| /* |
| * Generic VM initialization for x86-64 NUMA setups. |
| * Copyright 2002,2003 Andi Kleen, SuSE Labs. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/mmzone.h> |
| #include <linux/ctype.h> |
| #include <linux/module.h> |
| #include <linux/nodemask.h> |
| #include <linux/sched.h> |
| |
| #include <asm/e820.h> |
| #include <asm/proto.h> |
| #include <asm/dma.h> |
| #include <asm/numa.h> |
| #include <asm/acpi.h> |
| #include <asm/k8.h> |
| |
| struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; |
| EXPORT_SYMBOL(node_data); |
| |
| struct memnode memnode; |
| |
| s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = { |
| [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE |
| }; |
| |
| int numa_off __initdata; |
| static unsigned long __initdata nodemap_addr; |
| static unsigned long __initdata nodemap_size; |
| |
| DEFINE_PER_CPU(int, node_number) = 0; |
| EXPORT_PER_CPU_SYMBOL(node_number); |
| |
| /* |
| * Map cpu index to node index |
| */ |
| DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); |
| EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); |
| |
| /* |
| * Given a shift value, try to populate memnodemap[] |
| * Returns : |
| * 1 if OK |
| * 0 if memnodmap[] too small (of shift too small) |
| * -1 if node overlap or lost ram (shift too big) |
| */ |
| static int __init populate_memnodemap(const struct bootnode *nodes, |
| int numnodes, int shift, int *nodeids) |
| { |
| unsigned long addr, end; |
| int i, res = -1; |
| |
| memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize); |
| for (i = 0; i < numnodes; i++) { |
| addr = nodes[i].start; |
| end = nodes[i].end; |
| if (addr >= end) |
| continue; |
| if ((end >> shift) >= memnodemapsize) |
| return 0; |
| do { |
| if (memnodemap[addr >> shift] != NUMA_NO_NODE) |
| return -1; |
| |
| if (!nodeids) |
| memnodemap[addr >> shift] = i; |
| else |
| memnodemap[addr >> shift] = nodeids[i]; |
| |
| addr += (1UL << shift); |
| } while (addr < end); |
| res = 1; |
| } |
| return res; |
| } |
| |
| static int __init allocate_cachealigned_memnodemap(void) |
| { |
| unsigned long addr; |
| |
| memnodemap = memnode.embedded_map; |
| if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map)) |
| return 0; |
| |
| addr = 0x8000; |
| nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES); |
| nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT, |
| nodemap_size, L1_CACHE_BYTES); |
| if (nodemap_addr == -1UL) { |
| printk(KERN_ERR |
| "NUMA: Unable to allocate Memory to Node hash map\n"); |
| nodemap_addr = nodemap_size = 0; |
| return -1; |
| } |
| memnodemap = phys_to_virt(nodemap_addr); |
| reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP"); |
| |
| printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n", |
| nodemap_addr, nodemap_addr + nodemap_size); |
| return 0; |
| } |
| |
| /* |
| * The LSB of all start and end addresses in the node map is the value of the |
| * maximum possible shift. |
| */ |
| static int __init extract_lsb_from_nodes(const struct bootnode *nodes, |
| int numnodes) |
| { |
| int i, nodes_used = 0; |
| unsigned long start, end; |
| unsigned long bitfield = 0, memtop = 0; |
| |
| for (i = 0; i < numnodes; i++) { |
| start = nodes[i].start; |
| end = nodes[i].end; |
| if (start >= end) |
| continue; |
| bitfield |= start; |
| nodes_used++; |
| if (end > memtop) |
| memtop = end; |
| } |
| if (nodes_used <= 1) |
| i = 63; |
| else |
| i = find_first_bit(&bitfield, sizeof(unsigned long)*8); |
| memnodemapsize = (memtop >> i)+1; |
| return i; |
| } |
| |
| int __init compute_hash_shift(struct bootnode *nodes, int numnodes, |
