| /* |
| * linux/arch/parisc/kernel/time.c |
| * |
| * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King |
| * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org) |
| * |
| * 1994-07-02 Alan Modra |
| * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime |
| * 1998-12-20 Updated NTP code according to technical memorandum Jan '96 |
| * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| */ |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/time.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/profile.h> |
| #include <linux/clocksource.h> |
| #include <linux/platform_device.h> |
| #include <linux/ftrace.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/page.h> |
| #include <asm/param.h> |
| #include <asm/pdc.h> |
| #include <asm/led.h> |
| |
| #include <linux/timex.h> |
| |
| static unsigned long clocktick __read_mostly; /* timer cycles per tick */ |
| |
| #ifndef CONFIG_64BIT |
| /* |
| * The processor-internal cycle counter (Control Register 16) is used as time |
| * source for the sched_clock() function. This register is 64bit wide on a |
| * 64-bit kernel and 32bit on a 32-bit kernel. Since sched_clock() always |
| * requires a 64bit counter we emulate on the 32-bit kernel the higher 32bits |
| * with a per-cpu variable which we increase every time the counter |
| * wraps-around (which happens every ~4 secounds). |
| */ |
| static DEFINE_PER_CPU(unsigned long, cr16_high_32_bits); |
| #endif |
| |
| /* |
| * We keep time on PA-RISC Linux by using the Interval Timer which is |
| * a pair of registers; one is read-only and one is write-only; both |
| * accessed through CR16. The read-only register is 32 or 64 bits wide, |
| * and increments by 1 every CPU clock tick. The architecture only |
| * guarantees us a rate between 0.5 and 2, but all implementations use a |
| * rate of 1. The write-only register is 32-bits wide. When the lowest |
| * 32 bits of the read-only register compare equal to the write-only |
| * register, it raises a maskable external interrupt. Each processor has |
| * an Interval Timer of its own and they are not synchronised. |
| * |
| * We want to generate an interrupt every 1/HZ seconds. So we program |
| * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data |
| * is programmed with the intended time of the next tick. We can be |
| * held off for an arbitrarily long period of time by interrupts being |
| * disabled, so we may miss one or more ticks. |
| */ |
| irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id) |
| { |
| unsigned long now, now2; |
| unsigned long next_tick; |
| unsigned long cycles_elapsed, ticks_elapsed = 1; |
| unsigned long cycles_remainder; |
| unsigned int cpu = smp_processor_id(); |
| struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu); |
| |
| /* gcc can optimize for "read-only" case with a local clocktick */ |
| unsigned long cpt = clocktick; |
| |
| profile_tick(CPU_PROFILING); |
| |
| /* Initialize next_tick to the expected tick time. */ |
| next_tick = cpuinfo->it_value; |
| |
| /* Get current cycle counter (Control Register 16). */ |
| now = mfctl(16); |
| |
| cycles_elapsed = now - next_tick; |
| |
| if ((cycles_elapsed >> 6) < cpt) { |
| /* use "cheap" math (add/subtract) instead |
| * of the more expensive div/mul method |
| */ |
| cycles_remainder = cycles_elapsed; |
| while (cycles_remainder > cpt) { |
| cycles_remainder -= cpt; |
| ticks_elapsed++; |
| } |
| } else { |
| /* TODO: Reduce this to one fdiv op */ |
| cycles_remainder = cycles_elapsed % cpt; |
| ticks_elapsed += cycles_elapsed / cpt; |
| } |
| |
| /* convert from "division remainder" to "remainder of clock tick" */ |
| cycles_remainder = cpt - cycles_remainder; |
| |
| /* Determine when (in CR16 cycles) next IT interrupt will fire. |
| * We want IT to fire modulo clocktick even if we miss/skip some. |
| * But those interrupts don't in fact get delivered that regularly. |
| */ |
| next_tick = now + cycles_remainder; |
| |
| cpuinfo->it_value = next_tick; |
| |
| /* Program the IT when to deliver the next interrupt. |
| * Only bottom 32-bits of next_tick are writable in CR16! |
| */ |
| mtctl(next_tick, 16); |
| |
| #if !defined(CONFIG_64BIT) |
| /* check for overflow on a 32bit kernel (every ~4 seconds). */ |
| if (unlikely(next_tick < now)) |
| this_cpu_inc(cr16_high_32_bits); |
| #endif |
| |
| /* Skip one clocktick on purpose if we missed next_tick. |
| * The new CR16 must be "later" than current CR16 otherwise |
| * itimer would not fire until CR16 wrapped - e.g 4 seconds |
| * later on a 1Ghz processor. We'll account for the missed |
| * tick on the next timer interrupt. |
| * |
| * "next_tick - now" will always give the difference regardless |
| * if one or the other wrapped. If "now" is "bigger" we'll end up |
| * with a very large unsigned number. |
| */ |
| now2 = mfctl(16); |
