| _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4)); |
| |
| ilk_init_lp_watermarks(dev_priv); |
| |
| I915_WRITE(CACHE_MODE_0, |
| _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB)); |
| |
| I915_WRITE(GEN6_UCGCTL1, |
| I915_READ(GEN6_UCGCTL1) | |
| GEN6_BLBUNIT_CLOCK_GATE_DISABLE | |
| GEN6_CSUNIT_CLOCK_GATE_DISABLE); |
| |
| /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock |
| * gating disable must be set. Failure to set it results in |
| * flickering pixels due to Z write ordering failures after |
| * some amount of runtime in the Mesa "fire" demo, and Unigine |
| * Sanctuary and Tropics, and apparently anything else with |
| * alpha test or pixel discard. |
| * |
| * According to the spec, bit 11 (RCCUNIT) must also be set, |
| * but we didn't debug actual testcases to find it out. |
| * |
| * WaDisableRCCUnitClockGating:snb |
| * WaDisableRCPBUnitClockGating:snb |
| */ |
| I915_WRITE(GEN6_UCGCTL2, |
| GEN6_RCPBUNIT_CLOCK_GATE_DISABLE | |
| GEN6_RCCUNIT_CLOCK_GATE_DISABLE); |
| |
| /* WaStripsFansDisableFastClipPerformanceFix:snb */ |
| I915_WRITE(_3D_CHICKEN3, |
| _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL)); |
| |
| /* |
| * Bspec says: |
| * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and |
| * 3DSTATE_SF number of SF output attributes is more than 16." |
| */ |
| I915_WRITE(_3D_CHICKEN3, |
| _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH)); |
| |
| /* |
| * According to the spec the following bits should be |
| * set in order to enable memory self-refresh and fbc: |
| * The bit21 and bit22 of 0x42000 |
| * The bit21 and bit22 of 0x42004 |
| * The bit5 and bit7 of 0x42020 |
| * The bit14 of 0x70180 |
| * The bit14 of 0x71180 |
| * |
| * WaFbcAsynchFlipDisableFbcQueue:snb |
| */ |
| I915_WRITE(ILK_DISPLAY_CHICKEN1, |
| I915_READ(ILK_DISPLAY_CHICKEN1) | |
| ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS); |
| I915_WRITE(ILK_DISPLAY_CHICKEN2, |
| I915_READ(ILK_DISPLAY_CHICKEN2) | |
| ILK_DPARB_GATE | ILK_VSDPFD_FULL); |
| I915_WRITE(ILK_DSPCLK_GATE_D, |
| I915_READ(ILK_DSPCLK_GATE_D) | |
| ILK_DPARBUNIT_CLOCK_GATE_ENABLE | |
| ILK_DPFDUNIT_CLOCK_GATE_ENABLE); |
| |
| g4x_disable_trickle_feed(dev_priv); |
| |
| cpt_init_clock_gating(dev_priv); |
| |
| gen6_check_mch_setup(dev_priv); |
| } |
| |
| static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv) |
| { |
| uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE); |
| |
| /* |
| * WaVSThreadDispatchOverride:ivb,vlv |
| * |
| * This actually overrides the dispatch |
| * mode for all thread types. |
| */ |
| reg &= ~GEN7_FF_SCHED_MASK; |
| reg |= GEN7_FF_TS_SCHED_HW; |
| reg |= GEN7_FF_VS_SCHED_HW; |
| reg |= GEN7_FF_DS_SCHED_HW; |
| |
| I915_WRITE(GEN7_FF_THREAD_MODE, reg); |
| } |
| |
| static void lpt_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* |
| * TODO: this bit should only be enabled when really needed, then |
| * disabled when not needed anymore in order to save power. |
| */ |
| if (HAS_PCH_LPT_LP(dev_priv)) |
| I915_WRITE(SOUTH_DSPCLK_GATE_D, |
| I915_READ(SOUTH_DSPCLK_GATE_D) | |
| PCH_LP_PARTITION_LEVEL_DISABLE); |
| |
| /* WADPOClockGatingDisable:hsw */ |
| I915_WRITE(TRANS_CHICKEN1(PIPE_A), |
| I915_READ(TRANS_CHICKEN1(PIPE_A)) | |
| TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); |
| } |
| |
| static void lpt_suspend_hw(struct drm_i915_private *dev_priv) |
| { |
| if (HAS_PCH_LPT_LP(dev_priv)) { |
| uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D); |
| |
| val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; |
| I915_WRITE(SOUTH_DSPCLK_GATE_D, val); |
| } |
| } |
| |
| static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv, |
| int general_prio_credits, |
| int high_prio_credits) |
| { |
| u32 misccpctl; |
| |
| /* WaTempDisableDOPClkGating:bdw */ |
| misccpctl = I915_READ(GEN7_MISCCPCTL); |
| I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); |
| |
| I915_WRITE(GEN8_L3SQCREG1, |
| L3_GENERAL_PRIO_CREDITS(general_prio_credits) | |
| L3_HIGH_PRIO_CREDITS(high_prio_credits)); |
| |
| /* |
| * Wait at least 100 clocks before re-enabling clock gating. |
| * See the definition of L3SQCREG1 in BSpec. |
| */ |
| POSTING_READ(GEN8_L3SQCREG1); |
| udelay(1); |
| I915_WRITE(GEN7_MISCCPCTL, misccpctl); |
| } |
| |
| static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| gen9_init_clock_gating(dev_priv); |
| |
| /* WaDisableSDEUnitClockGating:kbl */ |
| if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0)) |
| I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | |
| GEN8_SDEUNIT_CLOCK_GATE_DISABLE); |
| |
| /* WaDisableGamClockGating:kbl */ |
| if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0)) |