| int *nodeids) |
| { |
| int shift; |
| |
| shift = extract_lsb_from_nodes(nodes, numnodes); |
| if (allocate_cachealigned_memnodemap()) |
| return -1; |
| printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", |
| shift); |
| |
| if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) { |
| printk(KERN_INFO "Your memory is not aligned you need to " |
| "rebuild your kernel with a bigger NODEMAPSIZE " |
| "shift=%d\n", shift); |
| return -1; |
| } |
| return shift; |
| } |
| |
| int __meminit __early_pfn_to_nid(unsigned long pfn) |
| { |
| return phys_to_nid(pfn << PAGE_SHIFT); |
| } |
| |
| static void * __init early_node_mem(int nodeid, unsigned long start, |
| unsigned long end, unsigned long size, |
| unsigned long align) |
| { |
| unsigned long mem = find_e820_area(start, end, size, align); |
| void *ptr; |
| |
| if (mem != -1L) |
| return __va(mem); |
| |
| ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); |
| if (ptr == NULL) { |
| printk(KERN_ERR "Cannot find %lu bytes in node %d\n", |
| size, nodeid); |
| return NULL; |
| } |
| return ptr; |
| } |
| |
| /* Initialize bootmem allocator for a node */ |
| void __init |
| setup_node_bootmem(int nodeid, unsigned long start, unsigned long end) |
| { |
| unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size; |
| const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE); |
| unsigned long bootmap_start, nodedata_phys; |
| void *bootmap; |
| int nid; |
| |
| if (!end) |
| return; |
| |
| /* |
| * Don't confuse VM with a node that doesn't have the |
| * minimum amount of memory: |
| */ |
| if (end && (end - start) < NODE_MIN_SIZE) |
| return; |
| |
| start = roundup(start, ZONE_ALIGN); |
| |
| printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid, |
| start, end); |
| |
| start_pfn = start >> PAGE_SHIFT; |
| last_pfn = end >> PAGE_SHIFT; |
| |
| node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size, |
| SMP_CACHE_BYTES); |
| if (node_data[nodeid] == NULL) |
| return; |
| nodedata_phys = __pa(node_data[nodeid]); |
| printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys, |
| nodedata_phys + pgdat_size - 1); |
| |
| memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); |
| NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid]; |
| NODE_DATA(nodeid)->node_start_pfn = start_pfn; |
| NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn; |
| |
| /* |
| * Find a place for the bootmem map |
| * nodedata_phys could be on other nodes by alloc_bootmem, |
| * so need to sure bootmap_start not to be small, otherwise |
| * early_node_mem will get that with find_e820_area instead |
| * of alloc_bootmem, that could clash with reserved range |
| */ |
| bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn); |
| nid = phys_to_nid(nodedata_phys); |
| if (nid == nodeid) |
| bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE); |
| else |
| bootmap_start = roundup(start, PAGE_SIZE); |
| /* |
| * SMP_CACHE_BYTES could be enough, but init_bootmem_node like |
| * to use that to align to PAGE_SIZE |
| */ |
| bootmap = early_node_mem(nodeid, bootmap_start, end, |
| bootmap_pages<<PAGE_SHIFT, PAGE_SIZE); |
| if (bootmap == NULL) { |
| if (nodedata_phys < start || nodedata_phys >= end) { |
| /* |
| * only need to free it if it is from other node |
| * bootmem |
| */ |
| if (nid != nodeid) |
| free_bootmem(nodedata_phys, pgdat_size); |
| } |
| node_data[nodeid] = NULL; |
| return; |
| } |
| bootmap_start = __pa(bootmap); |
| |
| bootmap_size = init_bootmem_node(NODE_DATA(nodeid), |
| bootmap_start >> PAGE_SHIFT, |
| start_pfn, last_pfn); |
