| /* |
| * arch/arm64/kernel/topology.c |
| * |
| * Copyright (C) 2011,2013,2014 Linaro Limited. |
| * |
| * Based on the arm32 version written by Vincent Guittot in turn based on |
| * arch/sh/kernel/topology.c |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| |
| #include <linux/arch_topology.h> |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/init.h> |
| #include <linux/percpu.h> |
| #include <linux/node.h> |
| #include <linux/nodemask.h> |
| #include <linux/of.h> |
| #include <linux/sched.h> |
| #include <linux/sched/topology.h> |
| #include <linux/sched_energy.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| |
| #include <asm/cpu.h> |
| #include <asm/cputype.h> |
| #include <asm/topology.h> |
| |
| static int __init get_cpu_for_node(struct device_node *node) |
| { |
| struct device_node *cpu_node; |
| int cpu; |
| |
| cpu_node = of_parse_phandle(node, "cpu", 0); |
| if (!cpu_node) |
| return -1; |
| |
| for_each_possible_cpu(cpu) { |
| if (of_get_cpu_node(cpu, NULL) == cpu_node) { |
| topology_parse_cpu_capacity(cpu_node, cpu); |
| of_node_put(cpu_node); |
| return cpu; |
| } |
| } |
| |
| pr_crit("Unable to find CPU node for %pOF\n", cpu_node); |
| |
| of_node_put(cpu_node); |
| return -1; |
| } |
| |
| static int __init parse_core(struct device_node *core, int cluster_id, |
| int core_id) |
| { |
| char name[10]; |
| bool leaf = true; |
| int i = 0; |
| int cpu; |
| struct device_node *t; |
| |
| do { |
| snprintf(name, sizeof(name), "thread%d", i); |
| t = of_get_child_by_name(core, name); |
| if (t) { |
| leaf = false; |
| cpu = get_cpu_for_node(t); |
| if (cpu >= 0) { |
| cpu_topology[cpu].cluster_id = cluster_id; |
| cpu_topology[cpu].core_id = core_id; |
| cpu_topology[cpu].thread_id = i; |
| } else { |
| pr_err("%pOF: Can't get CPU for thread\n", |
| t); |
| of_node_put(t); |
| return -EINVAL; |
| } |
| of_node_put(t); |
| } |
| i++; |
| } while (t); |
| |
| cpu = get_cpu_for_node(core); |
| if (cpu >= 0) { |
| if (!leaf) { |
| pr_err("%pOF: Core has both threads and CPU\n", |
| core); |
| return -EINVAL; |
| } |
| |
| cpu_topology[cpu].cluster_id = cluster_id; |
| cpu_topology[cpu].core_id = core_id; |
| } else if (leaf) { |
| pr_err("%pOF: Can't get CPU for leaf core\n", core); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int __init parse_cluster(struct device_node *cluster, int depth) |
| { |
| char name[10]; |
| bool leaf = true; |
| bool has_cores = false; |
| struct device_node *c; |
| static int cluster_id __initdata; |
| int core_id = 0; |
| int i, ret; |
| |
| /* |
| * First check for child clusters; we currently ignore any |
| * information about the nesting of clusters and present the |
| * scheduler with a flat list of them. |
| */ |
| i = 0; |
| do { |
| snprintf(name, sizeof(name), "cluster%d", i); |
| c = of_get_child_by_name(cluster, name); |
| if (c) { |
| leaf = false; |
| ret = parse_cluster(c, depth + 1); |
| of_node_put(c); |
| if (ret != 0) |
| return ret; |
| } |
| i++; |
| } while (c); |
| |
| /* Now check for cores */ |
| i = 0; |
| do { |
| snprintf(name, sizeof(name), "core%d", i); |
| c = of_get_child_by_name(cluster, name); |
| if (c) { |
| has_cores = true; |
| |
| if (depth == 0) { |
| pr_err("%pOF: cpu-map children should be clusters\n", |
| c); |
| of_node_put(c); |
| return -EINVAL; |
| } |
| |
| if (leaf) { |
| ret = parse_core(c, cluster_id, core_id++); |
| } else { |
| pr_err("%pOF: Non-leaf cluster with core %s\n", |
| cluster, name); |
| ret = -EINVAL; |
| } |
| |
| of_node_put(c); |
| if (ret != 0) |
| return ret; |
| } |
| i++; |
| } while (c); |
| |
| if (leaf && !has_cores) |
| pr_warn("%pOF: empty cluster\n", cluster); |
| |
| if (leaf) |
| cluster_id++; |
| |
| return 0; |
| } |
| |
| static int __init parse_dt_topology(void) |
| { |
| struct device_node *cn, *map; |
| int ret = 0; |
| int cpu; |
| |
| cn = of_find_node_by_path("/cpus"); |
| if (!cn) { |
| pr_err("No CPU information found in DT\n"); |
| return 0; |
| } |
| |
| /* |
| * When topology is provided cpu-map is essentially a root |
| * cluster with restricted subnodes. |
| */ |
| map = of_get_child_by_name(cn, "cpu-map"); |
| if (!map) |
| goto out; |
| |
| init_sched_energy_costs(); |
| |
| ret = parse_cluster(map, 0); |
| if (ret != 0) |
| goto out_map; |
| |
| topology_normalize_cpu_scale(); |
| |
| /* |
| * Check that all cores are in the topology; the SMP code will |
| * only mark cores described in the DT as possible. |
| */ |
| for_each_possible_cpu(cpu) |
| if (cpu_topology[cpu].cluster_id == -1) |
| ret = -EINVAL; |
| |
| out_map: |
| of_node_put(map); |
| out: |
| of_node_put(cn); |
| return ret; |
| } |
| |
| /* |
| * cpu topology table |
| */ |
| struct cpu_topology cpu_topology[NR_CPUS]; |
| EXPORT_SYMBOL_GPL(cpu_topology); |
| |