| if (next_tick - now2 > cpt) |
| mtctl(next_tick+cpt, 16); |
| |
| #if 1 |
| /* |
| * GGG: DEBUG code for how many cycles programming CR16 used. |
| */ |
| if (unlikely(now2 - now > 0x3000)) /* 12K cycles */ |
| printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!" |
| " cyc %lX rem %lX " |
| " next/now %lX/%lX\n", |
| cpu, now2 - now, cycles_elapsed, cycles_remainder, |
| next_tick, now ); |
| #endif |
| |
| /* Can we differentiate between "early CR16" (aka Scenario 1) and |
| * "long delay" (aka Scenario 3)? I don't think so. |
| * |
| * Timer_interrupt will be delivered at least a few hundred cycles |
| * after the IT fires. But it's arbitrary how much time passes |
| * before we call it "late". I've picked one second. |
| * |
| * It's important NO printk's are between reading CR16 and |
| * setting up the next value. May introduce huge variance. |
| */ |
| if (unlikely(ticks_elapsed > HZ)) { |
| /* Scenario 3: very long delay? bad in any case */ |
| printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!" |
| " cycles %lX rem %lX " |
| " next/now %lX/%lX\n", |
| cpu, |
| cycles_elapsed, cycles_remainder, |
| next_tick, now ); |
| } |
| |
| /* Done mucking with unreliable delivery of interrupts. |
| * Go do system house keeping. |
| */ |
| |
| if (!--cpuinfo->prof_counter) { |
| cpuinfo->prof_counter = cpuinfo->prof_multiplier; |
| update_process_times(user_mode(get_irq_regs())); |
| } |
| |
| if (cpu == 0) |
| xtime_update(ticks_elapsed); |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| unsigned long profile_pc(struct pt_regs *regs) |
| { |
| unsigned long pc = instruction_pointer(regs); |
| |
| if (regs->gr[0] & PSW_N) |
| pc -= 4; |
| |
| #ifdef CONFIG_SMP |
| if (in_lock_functions(pc)) |
| pc = regs->gr[2]; |
| #endif |
| |
| return pc; |
| } |
| EXPORT_SYMBOL(profile_pc); |
| |
| |
| /* clock source code */ |
| |
| static cycle_t read_cr16(struct clocksource *cs) |
| { |
| return get_cycles(); |
| } |
| |
| static struct clocksource clocksource_cr16 = { |
| .name = "cr16", |
| .rating = 300, |
| .read = read_cr16, |
| .mask = CLOCKSOURCE_MASK(BITS_PER_LONG), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| int update_cr16_clocksource(void) |
| { |
| /* since the cr16 cycle counters are not synchronized across CPUs, |
| we'll check if we should switch to a safe clocksource: */ |
| if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) { |
| clocksource_change_rating(&clocksource_cr16, 0); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| void __init start_cpu_itimer(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| unsigned long next_tick = mfctl(16) + clocktick; |
| |
| #if defined(CONFIG_HAVE_UNSTABLE_SCHED_CLOCK) && defined(CONFIG_64BIT) |
| /* With multiple 64bit CPUs online, the cr16's are not syncronized. */ |
| if (cpu != 0) |
| clear_sched_clock_stable(); |
| #endif |
| |
| mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */ |
| |
| per_cpu(cpu_data, cpu).it_value = next_tick; |
| } |
| |
| static int __init rtc_init(void) |
| { |
| struct platform_device *pdev; |
| |
| pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0); |
| return PTR_ERR_OR_ZERO(pdev); |
| } |
| device_initcall(rtc_init); |
| |
| void read_persistent_clock(struct timespec *ts) |
| { |
| static struct pdc_tod tod_data; |
| if (pdc_tod_read(&tod_data) == 0) { |
| ts->tv_sec = tod_data.tod_sec; |
| ts->tv_nsec = tod_data.tod_usec * 1000; |
| } else { |
| printk(KERN_ERR "Error reading tod clock\n"); |
| ts->tv_sec = 0; |
| ts->tv_nsec = 0; |
| } |
| } |
| |
| |
| /* |
| * sched_clock() framework |
| */ |
| |
| static u32 cyc2ns_mul __read_mostly; |
| static u32 cyc2ns_shift __read_mostly; |
| |
| u64 sched_clock(void) |
| { |
| u64 now; |
| |
| /* Get current cycle counter (Control Register 16). */ |
| #ifdef CONFIG_64BIT |
| now = mfctl(16); |
| #else |
| now = mfctl(16) + (((u64) this_cpu_read(cr16_high_32_bits)) << 32); |
| #endif |
| |
| /* return the value in ns (cycles_2_ns) */ |
| return mul_u64_u32_shr(now, cyc2ns_mul, cyc2ns_shift); |
| } |
| |
| |
| /* |
| * timer interrupt and sched_clock() initialization |
| */ |
| |
| void __init time_init(void) |
| { |
| unsigned long current_cr16_khz; |
| |
| current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */ |
| clocktick = (100 * PAGE0->mem_10msec) / HZ; |
| |
| /* calculate mult/shift values for cr16 */ |
| clocks_calc_mult_shift(&cyc2ns_mul, &cyc2ns_shift, current_cr16_khz, |
| NSEC_PER_MSEC, 0); |
| |
| #if defined(CONFIG_HAVE_UNSTABLE_SCHED_CLOCK) && defined(CONFIG_64BIT) |
| /* At bootup only one 64bit CPU is online and cr16 is "stable" */ |
| set_sched_clock_stable(); |
| #endif |
| |
| start_cpu_itimer(); /* get CPU 0 started */ |
| |
| /* register at clocksource framework */ |
| clocksource_register_khz(&clocksource_cr16, current_cr16_khz); |
| } |