| |
| printk(KERN_INFO " bootmap [%016lx - %016lx] pages %lx\n", |
| bootmap_start, bootmap_start + bootmap_size - 1, |
| bootmap_pages); |
| |
| free_bootmem_with_active_regions(nodeid, end); |
| |
| /* |
| * convert early reserve to bootmem reserve earlier |
| * otherwise early_node_mem could use early reserved mem |
| * on previous node |
| */ |
| early_res_to_bootmem(start, end); |
| |
| /* |
| * in some case early_node_mem could use alloc_bootmem |
| * to get range on other node, don't reserve that again |
| */ |
| if (nid != nodeid) |
| printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid); |
| else |
| reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, |
| pgdat_size, BOOTMEM_DEFAULT); |
| nid = phys_to_nid(bootmap_start); |
| if (nid != nodeid) |
| printk(KERN_INFO " bootmap(%d) on node %d\n", nodeid, nid); |
| else |
| reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, |
| bootmap_pages<<PAGE_SHIFT, BOOTMEM_DEFAULT); |
| |
| node_set_online(nodeid); |
| } |
| |
| /* |
| * There are unfortunately some poorly designed mainboards around that |
| * only connect memory to a single CPU. This breaks the 1:1 cpu->node |
| * mapping. To avoid this fill in the mapping for all possible CPUs, |
| * as the number of CPUs is not known yet. We round robin the existing |
| * nodes. |
| */ |
| void __init numa_init_array(void) |
| { |
| int rr, i; |
| |
| rr = first_node(node_online_map); |
| for (i = 0; i < nr_cpu_ids; i++) { |
| if (early_cpu_to_node(i) != NUMA_NO_NODE) |
| continue; |
| numa_set_node(i, rr); |
| rr = next_node(rr, node_online_map); |
| if (rr == MAX_NUMNODES) |
| rr = first_node(node_online_map); |
| } |
| } |
| |
| #ifdef CONFIG_NUMA_EMU |
| /* Numa emulation */ |
| static struct bootnode nodes[MAX_NUMNODES] __initdata; |
| static struct bootnode physnodes[MAX_NUMNODES] __initdata; |
| static char *cmdline __initdata; |
| |
| static int __init setup_physnodes(unsigned long start, unsigned long end, |
| int acpi, int k8) |
| { |
| int nr_nodes = 0; |
| int ret = 0; |
| int i; |
| |
| #ifdef CONFIG_ACPI_NUMA |
| if (acpi) |
| nr_nodes = acpi_get_nodes(physnodes); |
| #endif |
| #ifdef CONFIG_K8_NUMA |
| if (k8) |
| nr_nodes = k8_get_nodes(physnodes); |
| #endif |
| /* |
| * Basic sanity checking on the physical node map: there may be errors |
| * if the SRAT or K8 incorrectly reported the topology or the mem= |
| * kernel parameter is used. |
| */ |
| for (i = 0; i < nr_nodes; i++) { |
| if (physnodes[i].start == physnodes[i].end) |
| continue; |
| if (physnodes[i].start > end) { |
| physnodes[i].end = physnodes[i].start; |
| continue; |
| } |
| if (physnodes[i].end < start) { |
| physnodes[i].start = physnodes[i].end; |
| continue; |
| } |
| if (physnodes[i].start < start) |
| physnodes[i].start = start; |
| if (physnodes[i].end > end) |
| physnodes[i].end = end; |
| } |
| |
| /* |
| * Remove all nodes that have no memory or were truncated because of the |
| * limited address range. |
| */ |
| for (i = 0; i < nr_nodes; i++) { |
| if (physnodes[i].start == physnodes[i].end) |
| continue; |
| physnodes[ret].start = physnodes[i].start; |
| physnodes[ret].end = physnodes[i].end; |
| ret++; |
| } |
| |
| /* |
| * If no physical topology was detected, a single node is faked to cover |
| * the entire address space. |
| */ |
| if (!ret) { |
| physnodes[ret].start = start; |
| physnodes[ret].end = end; |
| ret = 1; |
| } |
| return ret; |
| } |
| |
| /* |
| * Setups up nid to range from addr to addr + size. If the end |
| * boundary is greater than max_addr, then max_addr is used instead. |
