| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * MMU support |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * |
| * Authors: |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Avi Kivity <avi@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| /* |
| * We need the mmu code to access both 32-bit and 64-bit guest ptes, |
| * so the code in this file is compiled twice, once per pte size. |
| */ |
| |
| #if PTTYPE == 64 |
| #define pt_element_t u64 |
| #define guest_walker guest_walker64 |
| #define FNAME(name) paging##64_##name |
| #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK |
| #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK |
| #define PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level) |
| #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK |
| #elif PTTYPE == 32 |
| #define pt_element_t u32 |
| #define guest_walker guest_walker32 |
| #define FNAME(name) paging##32_##name |
| #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK |
| #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK |
| #define PT_INDEX(addr, level) PT32_INDEX(addr, level) |
| #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level) |
| #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK |
| #else |
| #error Invalid PTTYPE value |
| #endif |
| |
| /* |
| * The guest_walker structure emulates the behavior of the hardware page |
| * table walker. |
| */ |
| struct guest_walker { |
| int level; |
| pt_element_t *table; |
| pt_element_t inherited_ar; |
| }; |
| |
| static void FNAME(init_walker)(struct guest_walker *walker, |
| struct kvm_vcpu *vcpu) |
| { |
| hpa_t hpa; |
| struct kvm_memory_slot *slot; |
| |
| walker->level = vcpu->mmu.root_level; |
| slot = gfn_to_memslot(vcpu->kvm, |
| (vcpu->cr3 & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT); |
| hpa = safe_gpa_to_hpa(vcpu, vcpu->cr3 & PT64_BASE_ADDR_MASK); |
| walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0); |
| |
| ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) || |
| (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0); |
| |
| walker->table = (pt_element_t *)( (unsigned long)walker->table | |
| (unsigned long)(vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) ); |
| walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK; |
| } |
| |
| static void FNAME(release_walker)(struct guest_walker *walker) |
| { |
| kunmap_atomic(walker->table, KM_USER0); |
| } |
| |
| static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte, |
| u64 *shadow_pte, u64 access_bits) |
| { |
| ASSERT(*shadow_pte == 0); |
| access_bits &= guest_pte; |
| *shadow_pte = (guest_pte & PT_PTE_COPY_MASK); |
| set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK, |
| guest_pte & PT_DIRTY_MASK, access_bits); |
| } |
| |
| static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde, |
| u64 *shadow_pte, u64 access_bits, |
| int index) |
| { |
| gpa_t gaddr; |
| |
| ASSERT(*shadow_pte == 0); |
| access_bits &= guest_pde; |
| gaddr = (guest_pde & PT_DIR_BASE_ADDR_MASK) + PAGE_SIZE * index; |
| if (PTTYPE == 32 && is_cpuid_PSE36()) |
| gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) << |
| (32 - PT32_DIR_PSE36_SHIFT); |
| *shadow_pte = guest_pde & PT_PTE_COPY_MASK; |
| set_pte_common(vcpu, shadow_pte, gaddr, |
| guest_pde & PT_DIRTY_MASK, access_bits); |
| } |
| |
| /* |
| * Fetch a guest pte from a specific level in the paging hierarchy. |
| */ |
| static pt_element_t *FNAME(fetch_guest)(struct kvm_vcpu *vcpu, |
| struct guest_walker *walker, |
| int level, |
| gva_t addr) |
| { |
| |
| ASSERT(level > 0 && level <= walker->level); |
| |
| for (;;) { |
| int index = PT_INDEX(addr, walker->level); |
| hpa_t paddr; |
| |
| ASSERT(((unsigned long)walker->table & PAGE_MASK) == |