| I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | |
| GEN6_GAMUNIT_CLOCK_GATE_DISABLE); |
| |
| /* WaFbcNukeOnHostModify:kbl,cfl */ |
| I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | |
| ILK_DPFC_NUKE_ON_ANY_MODIFICATION); |
| } |
| |
| static void skylake_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| gen9_init_clock_gating(dev_priv); |
| |
| /* WAC6entrylatency:skl */ |
| I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) | |
| FBC_LLC_FULLY_OPEN); |
| |
| /* WaFbcNukeOnHostModify:skl */ |
| I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | |
| ILK_DPFC_NUKE_ON_ANY_MODIFICATION); |
| } |
| |
| static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| enum pipe pipe; |
| |
| ilk_init_lp_watermarks(dev_priv); |
| |
| /* WaSwitchSolVfFArbitrationPriority:bdw */ |
| I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL); |
| |
| /* WaPsrDPAMaskVBlankInSRD:bdw */ |
| I915_WRITE(CHICKEN_PAR1_1, |
| I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD); |
| |
| /* WaPsrDPRSUnmaskVBlankInSRD:bdw */ |
| for_each_pipe(dev_priv, pipe) { |
| I915_WRITE(CHICKEN_PIPESL_1(pipe), |
| I915_READ(CHICKEN_PIPESL_1(pipe)) | |
| BDW_DPRS_MASK_VBLANK_SRD); |
| } |
| |
| /* WaVSRefCountFullforceMissDisable:bdw */ |
| /* WaDSRefCountFullforceMissDisable:bdw */ |
| I915_WRITE(GEN7_FF_THREAD_MODE, |
| I915_READ(GEN7_FF_THREAD_MODE) & |
| ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME)); |
| |
| I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL, |
| _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE)); |
| |
| /* WaDisableSDEUnitClockGating:bdw */ |
| I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | |
| GEN8_SDEUNIT_CLOCK_GATE_DISABLE); |
| |
| /* WaProgramL3SqcReg1Default:bdw */ |
| gen8_set_l3sqc_credits(dev_priv, 30, 2); |
| |
| /* |
| * WaGttCachingOffByDefault:bdw |
| * GTT cache may not work with big pages, so if those |
| * are ever enabled GTT cache may need to be disabled. |
| */ |
| I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL); |
| |
| /* WaKVMNotificationOnConfigChange:bdw */ |
| I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1) |
| | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT); |
| |
| lpt_init_clock_gating(dev_priv); |
| |
| /* WaDisableDopClockGating:bdw |
| * |
| * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP |
| * clock gating. |
| */ |
| I915_WRITE(GEN6_UCGCTL1, |
| I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE); |
| } |
| |
| static void haswell_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| ilk_init_lp_watermarks(dev_priv); |
| |
| /* L3 caching of data atomics doesn't work -- disable it. */ |
| I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE); |
| I915_WRITE(HSW_ROW_CHICKEN3, |
| _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE)); |
| |
| /* This is required by WaCatErrorRejectionIssue:hsw */ |
| I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, |
| I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | |
| GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); |
| |
| /* WaVSRefCountFullforceMissDisable:hsw */ |
| I915_WRITE(GEN7_FF_THREAD_MODE, |
| I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME); |
| |
| /* WaDisable_RenderCache_OperationalFlush:hsw */ |
| I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); |
| |
| /* enable HiZ Raw Stall Optimization */ |
| I915_WRITE(CACHE_MODE_0_GEN7, |
| _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE)); |
| |
| /* WaDisable4x2SubspanOptimization:hsw */ |
| I915_WRITE(CACHE_MODE_1, |
| _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); |
| |
| /* |
| * BSpec recommends 8x4 when MSAA is used, |
| * however in practice 16x4 seems fastest. |
| * |
| * Note that PS/WM thread counts depend on the WIZ hashing |
| * disable bit, which we don't touch here, but it's good |
| * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). |
| */ |
| I915_WRITE(GEN7_GT_MODE, |
| _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4)); |
| |
| /* WaSampleCChickenBitEnable:hsw */ |
| I915_WRITE(HALF_SLICE_CHICKEN3, |
| _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE)); |
| |
| /* WaSwitchSolVfFArbitrationPriority:hsw */ |
| I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL); |
| |
| /* WaRsPkgCStateDisplayPMReq:hsw */ |
| I915_WRITE(CHICKEN_PAR1_1, |
| I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); |
| |
| lpt_init_clock_gating(dev_priv); |
| } |
| |
| static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| uint32_t snpcr; |
| |
| ilk_init_lp_watermarks(dev_priv); |
| |
| I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE); |
| |