| * The return value is 0 if there is additional memory left for |
| * allocation past addr and -1 otherwise. addr is adjusted to be at |
| * the end of the node. |
| */ |
| static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr) |
| { |
| int ret = 0; |
| nodes[nid].start = *addr; |
| *addr += size; |
| if (*addr >= max_addr) { |
| *addr = max_addr; |
| ret = -1; |
| } |
| nodes[nid].end = *addr; |
| node_set(nid, node_possible_map); |
| printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid, |
| nodes[nid].start, nodes[nid].end, |
| (nodes[nid].end - nodes[nid].start) >> 20); |
| return ret; |
| } |
| |
| /* |
| * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr |
| * to max_addr. The return value is the number of nodes allocated. |
| */ |
| static int __init split_nodes_interleave(u64 addr, u64 max_addr, |
| int nr_phys_nodes, int nr_nodes) |
| { |
| nodemask_t physnode_mask = NODE_MASK_NONE; |
| u64 size; |
| int big; |
| int ret = 0; |
| int i; |
| |
| if (nr_nodes <= 0) |
| return -1; |
| if (nr_nodes > MAX_NUMNODES) { |
| pr_info("numa=fake=%d too large, reducing to %d\n", |
| nr_nodes, MAX_NUMNODES); |
| nr_nodes = MAX_NUMNODES; |
| } |
| |
| size = (max_addr - addr - e820_hole_size(addr, max_addr)) / nr_nodes; |
| /* |
| * Calculate the number of big nodes that can be allocated as a result |
| * of consolidating the remainder. |
| */ |
| big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) / |
| FAKE_NODE_MIN_SIZE; |
| |
| size &= FAKE_NODE_MIN_HASH_MASK; |
| if (!size) { |
| pr_err("Not enough memory for each node. " |
| "NUMA emulation disabled.\n"); |
| return -1; |
| } |
| |
| for (i = 0; i < nr_phys_nodes; i++) |
| if (physnodes[i].start != physnodes[i].end) |
| node_set(i, physnode_mask); |
| |
| /* |
| * Continue to fill physical nodes with fake nodes until there is no |
| * memory left on any of them. |
| */ |
| while (nodes_weight(physnode_mask)) { |
| for_each_node_mask(i, physnode_mask) { |
| u64 end = physnodes[i].start + size; |
| u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN); |
| |
| if (ret < big) |
| end += FAKE_NODE_MIN_SIZE; |
| |
| /* |
| * Continue to add memory to this fake node if its |
| * non-reserved memory is less than the per-node size. |
| */ |
| while (end - physnodes[i].start - |
| e820_hole_size(physnodes[i].start, end) < size) { |
| end += FAKE_NODE_MIN_SIZE; |
| if (end > physnodes[i].end) { |
| end = physnodes[i].end; |
| break; |
| } |
| } |
| |
| /* |
| * If there won't be at least FAKE_NODE_MIN_SIZE of |
| * non-reserved memory in ZONE_DMA32 for the next node, |
| * this one must extend to the boundary. |
| */ |
| if (end < dma32_end && dma32_end - end - |
| e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) |
| end = dma32_end; |
| |
| /* |
| * If there won't be enough non-reserved memory for the |
| * next node, this one must extend to the end of the |
| * physical node. |
| */ |
| if (physnodes[i].end - end - |
| e820_hole_size(end, physnodes[i].end) < size) |
| end = physnodes[i].end; |
| |
| /* |
| * Avoid allocating more nodes than requested, which can |
| * happen as a result of rounding down each node's size |
| * to FAKE_NODE_MIN_SIZE. |
| */ |
| if (nodes_weight(physnode_mask) + ret >= nr_nodes) |
| end = physnodes[i].end; |
| |
| if (setup_node_range(ret++, &physnodes[i].start, |
| end - physnodes[i].start, |
| physnodes[i].end) < 0) |
| node_clear(i, physnode_mask); |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * Returns the end address of a node so that there is at least `size' amount of |
| * non-reserved memory or `max_addr' is reached. |
| */ |