| const struct cpumask *cpu_coregroup_mask(int cpu) |
| { |
| return &cpu_topology[cpu].core_sibling; |
| } |
| |
| static void update_siblings_masks(unsigned int cpuid) |
| { |
| struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; |
| int cpu; |
| |
| /* update core and thread sibling masks */ |
| for_each_possible_cpu(cpu) { |
| cpu_topo = &cpu_topology[cpu]; |
| |
| if (cpuid_topo->cluster_id != cpu_topo->cluster_id) |
| continue; |
| |
| cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); |
| if (cpu != cpuid) |
| cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); |
| |
| if (cpuid_topo->core_id != cpu_topo->core_id) |
| continue; |
| |
| cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); |
| if (cpu != cpuid) |
| cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); |
| } |
| } |
| |
| void store_cpu_topology(unsigned int cpuid) |
| { |
| struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; |
| u64 mpidr; |
| |
| if (cpuid_topo->cluster_id != -1) |
| goto topology_populated; |
| |
| mpidr = read_cpuid_mpidr(); |
| |
| /* Uniprocessor systems can rely on default topology values */ |
| if (mpidr & MPIDR_UP_BITMASK) |
| return; |
| |
| /* Create cpu topology mapping based on MPIDR. */ |
| if (mpidr & MPIDR_MT_BITMASK) { |
| /* Multiprocessor system : Multi-threads per core */ |
| cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) | |
| MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8; |
| } else { |
| /* Multiprocessor system : Single-thread per core */ |
| cpuid_topo->thread_id = -1; |
| cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) | |
| MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 | |
| MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16; |
| } |
| |
| pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n", |
| cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id, |
| cpuid_topo->thread_id, mpidr); |
| |
| topology_populated: |
| update_siblings_masks(cpuid); |
| topology_detect_flags(); |
| } |
| |
| #ifdef CONFIG_SCHED_SMT |
| static int smt_flags(void) |
| { |
| return cpu_smt_flags() | topology_smt_flags(); |
| } |
| #endif |
| |
| #ifdef CONFIG_SCHED_MC |
| static int core_flags(void) |
| { |
| return cpu_core_flags() | topology_core_flags(); |
| } |
| #endif |
| |
| static int cpu_flags(void) |
| { |
| return topology_cpu_flags(); |
| } |
| |
| static inline |
| const struct sched_group_energy * const cpu_core_energy(int cpu) |
| { |
| struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL0]; |
| unsigned long capacity; |
| int max_cap_idx; |
| |
| if (!sge) { |
| pr_warn("Invalid sched_group_energy for CPU%d\n", cpu); |
| return NULL; |
| } |
| |
| max_cap_idx = sge->nr_cap_states - 1; |
| capacity = sge->cap_states[max_cap_idx].cap; |
| |
| printk_deferred("cpu=%d set cpu scale %lu from energy model\n", |
| cpu, capacity); |
| |
| topology_set_cpu_scale(cpu, capacity); |
| |
| return sge; |
| } |
| |
| static inline |
| const struct sched_group_energy * const cpu_cluster_energy(int cpu) |
| { |
| struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL1]; |
| |
| if (!sge) { |
| pr_warn("Invalid sched_group_energy for Cluster%d\n", cpu); |
| return NULL; |
| } |
| |
| return sge; |
| } |
| |
| static inline |
| const struct sched_group_energy * const cpu_system_energy(int cpu) |
| { |
| struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL2]; |
| |
| if (!sge) { |
| pr_warn("Invalid sched_group_energy for System%d\n", cpu); |
| return NULL; |
| } |
| |
| return sge; |
| } |
| |
| static struct sched_domain_topology_level arm64_topology[] = { |
| #ifdef CONFIG_SCHED_SMT |
| { cpu_smt_mask, smt_flags, SD_INIT_NAME(SMT) }, |
| #endif |
| #ifdef CONFIG_SCHED_MC |
| { cpu_coregroup_mask, core_flags, cpu_core_energy, SD_INIT_NAME(MC) }, |
| #endif |
| { cpu_cpu_mask, cpu_flags, cpu_cluster_energy, SD_INIT_NAME(DIE) }, |
| { cpu_cpu_mask, NULL, cpu_system_energy, SD_INIT_NAME(SYS) }, |
| { NULL, } |
| }; |
| |
| static void __init reset_cpu_topology(void) |
| { |
| unsigned int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct cpu_topology *cpu_topo = &cpu_topology[cpu]; |
| |
| cpu_topo->thread_id = -1; |
| cpu_topo->core_id = 0; |
| cpu_topo->cluster_id = -1; |
| |
| cpumask_clear(&cpu_topo->core_sibling); |
| cpumask_set_cpu(cpu, &cpu_topo->core_sibling); |
| cpumask_clear(&cpu_topo->thread_sibling); |
| cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); |
| } |
| } |
| |
| void __init init_cpu_topology(void) |
| { |
| reset_cpu_topology(); |
| |
| /* |
| * Discard anything that was parsed if we hit an error so we |
| * don't use partial information. |
| */ |
| if (of_have_populated_dt() && parse_dt_topology()) |
| reset_cpu_topology(); |
| else |
| set_sched_topology(arm64_topology); |
| } |