| ((unsigned long)&walker->table[index] & PAGE_MASK)); |
| if (level == walker->level || |
| !is_present_pte(walker->table[index]) || |
| (walker->level == PT_DIRECTORY_LEVEL && |
| (walker->table[index] & PT_PAGE_SIZE_MASK) && |
| (PTTYPE == 64 || is_pse(vcpu)))) |
| return &walker->table[index]; |
| if (walker->level != 3 || is_long_mode(vcpu)) |
| walker->inherited_ar &= walker->table[index]; |
| paddr = safe_gpa_to_hpa(vcpu, walker->table[index] & PT_BASE_ADDR_MASK); |
| kunmap_atomic(walker->table, KM_USER0); |
| walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT), |
| KM_USER0); |
| --walker->level; |
| } |
| } |
| |
| /* |
| * Fetch a shadow pte for a specific level in the paging hierarchy. |
| */ |
| static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, |
| struct guest_walker *walker) |
| { |
| hpa_t shadow_addr; |
| int level; |
| u64 *prev_shadow_ent = NULL; |
| |
| shadow_addr = vcpu->mmu.root_hpa; |
| level = vcpu->mmu.shadow_root_level; |
| |
| for (; ; level--) { |
| u32 index = SHADOW_PT_INDEX(addr, level); |
| u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index; |
| pt_element_t *guest_ent; |
| u64 shadow_pte; |
| |
| if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) { |
| if (level == PT_PAGE_TABLE_LEVEL) |
| return shadow_ent; |
| shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK; |
| prev_shadow_ent = shadow_ent; |
| continue; |
| } |
| |
| if (PTTYPE == 32 && level > PT32_ROOT_LEVEL) { |
| ASSERT(level == PT32E_ROOT_LEVEL); |
| guest_ent = FNAME(fetch_guest)(vcpu, walker, |
| PT32_ROOT_LEVEL, addr); |
| } else |
| guest_ent = FNAME(fetch_guest)(vcpu, walker, |
| level, addr); |
| |
| if (!is_present_pte(*guest_ent)) |
| return NULL; |
| |
| /* Don't set accessed bit on PAE PDPTRs */ |
| if (vcpu->mmu.root_level != 3 || walker->level != 3) |
| *guest_ent |= PT_ACCESSED_MASK; |
| |
| if (level == PT_PAGE_TABLE_LEVEL) { |
| |
| if (walker->level == PT_DIRECTORY_LEVEL) { |
| if (prev_shadow_ent) |
| *prev_shadow_ent |= PT_SHADOW_PS_MARK; |
| FNAME(set_pde)(vcpu, *guest_ent, shadow_ent, |
| walker->inherited_ar, |
| PT_INDEX(addr, PT_PAGE_TABLE_LEVEL)); |
| } else { |
| ASSERT(walker->level == PT_PAGE_TABLE_LEVEL); |
| FNAME(set_pte)(vcpu, *guest_ent, shadow_ent, walker->inherited_ar); |
| } |
| return shadow_ent; |
| } |
| |
| shadow_addr = kvm_mmu_alloc_page(vcpu, shadow_ent); |
| if (!VALID_PAGE(shadow_addr)) |
| return ERR_PTR(-ENOMEM); |
| shadow_pte = shadow_addr | PT_PRESENT_MASK; |
| if (vcpu->mmu.root_level > 3 || level != 3) |
| shadow_pte |= PT_ACCESSED_MASK |
| | PT_WRITABLE_MASK | PT_USER_MASK; |
| *shadow_ent = shadow_pte; |
| prev_shadow_ent = shadow_ent; |
| } |
| } |
| |
| /* |
| * The guest faulted for write. We need to |
| * |
| * - check write permissions |
| * - update the guest pte dirty bit |
| * - update our own dirty page tracking structures |
| */ |
| static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu, |
| u64 *shadow_ent, |
| struct guest_walker *walker, |
| gva_t addr, |
| int user) |
| { |
| pt_element_t *guest_ent; |
| int writable_shadow; |
| gfn_t gfn; |
| |
| if (is_writeble_pte(*shadow_ent)) |
| return 0; |
| |
| writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK; |
| if (user) { |
| /* |
| * User mode access. Fail if it's a kernel page or a read-only |
| * page. |
| */ |
| if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow) |
| return 0; |
| ASSERT(*shadow_ent & PT_USER_MASK); |
| } else |
| /* |
| * Kernel mode access. Fail if it's a read-only page and |
| * supervisor write protection is enabled. |
| */ |
| if (!writable_shadow) { |
| if (is_write_protection(vcpu)) |
| return 0; |
| *shadow_ent &= ~PT_USER_MASK; |
| } |
| |
| guest_ent = FNAME(fetch_guest)(vcpu, walker, PT_PAGE_TABLE_LEVEL, addr); |