| static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size) |
| { |
| u64 end = start + size; |
| |
| while (end - start - e820_hole_size(start, end) < size) { |
| end += FAKE_NODE_MIN_SIZE; |
| if (end > max_addr) { |
| end = max_addr; |
| break; |
| } |
| } |
| return end; |
| } |
| |
| /* |
| * Sets up fake nodes of `size' interleaved over physical nodes ranging from |
| * `addr' to `max_addr'. The return value is the number of nodes allocated. |
| */ |
| static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size) |
| { |
| nodemask_t physnode_mask = NODE_MASK_NONE; |
| u64 min_size; |
| int ret = 0; |
| int i; |
| |
| if (!size) |
| return -1; |
| /* |
| * The limit on emulated nodes is MAX_NUMNODES, so the size per node is |
| * increased accordingly if the requested size is too small. This |
| * creates a uniform distribution of node sizes across the entire |
| * machine (but not necessarily over physical nodes). |
| */ |
| min_size = (max_addr - addr - e820_hole_size(addr, max_addr)) / |
| MAX_NUMNODES; |
| min_size = max(min_size, FAKE_NODE_MIN_SIZE); |
| if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size) |
| min_size = (min_size + FAKE_NODE_MIN_SIZE) & |
| FAKE_NODE_MIN_HASH_MASK; |
| if (size < min_size) { |
| pr_err("Fake node size %LuMB too small, increasing to %LuMB\n", |
| size >> 20, min_size >> 20); |
| size = min_size; |
| } |
| size &= FAKE_NODE_MIN_HASH_MASK; |
| |
| for (i = 0; i < MAX_NUMNODES; i++) |
| if (physnodes[i].start != physnodes[i].end) |
| node_set(i, physnode_mask); |
| /* |
| * Fill physical nodes with fake nodes of size until there is no memory |
| * left on any of them. |
| */ |
| while (nodes_weight(physnode_mask)) { |
| for_each_node_mask(i, physnode_mask) { |
| u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT; |
| u64 end; |
| |
| end = find_end_of_node(physnodes[i].start, |
| physnodes[i].end, size); |
| /* |
| * If there won't be at least FAKE_NODE_MIN_SIZE of |
| * non-reserved memory in ZONE_DMA32 for the next node, |
| * this one must extend to the boundary. |
| */ |
| if (end < dma32_end && dma32_end - end - |
| e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) |
| end = dma32_end; |
| |
| /* |
| * If there won't be enough non-reserved memory for the |
| * next node, this one must extend to the end of the |
| * physical node. |
| */ |
| if (physnodes[i].end - end - |
| e820_hole_size(end, physnodes[i].end) < size) |
| end = physnodes[i].end; |
| |
| /* |
| * Setup the fake node that will be allocated as bootmem |
| * later. If setup_node_range() returns non-zero, there |
| * is no more memory available on this physical node. |
| */ |
| if (setup_node_range(ret++, &physnodes[i].start, |
| end - physnodes[i].start, |
| physnodes[i].end) < 0) |
| node_clear(i, physnode_mask); |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * Sets up the system RAM area from start_pfn to last_pfn according to the |
| * numa=fake command-line option. |
| */ |
| static int __init numa_emulation(unsigned long start_pfn, |
| unsigned long last_pfn, int acpi, int k8) |
| { |
| u64 addr = start_pfn << PAGE_SHIFT; |
| u64 max_addr = last_pfn << PAGE_SHIFT; |
| int num_phys_nodes; |
| int num_nodes; |
| int i; |
| |
| num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8); |
| /* |
| * If the numa=fake command-line contains a 'M' or 'G', it represents |
| * the fixed node size. Otherwise, if it is just a single number N, |
| * split the system RAM into N fake nodes. |
| */ |
| if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) { |
| u64 size; |
| |
| size = memparse(cmdline, &cmdline); |