| /* WaDisableEarlyCull:ivb */ |
| I915_WRITE(_3D_CHICKEN3, |
| _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL)); |
| |
| /* WaDisableBackToBackFlipFix:ivb */ |
| I915_WRITE(IVB_CHICKEN3, |
| CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | |
| CHICKEN3_DGMG_DONE_FIX_DISABLE); |
| |
| /* WaDisablePSDDualDispatchEnable:ivb */ |
| if (IS_IVB_GT1(dev_priv)) |
| I915_WRITE(GEN7_HALF_SLICE_CHICKEN1, |
| _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE)); |
| |
| /* WaDisable_RenderCache_OperationalFlush:ivb */ |
| I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); |
| |
| /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */ |
| I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1, |
| GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); |
| |
| /* WaApplyL3ControlAndL3ChickenMode:ivb */ |
| I915_WRITE(GEN7_L3CNTLREG1, |
| GEN7_WA_FOR_GEN7_L3_CONTROL); |
| I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, |
| GEN7_WA_L3_CHICKEN_MODE); |
| if (IS_IVB_GT1(dev_priv)) |
| I915_WRITE(GEN7_ROW_CHICKEN2, |
| _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); |
| else { |
| /* must write both registers */ |
| I915_WRITE(GEN7_ROW_CHICKEN2, |
| _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); |
| I915_WRITE(GEN7_ROW_CHICKEN2_GT2, |
| _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); |
| } |
| |
| /* WaForceL3Serialization:ivb */ |
| I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) & |
| ~L3SQ_URB_READ_CAM_MATCH_DISABLE); |
| |
| /* |
| * According to the spec, bit 13 (RCZUNIT) must be set on IVB. |
| * This implements the WaDisableRCZUnitClockGating:ivb workaround. |
| */ |
| I915_WRITE(GEN6_UCGCTL2, |
| GEN6_RCZUNIT_CLOCK_GATE_DISABLE); |
| |
| /* This is required by WaCatErrorRejectionIssue:ivb */ |
| I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, |
| I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | |
| GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); |
| |
| g4x_disable_trickle_feed(dev_priv); |
| |
| gen7_setup_fixed_func_scheduler(dev_priv); |
| |
| if (0) { /* causes HiZ corruption on ivb:gt1 */ |
| /* enable HiZ Raw Stall Optimization */ |
| I915_WRITE(CACHE_MODE_0_GEN7, |
| _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE)); |
| } |
| |
| /* WaDisable4x2SubspanOptimization:ivb */ |
| I915_WRITE(CACHE_MODE_1, |
| _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); |
| |
| /* |
| * BSpec recommends 8x4 when MSAA is used, |
| * however in practice 16x4 seems fastest. |
| * |
| * Note that PS/WM thread counts depend on the WIZ hashing |
| * disable bit, which we don't touch here, but it's good |
| * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). |
| */ |
| I915_WRITE(GEN7_GT_MODE, |
| _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4)); |
| |
| snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); |
| snpcr &= ~GEN6_MBC_SNPCR_MASK; |
| snpcr |= GEN6_MBC_SNPCR_MED; |
| I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); |
| |
| if (!HAS_PCH_NOP(dev_priv)) |
| cpt_init_clock_gating(dev_priv); |
| |
| gen6_check_mch_setup(dev_priv); |
| } |
| |
| static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* WaDisableEarlyCull:vlv */ |
| I915_WRITE(_3D_CHICKEN3, |
| _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL)); |
| |
| /* WaDisableBackToBackFlipFix:vlv */ |
| I915_WRITE(IVB_CHICKEN3, |
| CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | |
| CHICKEN3_DGMG_DONE_FIX_DISABLE); |
| |
| /* WaPsdDispatchEnable:vlv */ |
| /* WaDisablePSDDualDispatchEnable:vlv */ |
| I915_WRITE(GEN7_HALF_SLICE_CHICKEN1, |
| _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP | |
| GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE)); |
| |
| /* WaDisable_RenderCache_OperationalFlush:vlv */ |
| I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); |
| |
| /* WaForceL3Serialization:vlv */ |
| I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) & |
| ~L3SQ_URB_READ_CAM_MATCH_DISABLE); |
| |
| /* WaDisableDopClockGating:vlv */ |
| I915_WRITE(GEN7_ROW_CHICKEN2, |
| _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); |
| |
| /* This is required by WaCatErrorRejectionIssue:vlv */ |
| I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, |
| I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | |
| GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); |
| |
| gen7_setup_fixed_func_scheduler(dev_priv); |
| |
| /* |
| * According to the spec, bit 13 (RCZUNIT) must be set on IVB. |
| * This implements the WaDisableRCZUnitClockGating:vlv workaround. |
| */ |
| I915_WRITE(GEN6_UCGCTL2, |
| GEN6_RCZUNIT_CLOCK_GATE_DISABLE); |
| |
| /* WaDisableL3Bank2xClockGate:vlv |
| * Disabling L3 clock gating- MMIO 940c[25] = 1 |
| * Set bit 25, to disable L3_BANK_2x_CLK_GATING */ |
| I915_WRITE(GEN7_UCGCTL4, |
| I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE); |
| |
| /* |
| * BSpec says this must be set, even though |
| * WaDisable4x2SubspanOptimization isn't listed for VLV. |
| */ |
| I915_WRITE(CACHE_MODE_1, |
| _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); |
| |
| /* |
| * BSpec recommends 8x4 when MSAA is used, |
| * however in practice 16x4 seems fastest. |
| * |
| * Note that PS/WM thread counts depend on the WIZ hashing |
| * disable bit, which we don't touch here, but it's good |
| * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). |
| */ |
| I915_WRITE(GEN7_GT_MODE, |
| _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4)); |
| |
| /* |
| * WaIncreaseL3CreditsForVLVB0:vlv |
| * This is the hardware default actually. |
| */ |
| I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE); |
| |
| /* |
| * WaDisableVLVClockGating_VBIIssue:vlv |
| * Disable clock gating on th GCFG unit to prevent a delay |
| * in the reporting of vblank events. |
| */ |
| I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS); |
| } |
| |
| static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* WaVSRefCountFullforceMissDisable:chv */ |
| /* WaDSRefCountFullforceMissDisable:chv */ |
| I915_WRITE(GEN7_FF_THREAD_MODE, |
| I915_READ(GEN7_FF_THREAD_MODE) & |
| ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME)); |
| |
| /* WaDisableSemaphoreAndSyncFlipWait:chv */ |
| I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL, |
| _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE)); |
| |
| /* WaDisableCSUnitClockGating:chv */ |
| I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | |
| GEN6_CSUNIT_CLOCK_GATE_DISABLE); |
| |
| /* WaDisableSDEUnitClockGating:chv */ |
| I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | |
| GEN8_SDEUNIT_CLOCK_GATE_DISABLE); |
| |
| /* |
| * WaProgramL3SqcReg1Default:chv |
| * See gfxspecs/Related Documents/Performance Guide/ |
| * LSQC Setting Recommendations. |
| */ |
| gen8_set_l3sqc_credits(dev_priv, 38, 2); |
| |
| /* |
| * GTT cache may not work with big pages, so if those |
| * are ever enabled GTT cache may need to be disabled. |
| */ |
| I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL); |
| } |
| |
| static void g4x_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| uint32_t dspclk_gate; |
| |
| I915_WRITE(RENCLK_GATE_D1, 0); |
| I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE | |
| GS_UNIT_CLOCK_GATE_DISABLE | |
| CL_UNIT_CLOCK_GATE_DISABLE); |
| I915_WRITE(RAMCLK_GATE_D, 0); |
| dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE | |
| OVRUNIT_CLOCK_GATE_DISABLE | |
| OVCUNIT_CLOCK_GATE_DISABLE; |
| if (IS_GM45(dev_priv)) |
| dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE; |
| I915_WRITE(DSPCLK_GATE_D, dspclk_gate); |
| |
| /* WaDisableRenderCachePipelinedFlush */ |
| I915_WRITE(CACHE_MODE_0, |
| _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE)); |
| |
| /* WaDisable_RenderCache_OperationalFlush:g4x */ |
| I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); |
| |
| g4x_disable_trickle_feed(dev_priv); |
| } |
| |
| static void crestline_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE); |
| I915_WRITE(RENCLK_GATE_D2, 0); |
| I915_WRITE(DSPCLK_GATE_D, 0); |
| I915_WRITE(RAMCLK_GATE_D, 0); |
| I915_WRITE16(DEUC, 0); |
| I915_WRITE(MI_ARB_STATE, |
| _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); |
| |
| /* WaDisable_RenderCache_OperationalFlush:gen4 */ |
| I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); |
| } |
| |
| static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE | |
| I965_RCC_CLOCK_GATE_DISABLE | |
| I965_RCPB_CLOCK_GATE_DISABLE | |
| I965_ISC_CLOCK_GATE_DISABLE | |
| I965_FBC_CLOCK_GATE_DISABLE); |
| I915_WRITE(RENCLK_GATE_D2, 0); |
| I915_WRITE(MI_ARB_STATE, |
| _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); |
| |
| /* WaDisable_RenderCache_OperationalFlush:gen4 */ |
| I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE)); |
| } |
| |
| static void gen3_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| u32 dstate = I915_READ(D_STATE); |
| |
| dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING | |
| DSTATE_DOT_CLOCK_GATING; |
| I915_WRITE(D_STATE, dstate); |
| |
| if (IS_PINEVIEW(dev_priv)) |
| I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY)); |
| |
| /* IIR "flip pending" means done if this bit is set */ |
| I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE)); |
| |
| /* interrupts should cause a wake up from C3 */ |
| I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN)); |
| |
| /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ |
| I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); |
| |
| I915_WRITE(MI_ARB_STATE, |
| _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); |
| } |
| |
| static void i85x_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE); |
| |
| /* interrupts should cause a wake up from C3 */ |
| I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) | |
| _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE)); |
| |
| I915_WRITE(MEM_MODE, |
| _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE)); |
| } |
| |
| static void i830_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| I915_WRITE(MEM_MODE, |
| _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) | |
| _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE)); |
| } |
| |
| void intel_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| dev_priv->display.init_clock_gating(dev_priv); |
| } |
| |
| void intel_suspend_hw(struct drm_i915_private *dev_priv) |
| { |
| if (HAS_PCH_LPT(dev_priv)) |
| lpt_suspend_hw(dev_priv); |
| } |
| |
| static void nop_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n"); |
| } |
| |
| /** |
| * intel_init_clock_gating_hooks - setup the clock gating hooks |
| * @dev_priv: device private |
| * |
| * Setup the hooks that configure which clocks of a given platform can be |
| * gated and also apply various GT and display specific workarounds for these |
| * platforms. Note that some GT specific workarounds are applied separately |
| * when GPU contexts or batchbuffers start their execution. |
| */ |
| void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv) |
| { |
| if (IS_SKYLAKE(dev_priv)) |
| dev_priv->display.init_clock_gating = skylake_init_clock_gating; |
| else if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) |
| dev_priv->display.init_clock_gating = kabylake_init_clock_gating; |
| else if (IS_BROXTON(dev_priv)) |
| dev_priv->display.init_clock_gating = bxt_init_clock_gating; |
| else if (IS_GEMINILAKE(dev_priv)) |
| dev_priv->display.init_clock_gating = glk_init_clock_gating; |
| else if (IS_BROADWELL(dev_priv)) |
| dev_priv->display.init_clock_gating = broadwell_init_clock_gating; |
| else if (IS_CHERRYVIEW(dev_priv)) |
| dev_priv->display.init_clock_gating = cherryview_init_clock_gating; |
| else if (IS_HASWELL(dev_priv)) |
| dev_priv->display.init_clock_gating = haswell_init_clock_gating; |
| else if (IS_IVYBRIDGE(dev_priv)) |
| dev_priv->display.init_clock_gating = ivybridge_init_clock_gating; |
| else if (IS_VALLEYVIEW(dev_priv)) |
| dev_priv->display.init_clock_gating = valleyview_init_clock_gating; |
| else if (IS_GEN6(dev_priv)) |
| dev_priv->display.init_clock_gating = gen6_init_clock_gating; |
| else if (IS_GEN5(dev_priv)) |
| dev_priv->display.init_clock_gating = ironlake_init_clock_gating; |
| else if (IS_G4X(dev_priv)) |
| dev_priv->display.init_clock_gating = g4x_init_clock_gating; |
| else if (IS_I965GM(dev_priv)) |
| dev_priv->display.init_clock_gating = crestline_init_clock_gating; |
| else if (IS_I965G(dev_priv)) |
| dev_priv->display.init_clock_gating = broadwater_init_clock_gating; |
| else if (IS_GEN3(dev_priv)) |
| dev_priv->display.init_clock_gating = gen3_init_clock_gating; |
| else if (IS_I85X(dev_priv) || IS_I865G(dev_priv)) |
| dev_priv->display.init_clock_gating = i85x_init_clock_gating; |
| else if (IS_GEN2(dev_priv)) |
| dev_priv->display.init_clock_gating = i830_init_clock_gating; |
| else { |
| MISSING_CASE(INTEL_DEVID(dev_priv)); |
| dev_priv->display.init_clock_gating = nop_init_clock_gating; |
| } |
| } |
| |
| /* Set up chip specific power management-related functions */ |
| void intel_init_pm(struct drm_i915_private *dev_priv) |
| { |
| intel_fbc_init(dev_priv); |
| |
| /* For cxsr */ |
| if (IS_PINEVIEW(dev_priv)) |
| i915_pineview_get_mem_freq(dev_priv); |
| else if (IS_GEN5(dev_priv)) |
| i915_ironlake_get_mem_freq(dev_priv); |
| |
| /* For FIFO watermark updates */ |
| if (INTEL_GEN(dev_priv) >= 9) { |
| skl_setup_wm_latency(dev_priv); |
| dev_priv->display.initial_watermarks = skl_initial_wm; |
| dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm; |
| dev_priv->display.compute_global_watermarks = skl_compute_wm; |
| } else if (HAS_PCH_SPLIT(dev_priv)) { |
| ilk_setup_wm_latency(dev_priv); |
| |
| if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] && |
| dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) || |
| (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] && |
| dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) { |
| dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm; |
| dev_priv->display.compute_intermediate_wm = |
| ilk_compute_intermediate_wm; |
| dev_priv->display.initial_watermarks = |
| ilk_initial_watermarks; |
| dev_priv->display.optimize_watermarks = |
| ilk_optimize_watermarks; |
| } else { |
| DRM_DEBUG_KMS("Failed to read display plane latency. " |
| "Disable CxSR\n"); |
| } |
| } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { |
| vlv_setup_wm_latency(dev_priv); |
| dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm; |
| dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm; |
| dev_priv->display.initial_watermarks = vlv_initial_watermarks; |
| dev_priv->display.optimize_watermarks = vlv_optimize_watermarks; |
| dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo; |
| } else if (IS_G4X(dev_priv)) { |
| g4x_setup_wm_latency(dev_priv); |
| dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm; |
| dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm; |
| dev_priv->display.initial_watermarks = g4x_initial_watermarks; |
| dev_priv->display.optimize_watermarks = g4x_optimize_watermarks; |
| } else if (IS_PINEVIEW(dev_priv)) { |
| if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv), |
| dev_priv->is_ddr3, |
| dev_priv->fsb_freq, |
| dev_priv->mem_freq)) { |
| DRM_INFO("failed to find known CxSR latency " |
| "(found ddr%s fsb freq %d, mem freq %d), " |
| "disabling CxSR\n", |
| (dev_priv->is_ddr3 == 1) ? "3" : "2", |
| dev_priv->fsb_freq, dev_priv->mem_freq); |
| /* Disable CxSR and never update its watermark again */ |
| intel_set_memory_cxsr(dev_priv, false); |
| dev_priv->display.update_wm = NULL; |
| } else |
| dev_priv->display.update_wm = pineview_update_wm; |
| } else if (IS_GEN4(dev_priv)) { |
| dev_priv->display.update_wm = i965_update_wm; |
| } else if (IS_GEN3(dev_priv)) { |
| dev_priv->display.update_wm = i9xx_update_wm; |
| dev_priv->display.get_fifo_size = i9xx_get_fifo_size; |
| } else if (IS_GEN2(dev_priv)) { |
| if (INTEL_INFO(dev_priv)->num_pipes == 1) { |
| dev_priv->display.update_wm = i845_update_wm; |
| dev_priv->display.get_fifo_size = i845_get_fifo_size; |
| } else { |
| dev_priv->display.update_wm = i9xx_update_wm; |
| dev_priv->display.get_fifo_size = i830_get_fifo_size; |
| } |
| } else { |
| DRM_ERROR("unexpected fall-through in intel_init_pm\n"); |
| } |
| } |
| |
| static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv) |
| { |
| uint32_t flags = |
| I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK; |
| |
| switch (flags) { |
| case GEN6_PCODE_SUCCESS: |
| return 0; |
| case GEN6_PCODE_UNIMPLEMENTED_CMD: |
| return -ENODEV; |
| case GEN6_PCODE_ILLEGAL_CMD: |
| return -ENXIO; |
| case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE: |
| case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE: |
| return -EOVERFLOW; |
| case GEN6_PCODE_TIMEOUT: |
| return -ETIMEDOUT; |
| default: |
| MISSING_CASE(flags); |
| return 0; |
| } |
| } |
| |
| static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv) |
| { |
| uint32_t flags = |
| I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK; |
| |
| switch (flags) { |
| case GEN6_PCODE_SUCCESS: |
| return 0; |
| case GEN6_PCODE_ILLEGAL_CMD: |
| return -ENXIO; |
| case GEN7_PCODE_TIMEOUT: |
| return -ETIMEDOUT; |
| case GEN7_PCODE_ILLEGAL_DATA: |
| return -EINVAL; |
| case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE: |
| return -EOVERFLOW; |
| default: |
| MISSING_CASE(flags); |
| return 0; |
| } |
| } |
| |
| int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val) |
| { |
| int status; |
| |
| WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); |
| |
| /* GEN6_PCODE_* are outside of the forcewake domain, we can |
| * use te fw I915_READ variants to reduce the amount of work |
| * required when reading/writing. |
| */ |
| |
| if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) { |
| DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n", |
| mbox, __builtin_return_address(0)); |
| return -EAGAIN; |
| } |
| |
| I915_WRITE_FW(GEN6_PCODE_DATA, *val); |
| I915_WRITE_FW(GEN6_PCODE_DATA1, 0); |
| I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox); |
| |
| if (__intel_wait_for_register_fw(dev_priv, |
| GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0, |
| 500, 0, NULL)) { |
| DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n", |
| mbox, __builtin_return_address(0)); |
| return -ETIMEDOUT; |
| } |
| |
| *val = I915_READ_FW(GEN6_PCODE_DATA); |
| I915_WRITE_FW(GEN6_PCODE_DATA, 0); |
| |
| if (INTEL_GEN(dev_priv) > 6) |
| status = gen7_check_mailbox_status(dev_priv); |
| else |
| status = gen6_check_mailbox_status(dev_priv); |
| |
| if (status) { |
| DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n", |
| mbox, __builtin_return_address(0), status); |
| return status; |
| } |
| |
| return 0; |
| } |
| |
| int sandybridge_pcode_write(struct drm_i915_private *dev_priv, |
| u32 mbox, u32 val) |
| { |
| int status; |
| |
| WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); |
| |
| /* GEN6_PCODE_* are outside of the forcewake domain, we can |
| * use te fw I915_READ variants to reduce the amount of work |
| * required when reading/writing. |
| */ |
| |
| if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) { |
| DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n", |
| val, mbox, __builtin_return_address(0)); |
| return -EAGAIN; |
| } |
| |
| I915_WRITE_FW(GEN6_PCODE_DATA, val); |
| I915_WRITE_FW(GEN6_PCODE_DATA1, 0); |
| I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox); |
| |
| if (__intel_wait_for_register_fw(dev_priv, |
| GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0, |
| 500, 0, NULL)) { |
| DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n", |
| val, mbox, __builtin_return_address(0)); |
| return -ETIMEDOUT; |
| } |
| |
| I915_WRITE_FW(GEN6_PCODE_DATA, 0); |
| |
| if (INTEL_GEN(dev_priv) > 6) |
| status = gen7_check_mailbox_status(dev_priv); |
| else |
| status = gen6_check_mailbox_status(dev_priv); |
| |
| if (status) { |
| DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n", |
| val, mbox, __builtin_return_address(0), status); |
| return status; |
| } |
| |
| return 0; |
| } |
| |
| static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox, |
| u32 request, u32 reply_mask, u32 reply, |
| u32 *status) |
| { |
| u32 val = request; |
| |
| *status = sandybridge_pcode_read(dev_priv, mbox, &val); |
| |
| return *status || ((val & reply_mask) == reply); |
| } |
| |
| /** |
| * skl_pcode_request - send PCODE request until acknowledgment |
| * @dev_priv: device private |
| * @mbox: PCODE mailbox ID the request is targeted for |
| * @request: request ID |
| * @reply_mask: mask used to check for request acknowledgment |
| * @reply: value used to check for request acknowledgment |
| * @timeout_base_ms: timeout for polling with preemption enabled |
| * |
| * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE |
| * reports an error or an overall timeout of @timeout_base_ms+50 ms expires. |
| * The request is acknowledged once the PCODE reply dword equals @reply after |
| * applying @reply_mask. Polling is first attempted with preemption enabled |
| * for @timeout_base_ms and if this times out for another 50 ms with |
| * preemption disabled. |
| * |
| * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some |
| * other error as reported by PCODE. |
| */ |
| int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, |
| u32 reply_mask, u32 reply, int timeout_base_ms) |
| { |
| u32 status; |
| int ret; |
| |
| WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock)); |
| |
| #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \ |
| &status) |
| |
| /* |
| * Prime the PCODE by doing a request first. Normally it guarantees |
| * that a subsequent request, at most @timeout_base_ms later, succeeds. |
| * _wait_for() doesn't guarantee when its passed condition is evaluated |
| * first, so send the first request explicitly. |
| */ |
| if (COND) { |
| ret = 0; |
| goto out; |
| } |
| ret = _wait_for(COND, timeout_base_ms * 1000, 10); |
| if (!ret) |
| goto out; |
| |
| /* |
| * The above can time out if the number of requests was low (2 in the |
| * worst case) _and_ PCODE was busy for some reason even after a |
| * (queued) request and @timeout_base_ms delay. As a workaround retry |
| * the poll with preemption disabled to maximize the number of |
| * requests. Increase the timeout from @timeout_base_ms to 50ms to |
| * account for interrupts that could reduce the number of these |
| * requests, and for any quirks of the PCODE firmware that delays |
| * the request completion. |
| */ |
| DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n"); |
| WARN_ON_ONCE(timeout_base_ms > 3); |
| preempt_disable(); |
| ret = wait_for_atomic(COND, 50); |
| preempt_enable(); |
| |
| out: |
| return ret ? ret : status; |
| #undef COND |
| } |
| |
| static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val) |
| { |
| /* |
| * N = val - 0xb7 |
| * Slow = Fast = GPLL ref * N |
| */ |
| return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000); |
| } |
| |
| static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val) |
| { |
| return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7; |
| } |
| |
| static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val) |
| { |
| /* |
| * N = val / 2 |
| * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2 |
| */ |
| return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000); |
| } |
| |
| static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val) |
| { |
| /* CHV needs even values */ |
| return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2; |
| } |
| |
| int intel_gpu_freq(struct drm_i915_private *dev_priv, int val) |
| { |
| if (INTEL_GEN(dev_priv) >= 9) |
| return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER, |
| GEN9_FREQ_SCALER); |
| else if (IS_CHERRYVIEW(dev_priv)) |
| return chv_gpu_freq(dev_priv, val); |
| else if (IS_VALLEYVIEW(dev_priv)) |
| return byt_gpu_freq(dev_priv, val); |
| else |
| return val * GT_FREQUENCY_MULTIPLIER; |
| } |
| |
| int intel_freq_opcode(struct drm_i915_private *dev_priv, int val) |
| { |
| if (INTEL_GEN(dev_priv) >= 9) |
| return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER, |
| GT_FREQUENCY_MULTIPLIER); |
| else if (IS_CHERRYVIEW(dev_priv)) |
| return chv_freq_opcode(dev_priv, val); |
| else if (IS_VALLEYVIEW(dev_priv)) |
| return byt_freq_opcode(dev_priv, val); |
| else |
| return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER); |
| } |
| |
| struct request_boost { |
| struct work_struct work; |
| struct drm_i915_gem_request *req; |
| }; |
| |
| static void __intel_rps_boost_work(struct work_struct *work) |
| { |
| struct request_boost *boost = container_of(work, struct request_boost, work); |
| struct drm_i915_gem_request *req = boost->req; |
| |
| if (!i915_gem_request_completed(req)) |
| gen6_rps_boost(req, NULL); |
| |
| i915_gem_request_put(req); |
| kfree(boost); |
| } |
| |
| void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req) |
| { |
| struct request_boost *boost; |
| |
| if (req == NULL || INTEL_GEN(req->i915) < 6) |
| return; |
| |
| if (i915_gem_request_completed(req)) |
| return; |
| |
| boost = kmalloc(sizeof(*boost), GFP_ATOMIC); |
| if (boost == NULL) |
| return; |
| |
| boost->req = i915_gem_request_get(req); |
| |
| INIT_WORK(&boost->work, __intel_rps_boost_work); |
| queue_work(req->i915->wq, &boost->work); |
| } |
| |
| void intel_pm_setup(struct drm_i915_private *dev_priv) |
| { |
| mutex_init(&dev_priv->rps.hw_lock); |
| |
| INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work, |
| __intel_autoenable_gt_powersave); |
| atomic_set(&dev_priv->rps.num_waiters, 0); |
| |
| dev_priv->pm.suspended = false; |
| atomic_set(&dev_priv->pm.wakeref_count, 0); |
| } |
| |
| static u64 vlv_residency_raw(struct drm_i915_private *dev_priv, |
| const i915_reg_t reg) |
| { |
| u32 lower, upper, tmp; |
| int loop = 2; |
| |
| /* The register accessed do not need forcewake. We borrow |
| * uncore lock to prevent concurrent access to range reg. |
| */ |
| spin_lock_irq(&dev_priv->uncore.lock); |
| |
| /* vlv and chv residency counters are 40 bits in width. |
| * With a control bit, we can choose between upper or lower |
| * 32bit window into this counter. |
| * |
| * Although we always use the counter in high-range mode elsewhere, |
| * userspace may attempt to read the value before rc6 is initialised, |
| * before we have set the default VLV_COUNTER_CONTROL value. So always |
| * set the high bit to be safe. |
| */ |
| I915_WRITE_FW(VLV_COUNTER_CONTROL, |
| _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); |
| upper = I915_READ_FW(reg); |
| do { |
| tmp = upper; |
| |
| I915_WRITE_FW(VLV_COUNTER_CONTROL, |
| _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH)); |
| lower = I915_READ_FW(reg); |
| |
| I915_WRITE_FW(VLV_COUNTER_CONTROL, |
| _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); |
| upper = I915_READ_FW(reg); |
| } while (upper != tmp && --loop); |
| |
| /* Everywhere else we always use VLV_COUNTER_CONTROL with the |
| * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set |
| * now. |
| */ |
| |
| spin_unlock_irq(&dev_priv->uncore.lock); |
| |
| return lower | (u64)upper << 8; |
| } |
| |
| u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, |
| const i915_reg_t reg) |
| { |
| u64 time_hw, units, div; |
| |
| if (!intel_enable_rc6()) |
| return 0; |
| |
| intel_runtime_pm_get(dev_priv); |
| |
| /* On VLV and CHV, residency time is in CZ units rather than 1.28us */ |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { |
| units = 1000; |
| div = dev_priv->czclk_freq; |
| |
| time_hw = vlv_residency_raw(dev_priv, reg); |
| } else if (IS_GEN9_LP(dev_priv)) { |
| units = 1000; |
| div = 1200; /* 833.33ns */ |
| |
| time_hw = I915_READ(reg); |
| } else { |
| units = 128000; /* 1.28us */ |
| div = 100000; |
| |
| time_hw = I915_READ(reg); |
| } |
| |
| intel_runtime_pm_put(dev_priv); |
| return DIV_ROUND_UP_ULL(time_hw * units, div); |
| } |