| |
| if (!is_present_pte(*guest_ent)) { |
| *shadow_ent = 0; |
| return 0; |
| } |
| |
| gfn = (*guest_ent & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; |
| mark_page_dirty(vcpu->kvm, gfn); |
| *shadow_ent |= PT_WRITABLE_MASK; |
| *guest_ent |= PT_DIRTY_MASK; |
| |
| return 1; |
| } |
| |
| /* |
| * Page fault handler. There are several causes for a page fault: |
| * - there is no shadow pte for the guest pte |
| * - write access through a shadow pte marked read only so that we can set |
| * the dirty bit |
| * - write access to a shadow pte marked read only so we can update the page |
| * dirty bitmap, when userspace requests it |
| * - mmio access; in this case we will never install a present shadow pte |
| * - normal guest page fault due to the guest pte marked not present, not |
| * writable, or not executable |
| * |
| * Returns: 1 if we need to emulate the instruction, 0 otherwise |
| */ |
| static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, |
| u32 error_code) |
| { |
| int write_fault = error_code & PFERR_WRITE_MASK; |
| int pte_present = error_code & PFERR_PRESENT_MASK; |
| int user_fault = error_code & PFERR_USER_MASK; |
| struct guest_walker walker; |
| u64 *shadow_pte; |
| int fixed; |
| |
| /* |
| * Look up the shadow pte for the faulting address. |
| */ |
| for (;;) { |
| FNAME(init_walker)(&walker, vcpu); |
| shadow_pte = FNAME(fetch)(vcpu, addr, &walker); |
| if (IS_ERR(shadow_pte)) { /* must be -ENOMEM */ |
| nonpaging_flush(vcpu); |
| FNAME(release_walker)(&walker); |
| continue; |
| } |
| break; |
| } |
| |
| /* |
| * The page is not mapped by the guest. Let the guest handle it. |
| */ |
| if (!shadow_pte) { |
| inject_page_fault(vcpu, addr, error_code); |
| FNAME(release_walker)(&walker); |
| return 0; |
| } |
| |
| /* |
| * Update the shadow pte. |
| */ |
| if (write_fault) |
| fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr, |
| user_fault); |
| else |
| fixed = fix_read_pf(shadow_pte); |
| |
| FNAME(release_walker)(&walker); |
| |
| /* |
| * mmio: emulate if accessible, otherwise its a guest fault. |
| */ |
| if (is_io_pte(*shadow_pte)) { |
| if (may_access(*shadow_pte, write_fault, user_fault)) |
| return 1; |
| pgprintk("%s: io work, no access\n", __FUNCTION__); |
| inject_page_fault(vcpu, addr, |
| error_code | PFERR_PRESENT_MASK); |
| return 0; |
| } |
| |
| /* |
| * pte not present, guest page fault. |
| */ |
| if (pte_present && !fixed) { |
| inject_page_fault(vcpu, addr, error_code); |
| return 0; |
| } |
| |
| ++kvm_stat.pf_fixed; |
| |
| return 0; |
| } |
| |
| static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr) |
| { |
| struct guest_walker walker; |
| pt_element_t guest_pte; |
| gpa_t gpa; |
| |
| FNAME(init_walker)(&walker, vcpu); |
| guest_pte = *FNAME(fetch_guest)(vcpu, &walker, PT_PAGE_TABLE_LEVEL, |
| vaddr); |
| FNAME(release_walker)(&walker); |
| |
| if (!is_present_pte(guest_pte)) |
| return UNMAPPED_GVA; |
| |
| if (walker.level == PT_DIRECTORY_LEVEL) { |
| ASSERT((guest_pte & PT_PAGE_SIZE_MASK)); |
| ASSERT(PTTYPE == 64 || is_pse(vcpu)); |
| |
| gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr & |
| (PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK)); |
| |
| if (PTTYPE == 32 && is_cpuid_PSE36()) |
| gpa |= (guest_pte & PT32_DIR_PSE36_MASK) << |
| (32 - PT32_DIR_PSE36_SHIFT); |
| } else { |
| gpa = (guest_pte & PT_BASE_ADDR_MASK); |
| gpa |= (vaddr & ~PAGE_MASK); |
| } |
| |
| return gpa; |
| } |
| |
| #undef pt_element_t |
| #undef guest_walker |
| #undef FNAME |
| #undef PT_BASE_ADDR_MASK |
| #undef PT_INDEX |
| #undef SHADOW_PT_INDEX |
| #undef PT_LEVEL_MASK |
| #undef PT_PTE_COPY_MASK |
| #undef PT_NON_PTE_COPY_MASK |
| #undef PT_DIR_BASE_ADDR_MASK |