| num_nodes = split_nodes_size_interleave(addr, max_addr, size); |
| } else { |
| unsigned long n; |
| |
| n = simple_strtoul(cmdline, NULL, 0); |
| num_nodes = split_nodes_interleave(addr, max_addr, num_phys_nodes, n); |
| } |
| |
| if (num_nodes < 0) |
| return num_nodes; |
| memnode_shift = compute_hash_shift(nodes, num_nodes, NULL); |
| if (memnode_shift < 0) { |
| memnode_shift = 0; |
| printk(KERN_ERR "No NUMA hash function found. NUMA emulation " |
| "disabled.\n"); |
| return -1; |
| } |
| |
| /* |
| * We need to vacate all active ranges that may have been registered for |
| * the e820 memory map. |
| */ |
| remove_all_active_ranges(); |
| for_each_node_mask(i, node_possible_map) { |
| e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT, |
| nodes[i].end >> PAGE_SHIFT); |
| setup_node_bootmem(i, nodes[i].start, nodes[i].end); |
| } |
| acpi_fake_nodes(nodes, num_nodes); |
| numa_init_array(); |
| return 0; |
| } |
| #endif /* CONFIG_NUMA_EMU */ |
| |
| void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn, |
| int acpi, int k8) |
| { |
| int i; |
| |
| nodes_clear(node_possible_map); |
| nodes_clear(node_online_map); |
| |
| #ifdef CONFIG_NUMA_EMU |
| if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, k8)) |
| return; |
| nodes_clear(node_possible_map); |
| nodes_clear(node_online_map); |
| #endif |
| |
| #ifdef CONFIG_ACPI_NUMA |
| if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT, |
| last_pfn << PAGE_SHIFT)) |
| return; |
| nodes_clear(node_possible_map); |
| nodes_clear(node_online_map); |
| #endif |
| |
| #ifdef CONFIG_K8_NUMA |
| if (!numa_off && k8 && !k8_scan_nodes()) |
| return; |
| nodes_clear(node_possible_map); |
| nodes_clear(node_online_map); |
| #endif |
| printk(KERN_INFO "%s\n", |
| numa_off ? "NUMA turned off" : "No NUMA configuration found"); |
| |
| printk(KERN_INFO "Faking a node at %016lx-%016lx\n", |
| start_pfn << PAGE_SHIFT, |
| last_pfn << PAGE_SHIFT); |
| /* setup dummy node covering all memory */ |
| memnode_shift = 63; |
| memnodemap = memnode.embedded_map; |
| memnodemap[0] = 0; |
| node_set_online(0); |
| node_set(0, node_possible_map); |
| for (i = 0; i < nr_cpu_ids; i++) |
| numa_set_node(i, 0); |
| e820_register_active_regions(0, start_pfn, last_pfn); |
| setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT); |
| } |
| |
| unsigned long __init numa_free_all_bootmem(void) |
| { |
| unsigned long pages = 0; |
| int i; |
| |
| for_each_online_node(i) |
| pages += free_all_bootmem_node(NODE_DATA(i)); |
| |
| return pages; |
| } |
| |
| static __init int numa_setup(char *opt) |
| { |
| if (!opt) |
| return -EINVAL; |
| if (!strncmp(opt, "off", 3)) |
| numa_off = 1; |
| #ifdef CONFIG_NUMA_EMU |
| if (!strncmp(opt, "fake=", 5)) |
| cmdline = opt + 5; |
| #endif |
| #ifdef CONFIG_ACPI_NUMA |
| if (!strncmp(opt, "noacpi", 6)) |
| acpi_numa = -1; |
| #endif |
| return 0; |
| } |
| early_param("numa", numa_setup); |
| |
| #ifdef CONFIG_NUMA |
| |
| static __init int find_near_online_node(int node) |
| { |
| int n, val; |
| int min_val = INT_MAX; |
| int best_node = -1; |
| |
| for_each_online_node(n) { |
| val = node_distance(node, n); |
| |
| if (val < min_val) { |
| min_val = val; |
| best_node = n; |
| } |
| } |
| |
| return best_node; |
| } |
| |
| /* |
| * Setup early cpu_to_node. |
| * |
| * Populate cpu_to_node[] only if x86_cpu_to_apicid[], |
| * and apicid_to_node[] tables have valid entries for a CPU. |
| * This means we skip cpu_to_node[] initialisation for NUMA |
| * emulation and faking node case (when running a kernel compiled |
| * for NUMA on a non NUMA box), which is OK as cpu_to_node[] |
| * is already initialized in a round robin manner at numa_init_array, |
| * prior to this call, and this initialization is good enough |
| * for the fake NUMA cases. |
| * |
| * Called before the per_cpu areas are setup. |
| */ |
| void __init init_cpu_to_node(void) |
| { |
| int cpu; |
| u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); |
| |
| BUG_ON(cpu_to_apicid == NULL); |
| |
| for_each_possible_cpu(cpu) { |
| int node; |
| u16 apicid = cpu_to_apicid[cpu]; |
| |
| if (apicid == BAD_APICID) |
| continue; |
| node = apicid_to_node[apicid]; |
| if (node == NUMA_NO_NODE) |
| continue; |
| if (!node_online(node)) |
| node = find_near_online_node(node); |
| numa_set_node(cpu, node); |
| } |
| } |
| #endif |
| |
| |
| void __cpuinit numa_set_node(int cpu, int node) |
| { |
| int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); |
| |
| /* early setting, no percpu area yet */ |
| if (cpu_to_node_map) { |
| cpu_to_node_map[cpu] = node; |
| return; |
| } |
| |
| #ifdef CONFIG_DEBUG_PER_CPU_MAPS |
| if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { |
| printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); |
| dump_stack(); |
| return; |
| } |
| #endif |
| per_cpu(x86_cpu_to_node_map, cpu) = node; |
| |
| if (node != NUMA_NO_NODE) |
| per_cpu(node_number, cpu) = node; |
| } |
| |
| void __cpuinit numa_clear_node(int cpu) |
| { |
| numa_set_node(cpu, NUMA_NO_NODE); |
| } |
| |
| #ifndef CONFIG_DEBUG_PER_CPU_MAPS |
| |
| void __cpuinit numa_add_cpu(int cpu) |
| { |
| cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); |
| } |
| |
| void __cpuinit numa_remove_cpu(int cpu) |
| { |
| cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); |
| } |
| |
| #else /* CONFIG_DEBUG_PER_CPU_MAPS */ |
| |
| /* |
| * --------- debug versions of the numa functions --------- |
| */ |
| static void __cpuinit numa_set_cpumask(int cpu, int enable) |
| { |
| int node = early_cpu_to_node(cpu); |
| struct cpumask *mask; |
| char buf[64]; |
| |
| mask = node_to_cpumask_map[node]; |
| if (mask == NULL) { |
| printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node); |
| dump_stack(); |
| return; |
| } |
| |
| if (enable) |
| cpumask_set_cpu(cpu, mask); |
| else |
| cpumask_clear_cpu(cpu, mask); |
| |
| cpulist_scnprintf(buf, sizeof(buf), mask); |
| printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n", |
| enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf); |
| } |
| |
| void __cpuinit numa_add_cpu(int cpu) |
| { |
| numa_set_cpumask(cpu, 1); |
| } |
| |
| void __cpuinit numa_remove_cpu(int cpu) |
| { |
| numa_set_cpumask(cpu, 0); |
| } |
| |
| int cpu_to_node(int cpu) |
| { |
| if (early_per_cpu_ptr(x86_cpu_to_node_map)) { |
| printk(KERN_WARNING |
| "cpu_to_node(%d): usage too early!\n", cpu); |
| dump_stack(); |
| return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; |
| } |
| return per_cpu(x86_cpu_to_node_map, cpu); |
| } |
| EXPORT_SYMBOL(cpu_to_node); |
| |
| /* |
| * Same function as cpu_to_node() but used if called before the |
| * per_cpu areas are setup. |
| */ |
| int early_cpu_to_node(int cpu) |
| { |
| if (early_per_cpu_ptr(x86_cpu_to_node_map)) |
| return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; |
| |
| if (!cpu_possible(cpu)) { |
| printk(KERN_WARNING |
| "early_cpu_to_node(%d): no per_cpu area!\n", cpu); |
| dump_stack(); |
| return NUMA_NO_NODE; |
| } |
| return per_cpu(x86_cpu_to_node_map, cpu); |
| } |
| |
| /* |
| * --------- end of debug versions of the numa functions --------- |
| */ |
| |
| #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ |