| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * KVM/MIPS: Deliver/Emulate exceptions to the guest kernel |
| * |
| * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. |
| * Authors: Sanjay Lal <sanjayl@kymasys.com> |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/kvm_host.h> |
| #include <linux/uaccess.h> |
| #include <linux/vmalloc.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgalloc.h> |
| |
| #include "interrupt.h" |
| |
| static gpa_t kvm_trap_emul_gva_to_gpa_cb(gva_t gva) |
| { |
| gpa_t gpa; |
| gva_t kseg = KSEGX(gva); |
| gva_t gkseg = KVM_GUEST_KSEGX(gva); |
| |
| if ((kseg == CKSEG0) || (kseg == CKSEG1)) |
| gpa = CPHYSADDR(gva); |
| else if (gkseg == KVM_GUEST_KSEG0) |
| gpa = KVM_GUEST_CPHYSADDR(gva); |
| else { |
| kvm_err("%s: cannot find GPA for GVA: %#lx\n", __func__, gva); |
| kvm_mips_dump_host_tlbs(); |
| gpa = KVM_INVALID_ADDR; |
| } |
| |
| kvm_debug("%s: gva %#lx, gpa: %#llx\n", __func__, gva, gpa); |
| |
| return gpa; |
| } |
| |
| static int kvm_trap_emul_handle_cop_unusable(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_run *run = vcpu->run; |
| u32 __user *opc = (u32 __user *) vcpu->arch.pc; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| enum emulation_result er = EMULATE_DONE; |
| int ret = RESUME_GUEST; |
| |
| if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) { |
| /* FPU Unusable */ |
| if (!kvm_mips_guest_has_fpu(&vcpu->arch) || |
| (kvm_read_c0_guest_status(cop0) & ST0_CU1) == 0) { |
| /* |
| * Unusable/no FPU in guest: |
| * deliver guest COP1 Unusable Exception |
| */ |
| er = kvm_mips_emulate_fpu_exc(cause, opc, run, vcpu); |
| } else { |
| /* Restore FPU state */ |
| kvm_own_fpu(vcpu); |
| er = EMULATE_DONE; |
| } |
| } else { |
| er = kvm_mips_emulate_inst(cause, opc, run, vcpu); |
| } |
| |
| switch (er) { |
| case EMULATE_DONE: |
| ret = RESUME_GUEST; |
| break; |
| |
| case EMULATE_FAIL: |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| break; |
| |
| case EMULATE_WAIT: |
| run->exit_reason = KVM_EXIT_INTR; |
| ret = RESUME_HOST; |
| break; |
| |
| case EMULATE_HYPERCALL: |
| ret = kvm_mips_handle_hypcall(vcpu); |
| break; |
| |
| default: |
| BUG(); |
| } |
| return ret; |
| } |
| |
| static int kvm_mips_bad_load(u32 cause, u32 *opc, struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er; |
| union mips_instruction inst; |
| int err; |
| |
| /* A code fetch fault doesn't count as an MMIO */ |
| if (kvm_is_ifetch_fault(&vcpu->arch)) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return RESUME_HOST; |
| } |
| |
| /* Fetch the instruction. */ |
| if (cause & CAUSEF_BD) |
| opc += 1; |
| err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| if (err) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return RESUME_HOST; |
| } |
| |
| /* Emulate the load */ |
| er = kvm_mips_emulate_load(inst, cause, run, vcpu); |
| if (er == EMULATE_FAIL) { |
| kvm_err("Emulate load from MMIO space failed\n"); |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| } else { |
| run->exit_reason = KVM_EXIT_MMIO; |
| } |
| return RESUME_HOST; |
| } |
| |
| static int kvm_mips_bad_store(u32 cause, u32 *opc, struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er; |
| union mips_instruction inst; |
| int err; |
| |
| /* Fetch the instruction. */ |
| if (cause & CAUSEF_BD) |
| opc += 1; |
| err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| if (err) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return RESUME_HOST; |
| } |
| |
| /* Emulate the store */ |
| er = kvm_mips_emulate_store(inst, cause, run, vcpu); |
| if (er == EMULATE_FAIL) { |
| kvm_err("Emulate store to MMIO space failed\n"); |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| } else { |
| run->exit_reason = KVM_EXIT_MMIO; |
| } |
| return RESUME_HOST; |
| } |
| |
| static int kvm_mips_bad_access(u32 cause, u32 *opc, struct kvm_run *run, |
| struct kvm_vcpu *vcpu, bool store) |
| { |
| if (store) |
| return kvm_mips_bad_store(cause, opc, run, vcpu); |
| else |
| return kvm_mips_bad_load(cause, opc, run, vcpu); |
| } |
| |
| static int kvm_trap_emul_handle_tlb_mod(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_run *run = vcpu->run; |
| u32 __user *opc = (u32 __user *) vcpu->arch.pc; |
| unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| struct kvm_mips_tlb *tlb; |
| unsigned long entryhi; |
| int index; |
| |
| if (KVM_GUEST_KSEGX(badvaddr) < KVM_GUEST_KSEG0 |
| || KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG23) { |
| /* |
| * First find the mapping in the guest TLB. If the failure to |
| * write was due to the guest TLB, it should be up to the guest |
| * to handle it. |
| */ |
| entryhi = (badvaddr & VPN2_MASK) | |
| (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); |
| index = kvm_mips_guest_tlb_lookup(vcpu, entryhi); |
| |
| /* |
| * These should never happen. |
| * They would indicate stale host TLB entries. |
| */ |
| if (unlikely(index < 0)) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return RESUME_HOST; |
| } |
| tlb = vcpu->arch.guest_tlb + index; |
| if (unlikely(!TLB_IS_VALID(*tlb, badvaddr))) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return RESUME_HOST; |
| } |
| |
| /* |
| * Guest entry not dirty? That would explain the TLB modified |
| * exception. Relay that on to the guest so it can handle it. |
| */ |
| if (!TLB_IS_DIRTY(*tlb, badvaddr)) { |
| kvm_mips_emulate_tlbmod(cause, opc, run, vcpu); |
| return RESUME_GUEST; |
| } |
| |
| if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, badvaddr, |
| true)) |
| /* Not writable, needs handling as MMIO */ |
| return kvm_mips_bad_store(cause, opc, run, vcpu); |
| return RESUME_GUEST; |
| } else if (KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG0) { |
| if (kvm_mips_handle_kseg0_tlb_fault(badvaddr, vcpu, true) < 0) |
| /* Not writable, needs handling as MMIO */ |
| return kvm_mips_bad_store(cause, opc, run, vcpu); |
| return RESUME_GUEST; |
| } else { |
| /* host kernel addresses are all handled as MMIO */ |
| return kvm_mips_bad_store(cause, opc, run, vcpu); |
| } |
| } |
| |
| static int kvm_trap_emul_handle_tlb_miss(struct kvm_vcpu *vcpu, bool store) |
| { |
| struct kvm_run *run = vcpu->run; |
| u32 __user *opc = (u32 __user *) vcpu->arch.pc; |
| unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| enum emulation_result er = EMULATE_DONE; |
| int ret = RESUME_GUEST; |
| |
| if (((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) |
| && KVM_GUEST_KERNEL_MODE(vcpu)) { |
| if (kvm_mips_handle_commpage_tlb_fault(badvaddr, vcpu) < 0) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| } else if (KVM_GUEST_KSEGX(badvaddr) < KVM_GUEST_KSEG0 |
| || KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG23) { |
| kvm_debug("USER ADDR TLB %s fault: cause %#x, PC: %p, BadVaddr: %#lx\n", |
| store ? "ST" : "LD", cause, opc, badvaddr); |
| |
| /* |
| * User Address (UA) fault, this could happen if |
| * (1) TLB entry not present/valid in both Guest and shadow host |
| * TLBs, in this case we pass on the fault to the guest |
| * kernel and let it handle it. |
| * (2) TLB entry is present in the Guest TLB but not in the |
| * shadow, in this case we inject the TLB from the Guest TLB |
| * into the shadow host TLB |
| */ |
| |
| er = kvm_mips_handle_tlbmiss(cause, opc, run, vcpu, store); |
| if (er == EMULATE_DONE) |
| ret = RESUME_GUEST; |
| else { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| } else if (KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG0) { |
| /* |
| * All KSEG0 faults are handled by KVM, as the guest kernel does |
| * not expect to ever get them |
| */ |
| if (kvm_mips_handle_kseg0_tlb_fault(badvaddr, vcpu, store) < 0) |
| ret = kvm_mips_bad_access(cause, opc, run, vcpu, store); |
| } else if (KVM_GUEST_KERNEL_MODE(vcpu) |
| && (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1)) { |
| /* |
| * With EVA we may get a TLB exception instead of an address |
| * error when the guest performs MMIO to KSeg1 addresses. |
| */ |
| ret = kvm_mips_bad_access(cause, opc, run, vcpu, store); |
| } else { |
| kvm_err("Illegal TLB %s fault address , cause %#x, PC: %p, BadVaddr: %#lx\n", |
| store ? "ST" : "LD", cause, opc, badvaddr); |
| kvm_mips_dump_host_tlbs(); |
| kvm_arch_vcpu_dump_regs(vcpu); |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| return ret; |
| } |
| |
| static int kvm_trap_emul_handle_tlb_st_miss(struct kvm_vcpu *vcpu) |
| { |
| return kvm_trap_emul_handle_tlb_miss(vcpu, true); |
| } |
| |
| static int kvm_trap_emul_handle_tlb_ld_miss(struct kvm_vcpu *vcpu) |
| { |
| return kvm_trap_emul_handle_tlb_miss(vcpu, false); |
| } |
| |
| static int kvm_trap_emul_handle_addr_err_st(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| u32 __user *opc = (u32 __user *) vcpu->arch.pc; |
| unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| int ret = RESUME_GUEST; |
| |
| if (KVM_GUEST_KERNEL_MODE(vcpu) |
| && (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1)) { |
| ret = kvm_mips_bad_store(cause, opc, run, vcpu); |
| } else { |
| kvm_err("Address Error (STORE): cause %#x, PC: %p, BadVaddr: %#lx\n", |
| cause, opc, badvaddr); |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| return ret; |
| } |
| |
| static int kvm_trap_emul_handle_addr_err_ld(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| u32 __user *opc = (u32 __user *) vcpu->arch.pc; |
| unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| int ret = RESUME_GUEST; |
| |
| if (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1) { |
| ret = kvm_mips_bad_load(cause, opc, run, vcpu); |
| } else { |
| kvm_err("Address Error (LOAD): cause %#x, PC: %p, BadVaddr: %#lx\n", |
| cause, opc, badvaddr); |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| return ret; |
| } |
| |
| static int kvm_trap_emul_handle_syscall(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| u32 __user *opc = (u32 __user *) vcpu->arch.pc; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| enum emulation_result er = EMULATE_DONE; |
| int ret = RESUME_GUEST; |
| |
| er = kvm_mips_emulate_syscall(cause, opc, run, vcpu); |
| if (er == EMULATE_DONE) |
| ret = RESUME_GUEST; |
| else { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| return ret; |
| } |
| |
| static int kvm_trap_emul_handle_res_inst(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| u32 __user *opc = (u32 __user *) vcpu->arch.pc; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| enum emulation_result er = EMULATE_DONE; |
| int ret = RESUME_GUEST; |
| |
| er = kvm_mips_handle_ri(cause, opc, run, vcpu); |
| if (er == EMULATE_DONE) |
| ret = RESUME_GUEST; |
| else { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| return ret; |
| } |
| |
| static int kvm_trap_emul_handle_break(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| u32 __user *opc = (u32 __user *) vcpu->arch.pc; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| enum emulation_result er = EMULATE_DONE; |
| int ret = RESUME_GUEST; |
| |
| er = kvm_mips_emulate_bp_exc(cause, opc, run, vcpu); |
| if (er == EMULATE_DONE) |
| ret = RESUME_GUEST; |
| else { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| return ret; |
| } |
| |
| static int kvm_trap_emul_handle_trap(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| u32 __user *opc = (u32 __user *)vcpu->arch.pc; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| enum emulation_result er = EMULATE_DONE; |
| int ret = RESUME_GUEST; |
| |
| er = kvm_mips_emulate_trap_exc(cause, opc, run, vcpu); |
| if (er == EMULATE_DONE) { |
| ret = RESUME_GUEST; |
| } else { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| return ret; |
| } |
| |
| static int kvm_trap_emul_handle_msa_fpe(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| u32 __user *opc = (u32 __user *)vcpu->arch.pc; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| enum emulation_result er = EMULATE_DONE; |
| int ret = RESUME_GUEST; |
| |
| er = kvm_mips_emulate_msafpe_exc(cause, opc, run, vcpu); |
| if (er == EMULATE_DONE) { |
| ret = RESUME_GUEST; |
| } else { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| return ret; |
| } |
| |
| static int kvm_trap_emul_handle_fpe(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| u32 __user *opc = (u32 __user *)vcpu->arch.pc; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| enum emulation_result er = EMULATE_DONE; |
| int ret = RESUME_GUEST; |
| |
| er = kvm_mips_emulate_fpe_exc(cause, opc, run, vcpu); |
| if (er == EMULATE_DONE) { |
| ret = RESUME_GUEST; |
| } else { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| return ret; |
| } |
| |
| /** |
| * kvm_trap_emul_handle_msa_disabled() - Guest used MSA while disabled in root. |
| * @vcpu: Virtual CPU context. |
| * |
| * Handle when the guest attempts to use MSA when it is disabled. |
| */ |
| static int kvm_trap_emul_handle_msa_disabled(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_run *run = vcpu->run; |
| u32 __user *opc = (u32 __user *) vcpu->arch.pc; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| enum emulation_result er = EMULATE_DONE; |
| int ret = RESUME_GUEST; |
| |
| if (!kvm_mips_guest_has_msa(&vcpu->arch) || |
| (kvm_read_c0_guest_status(cop0) & (ST0_CU1 | ST0_FR)) == ST0_CU1) { |
| /* |
| * No MSA in guest, or FPU enabled and not in FR=1 mode, |
| * guest reserved instruction exception |
| */ |
| er = kvm_mips_emulate_ri_exc(cause, opc, run, vcpu); |
| } else if (!(kvm_read_c0_guest_config5(cop0) & MIPS_CONF5_MSAEN)) { |
| /* MSA disabled by guest, guest MSA disabled exception */ |
| er = kvm_mips_emulate_msadis_exc(cause, opc, run, vcpu); |
| } else { |
| /* Restore MSA/FPU state */ |
| kvm_own_msa(vcpu); |
| er = EMULATE_DONE; |
| } |
| |
| switch (er) { |
| case EMULATE_DONE: |
| ret = RESUME_GUEST; |
| break; |
| |
| case EMULATE_FAIL: |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| break; |
| |
| default: |
| BUG(); |
| } |
| return ret; |
| } |
| |
| static int kvm_trap_emul_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; |
| struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; |
| |
| /* |
| * Allocate GVA -> HPA page tables. |
| * MIPS doesn't use the mm_struct pointer argument. |
| */ |
| kern_mm->pgd = pgd_alloc(kern_mm); |
| if (!kern_mm->pgd) |
| return -ENOMEM; |
| |
| user_mm->pgd = pgd_alloc(user_mm); |
| if (!user_mm->pgd) { |
| pgd_free(kern_mm, kern_mm->pgd); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void kvm_mips_emul_free_gva_pt(pgd_t *pgd) |
| { |
| /* Don't free host kernel page tables copied from init_mm.pgd */ |
| const unsigned long end = 0x80000000; |
| unsigned long pgd_va, pud_va, pmd_va; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| int i, j, k; |
| |
| for (i = 0; i < USER_PTRS_PER_PGD; i++) { |
| if (pgd_none(pgd[i])) |
| continue; |
| |
| pgd_va = (unsigned long)i << PGDIR_SHIFT; |
| if (pgd_va >= end) |
| break; |
| pud = pud_offset(pgd + i, 0); |
| for (j = 0; j < PTRS_PER_PUD; j++) { |
| if (pud_none(pud[j])) |
| continue; |
| |
| pud_va = pgd_va | ((unsigned long)j << PUD_SHIFT); |
| if (pud_va >= end) |
| break; |
| pmd = pmd_offset(pud + j, 0); |
| for (k = 0; k < PTRS_PER_PMD; k++) { |
| if (pmd_none(pmd[k])) |
| continue; |
| |
| pmd_va = pud_va | (k << PMD_SHIFT); |
| if (pmd_va >= end) |
| break; |
| pte = pte_offset(pmd + k, 0); |
| pte_free_kernel(NULL, pte); |
| } |
| pmd_free(NULL, pmd); |
| } |
| pud_free(NULL, pud); |
| } |
| pgd_free(NULL, pgd); |
| } |
| |
| static void kvm_trap_emul_vcpu_uninit(struct kvm_vcpu *vcpu) |
| { |
| kvm_mips_emul_free_gva_pt(vcpu->arch.guest_kernel_mm.pgd); |
| kvm_mips_emul_free_gva_pt(vcpu->arch.guest_user_mm.pgd); |
| } |
| |
| static int kvm_trap_emul_vcpu_setup(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| u32 config, config1; |
| int vcpu_id = vcpu->vcpu_id; |
| |
| /* Start off the timer at 100 MHz */ |
| kvm_mips_init_count(vcpu, 100*1000*1000); |
| |
| /* |
| * Arch specific stuff, set up config registers properly so that the |
| * guest will come up as expected |
| */ |
| #ifndef CONFIG_CPU_MIPSR6 |
| /* r2-r5, simulate a MIPS 24kc */ |
| kvm_write_c0_guest_prid(cop0, 0x00019300); |
| #else |
| /* r6+, simulate a generic QEMU machine */ |
| kvm_write_c0_guest_prid(cop0, 0x00010000); |
| #endif |
| /* |
| * Have config1, Cacheable, noncoherent, write-back, write allocate. |
| * Endianness, arch revision & virtually tagged icache should match |
| * host. |
| */ |
| config = read_c0_config() & MIPS_CONF_AR; |
| config |= MIPS_CONF_M | CONF_CM_CACHABLE_NONCOHERENT | MIPS_CONF_MT_TLB; |
| #ifdef CONFIG_CPU_BIG_ENDIAN |
| config |= CONF_BE; |
| #endif |
| if (cpu_has_vtag_icache) |
| config |= MIPS_CONF_VI; |
| kvm_write_c0_guest_config(cop0, config); |
| |
| /* Read the cache characteristics from the host Config1 Register */ |
| config1 = (read_c0_config1() & ~0x7f); |
| |
| /* Set up MMU size */ |
| config1 &= ~(0x3f << 25); |
| config1 |= ((KVM_MIPS_GUEST_TLB_SIZE - 1) << 25); |
| |
| /* We unset some bits that we aren't emulating */ |
| config1 &= ~(MIPS_CONF1_C2 | MIPS_CONF1_MD | MIPS_CONF1_PC | |
| MIPS_CONF1_WR | MIPS_CONF1_CA); |
| kvm_write_c0_guest_config1(cop0, config1); |
| |
| /* Have config3, no tertiary/secondary caches implemented */ |
| kvm_write_c0_guest_config2(cop0, MIPS_CONF_M); |
| /* MIPS_CONF_M | (read_c0_config2() & 0xfff) */ |
| |
| /* Have config4, UserLocal */ |
| kvm_write_c0_guest_config3(cop0, MIPS_CONF_M | MIPS_CONF3_ULRI); |
| |
| /* Have config5 */ |
| kvm_write_c0_guest_config4(cop0, MIPS_CONF_M); |
| |
| /* No config6 */ |
| kvm_write_c0_guest_config5(cop0, 0); |
| |
| /* Set Wait IE/IXMT Ignore in Config7, IAR, AR */ |
| kvm_write_c0_guest_config7(cop0, (MIPS_CONF7_WII) | (1 << 10)); |
| |
| /* Status */ |
| kvm_write_c0_guest_status(cop0, ST0_BEV | ST0_ERL); |
| |
| /* |
| * Setup IntCtl defaults, compatibility mode for timer interrupts (HW5) |
| */ |
| kvm_write_c0_guest_intctl(cop0, 0xFC000000); |
| |
| /* Put in vcpu id as CPUNum into Ebase Reg to handle SMP Guests */ |
| kvm_write_c0_guest_ebase(cop0, KVM_GUEST_KSEG0 | |
| (vcpu_id & MIPS_EBASE_CPUNUM)); |
| |
| /* Put PC at guest reset vector */ |
| vcpu->arch.pc = KVM_GUEST_CKSEG1ADDR(0x1fc00000); |
| |
| return 0; |
| } |
| |
| static void kvm_trap_emul_flush_shadow_all(struct kvm *kvm) |
| { |
| /* Flush GVA page tables and invalidate GVA ASIDs on all VCPUs */ |
| kvm_flush_remote_tlbs(kvm); |
| } |
| |
| static void kvm_trap_emul_flush_shadow_memslot(struct kvm *kvm, |
| const struct kvm_memory_slot *slot) |
| { |
| kvm_trap_emul_flush_shadow_all(kvm); |
| } |
| |
| static u64 kvm_trap_emul_get_one_regs[] = { |
| KVM_REG_MIPS_CP0_INDEX, |
| KVM_REG_MIPS_CP0_ENTRYLO0, |
| KVM_REG_MIPS_CP0_ENTRYLO1, |
| KVM_REG_MIPS_CP0_CONTEXT, |
| KVM_REG_MIPS_CP0_USERLOCAL, |
| KVM_REG_MIPS_CP0_PAGEMASK, |
| KVM_REG_MIPS_CP0_WIRED, |
| KVM_REG_MIPS_CP0_HWRENA, |
| KVM_REG_MIPS_CP0_BADVADDR, |
| KVM_REG_MIPS_CP0_COUNT, |
| KVM_REG_MIPS_CP0_ENTRYHI, |
| KVM_REG_MIPS_CP0_COMPARE, |
| KVM_REG_MIPS_CP0_STATUS, |
| KVM_REG_MIPS_CP0_INTCTL, |
| KVM_REG_MIPS_CP0_CAUSE, |
| KVM_REG_MIPS_CP0_EPC, |
| KVM_REG_MIPS_CP0_PRID, |
| KVM_REG_MIPS_CP0_EBASE, |
| KVM_REG_MIPS_CP0_CONFIG, |
| KVM_REG_MIPS_CP0_CONFIG1, |
| KVM_REG_MIPS_CP0_CONFIG2, |
| KVM_REG_MIPS_CP0_CONFIG3, |
| KVM_REG_MIPS_CP0_CONFIG4, |
| KVM_REG_MIPS_CP0_CONFIG5, |
| KVM_REG_MIPS_CP0_CONFIG7, |
| KVM_REG_MIPS_CP0_ERROREPC, |
| KVM_REG_MIPS_CP0_KSCRATCH1, |
| KVM_REG_MIPS_CP0_KSCRATCH2, |
| KVM_REG_MIPS_CP0_KSCRATCH3, |
| KVM_REG_MIPS_CP0_KSCRATCH4, |
| KVM_REG_MIPS_CP0_KSCRATCH5, |
| KVM_REG_MIPS_CP0_KSCRATCH6, |
| |
| KVM_REG_MIPS_COUNT_CTL, |
| KVM_REG_MIPS_COUNT_RESUME, |
| KVM_REG_MIPS_COUNT_HZ, |
| }; |
| |
| static unsigned long kvm_trap_emul_num_regs(struct kvm_vcpu *vcpu) |
| { |
| return ARRAY_SIZE(kvm_trap_emul_get_one_regs); |
| } |
| |
| static int kvm_trap_emul_copy_reg_indices(struct kvm_vcpu *vcpu, |
| u64 __user *indices) |
| { |
| if (copy_to_user(indices, kvm_trap_emul_get_one_regs, |
| sizeof(kvm_trap_emul_get_one_regs))) |
| return -EFAULT; |
| indices += ARRAY_SIZE(kvm_trap_emul_get_one_regs); |
| |
| return 0; |
| } |
| |
| static int kvm_trap_emul_get_one_reg(struct kvm_vcpu *vcpu, |
| const struct kvm_one_reg *reg, |
| s64 *v) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| |
| switch (reg->id) { |
| case KVM_REG_MIPS_CP0_INDEX: |
| *v = (long)kvm_read_c0_guest_index(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYLO0: |
| *v = kvm_read_c0_guest_entrylo0(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYLO1: |
| *v = kvm_read_c0_guest_entrylo1(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONTEXT: |
| *v = (long)kvm_read_c0_guest_context(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_USERLOCAL: |
| *v = (long)kvm_read_c0_guest_userlocal(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_PAGEMASK: |
| *v = (long)kvm_read_c0_guest_pagemask(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_WIRED: |
| *v = (long)kvm_read_c0_guest_wired(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_HWRENA: |
| *v = (long)kvm_read_c0_guest_hwrena(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_BADVADDR: |
| *v = (long)kvm_read_c0_guest_badvaddr(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYHI: |
| *v = (long)kvm_read_c0_guest_entryhi(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_COMPARE: |
| *v = (long)kvm_read_c0_guest_compare(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_STATUS: |
| *v = (long)kvm_read_c0_guest_status(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_INTCTL: |
| *v = (long)kvm_read_c0_guest_intctl(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CAUSE: |
| *v = (long)kvm_read_c0_guest_cause(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_EPC: |
| *v = (long)kvm_read_c0_guest_epc(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_PRID: |
| *v = (long)kvm_read_c0_guest_prid(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_EBASE: |
| *v = (long)kvm_read_c0_guest_ebase(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG: |
| *v = (long)kvm_read_c0_guest_config(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG1: |
| *v = (long)kvm_read_c0_guest_config1(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG2: |
| *v = (long)kvm_read_c0_guest_config2(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG3: |
| *v = (long)kvm_read_c0_guest_config3(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG4: |
| *v = (long)kvm_read_c0_guest_config4(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG5: |
| *v = (long)kvm_read_c0_guest_config5(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG7: |
| *v = (long)kvm_read_c0_guest_config7(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_COUNT: |
| *v = kvm_mips_read_count(vcpu); |
| break; |
| case KVM_REG_MIPS_COUNT_CTL: |
| *v = vcpu->arch.count_ctl; |
| break; |
| case KVM_REG_MIPS_COUNT_RESUME: |
| *v = ktime_to_ns(vcpu->arch.count_resume); |
| break; |
| case KVM_REG_MIPS_COUNT_HZ: |
| *v = vcpu->arch.count_hz; |
| break; |
| case KVM_REG_MIPS_CP0_ERROREPC: |
| *v = (long)kvm_read_c0_guest_errorepc(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH1: |
| *v = (long)kvm_read_c0_guest_kscratch1(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH2: |
| *v = (long)kvm_read_c0_guest_kscratch2(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH3: |
| *v = (long)kvm_read_c0_guest_kscratch3(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH4: |
| *v = (long)kvm_read_c0_guest_kscratch4(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH5: |
| *v = (long)kvm_read_c0_guest_kscratch5(cop0); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH6: |
| *v = (long)kvm_read_c0_guest_kscratch6(cop0); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int kvm_trap_emul_set_one_reg(struct kvm_vcpu *vcpu, |
| const struct kvm_one_reg *reg, |
| s64 v) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| int ret = 0; |
| unsigned int cur, change; |
| |
| switch (reg->id) { |
| case KVM_REG_MIPS_CP0_INDEX: |
| kvm_write_c0_guest_index(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYLO0: |
| kvm_write_c0_guest_entrylo0(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYLO1: |
| kvm_write_c0_guest_entrylo1(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_CONTEXT: |
| kvm_write_c0_guest_context(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_USERLOCAL: |
| kvm_write_c0_guest_userlocal(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_PAGEMASK: |
| kvm_write_c0_guest_pagemask(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_WIRED: |
| kvm_write_c0_guest_wired(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_HWRENA: |
| kvm_write_c0_guest_hwrena(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_BADVADDR: |
| kvm_write_c0_guest_badvaddr(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYHI: |
| kvm_write_c0_guest_entryhi(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_STATUS: |
| kvm_write_c0_guest_status(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_INTCTL: |
| /* No VInt, so no VS, read-only for now */ |
| break; |
| case KVM_REG_MIPS_CP0_EPC: |
| kvm_write_c0_guest_epc(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_PRID: |
| kvm_write_c0_guest_prid(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_EBASE: |
| /* |
| * Allow core number to be written, but the exception base must |
| * remain in guest KSeg0. |
| */ |
| kvm_change_c0_guest_ebase(cop0, 0x1ffff000 | MIPS_EBASE_CPUNUM, |
| v); |
| break; |
| case KVM_REG_MIPS_CP0_COUNT: |
| kvm_mips_write_count(vcpu, v); |
| break; |
| case KVM_REG_MIPS_CP0_COMPARE: |
| kvm_mips_write_compare(vcpu, v, false); |
| break; |
| case KVM_REG_MIPS_CP0_CAUSE: |
| /* |
| * If the timer is stopped or started (DC bit) it must look |
| * atomic with changes to the interrupt pending bits (TI, IRQ5). |
| * A timer interrupt should not happen in between. |
| */ |
| if ((kvm_read_c0_guest_cause(cop0) ^ v) & CAUSEF_DC) { |
| if (v & CAUSEF_DC) { |
| /* disable timer first */ |
| kvm_mips_count_disable_cause(vcpu); |
| kvm_change_c0_guest_cause(cop0, ~CAUSEF_DC, v); |
| } else { |
| /* enable timer last */ |
| kvm_change_c0_guest_cause(cop0, ~CAUSEF_DC, v); |
| kvm_mips_count_enable_cause(vcpu); |
| } |
| } else { |
| kvm_write_c0_guest_cause(cop0, v); |
| } |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG: |
| /* read-only for now */ |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG1: |
| cur = kvm_read_c0_guest_config1(cop0); |
| change = (cur ^ v) & kvm_mips_config1_wrmask(vcpu); |
| if (change) { |
| v = cur ^ change; |
| kvm_write_c0_guest_config1(cop0, v); |
| } |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG2: |
| /* read-only for now */ |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG3: |
| cur = kvm_read_c0_guest_config3(cop0); |
| change = (cur ^ v) & kvm_mips_config3_wrmask(vcpu); |
| if (change) { |
| v = cur ^ change; |
| kvm_write_c0_guest_config3(cop0, v); |
| } |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG4: |
| cur = kvm_read_c0_guest_config4(cop0); |
| change = (cur ^ v) & kvm_mips_config4_wrmask(vcpu); |
| if (change) { |
| v = cur ^ change; |
| kvm_write_c0_guest_config4(cop0, v); |
| } |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG5: |
| cur = kvm_read_c0_guest_config5(cop0); |
| change = (cur ^ v) & kvm_mips_config5_wrmask(vcpu); |
| if (change) { |
| v = cur ^ change; |
| kvm_write_c0_guest_config5(cop0, v); |
| } |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG7: |
| /* writes ignored */ |
| break; |
| case KVM_REG_MIPS_COUNT_CTL: |
| ret = kvm_mips_set_count_ctl(vcpu, v); |
| break; |
| case KVM_REG_MIPS_COUNT_RESUME: |
| ret = kvm_mips_set_count_resume(vcpu, v); |
| break; |
| case KVM_REG_MIPS_COUNT_HZ: |
| ret = kvm_mips_set_count_hz(vcpu, v); |
| break; |
| case KVM_REG_MIPS_CP0_ERROREPC: |
| kvm_write_c0_guest_errorepc(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH1: |
| kvm_write_c0_guest_kscratch1(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH2: |
| kvm_write_c0_guest_kscratch2(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH3: |
| kvm_write_c0_guest_kscratch3(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH4: |
| kvm_write_c0_guest_kscratch4(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH5: |
| kvm_write_c0_guest_kscratch5(cop0, v); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH6: |
| kvm_write_c0_guest_kscratch6(cop0, v); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return ret; |
| } |
| |
| static int kvm_trap_emul_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; |
| struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; |
| struct mm_struct *mm; |
| |
| /* |
| * Were we in guest context? If so, restore the appropriate ASID based |
| * on the mode of the Guest (Kernel/User). |
| */ |
| if (current->flags & PF_VCPU) { |
| mm = KVM_GUEST_KERNEL_MODE(vcpu) ? kern_mm : user_mm; |
| if ((cpu_context(cpu, mm) ^ asid_cache(cpu)) & |
| asid_version_mask(cpu)) |
| get_new_mmu_context(mm, cpu); |
| write_c0_entryhi(cpu_asid(cpu, mm)); |
| TLBMISS_HANDLER_SETUP_PGD(mm->pgd); |
| kvm_mips_suspend_mm(cpu); |
| ehb(); |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_trap_emul_vcpu_put(struct kvm_vcpu *vcpu, int cpu) |
| { |
| kvm_lose_fpu(vcpu); |
| |
| if (current->flags & PF_VCPU) { |
| /* Restore normal Linux process memory map */ |
| if (((cpu_context(cpu, current->mm) ^ asid_cache(cpu)) & |
| asid_version_mask(cpu))) |
| get_new_mmu_context(current->mm, cpu); |
| write_c0_entryhi(cpu_asid(cpu, current->mm)); |
| TLBMISS_HANDLER_SETUP_PGD(current->mm->pgd); |
| kvm_mips_resume_mm(cpu); |
| ehb(); |
| } |
| |
| return 0; |
| } |
| |
| static void kvm_trap_emul_check_requests(struct kvm_vcpu *vcpu, int cpu, |
| bool reload_asid) |
| { |
| struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; |
| struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; |
| struct mm_struct *mm; |
| int i; |
| |
| if (likely(!vcpu->requests)) |
| return; |
| |
| if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { |
| /* |
| * Both kernel & user GVA mappings must be invalidated. The |
| * caller is just about to check whether the ASID is stale |
| * anyway so no need to reload it here. |
| */ |
| kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_GPA | KMF_KERN); |
| kvm_mips_flush_gva_pt(user_mm->pgd, KMF_GPA | KMF_USER); |
| for_each_possible_cpu(i) { |
| cpu_context(i, kern_mm) = 0; |
| cpu_context(i, user_mm) = 0; |
| } |
| |
| /* Generate new ASID for current mode */ |
| if (reload_asid) { |
| mm = KVM_GUEST_KERNEL_MODE(vcpu) ? kern_mm : user_mm; |
| get_new_mmu_context(mm, cpu); |
| htw_stop(); |
| write_c0_entryhi(cpu_asid(cpu, mm)); |
| TLBMISS_HANDLER_SETUP_PGD(mm->pgd); |
| htw_start(); |
| } |
| } |
| } |
| |
| /** |
| * kvm_trap_emul_gva_lockless_begin() - Begin lockless access to GVA space. |
| * @vcpu: VCPU pointer. |
| * |
| * Call before a GVA space access outside of guest mode, to ensure that |
| * asynchronous TLB flush requests are handled or delayed until completion of |
| * the GVA access (as indicated by a matching kvm_trap_emul_gva_lockless_end()). |
| * |
| * Should be called with IRQs already enabled. |
| */ |
| void kvm_trap_emul_gva_lockless_begin(struct kvm_vcpu *vcpu) |
| { |
| /* We re-enable IRQs in kvm_trap_emul_gva_lockless_end() */ |
| WARN_ON_ONCE(irqs_disabled()); |
| |
| /* |
| * The caller is about to access the GVA space, so we set the mode to |
| * force TLB flush requests to send an IPI, and also disable IRQs to |
| * delay IPI handling until kvm_trap_emul_gva_lockless_end(). |
| */ |
| local_irq_disable(); |
| |
| /* |
| * Make sure the read of VCPU requests is not reordered ahead of the |
| * write to vcpu->mode, or we could miss a TLB flush request while |
| * the requester sees the VCPU as outside of guest mode and not needing |
| * an IPI. |
| */ |
| smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); |
| |
| /* |
| * If a TLB flush has been requested (potentially while |
| * OUTSIDE_GUEST_MODE and assumed immediately effective), perform it |
| * before accessing the GVA space, and be sure to reload the ASID if |
| * necessary as it'll be immediately used. |
| * |
| * TLB flush requests after this check will trigger an IPI due to the |
| * mode change above, which will be delayed due to IRQs disabled. |
| */ |
| kvm_trap_emul_check_requests(vcpu, smp_processor_id(), true); |
| } |
| |
| /** |
| * kvm_trap_emul_gva_lockless_end() - End lockless access to GVA space. |
| * @vcpu: VCPU pointer. |
| * |
| * Called after a GVA space access outside of guest mode. Should have a matching |
| * call to kvm_trap_emul_gva_lockless_begin(). |
| */ |
| void kvm_trap_emul_gva_lockless_end(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Make sure the write to vcpu->mode is not reordered in front of GVA |
| * accesses, or a TLB flush requester may not think it necessary to send |
| * an IPI. |
| */ |
| smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); |
| |
| /* |
| * Now that the access to GVA space is complete, its safe for pending |
| * TLB flush request IPIs to be handled (which indicates completion). |
| */ |
| local_irq_enable(); |
| } |
| |
| static void kvm_trap_emul_vcpu_reenter(struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; |
| struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; |
| struct mm_struct *mm; |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| int i, cpu = smp_processor_id(); |
| unsigned int gasid; |
| |
| /* |
| * No need to reload ASID, IRQs are disabled already so there's no rush, |
| * and we'll check if we need to regenerate below anyway before |
| * re-entering the guest. |
| */ |
| kvm_trap_emul_check_requests(vcpu, cpu, false); |
| |
| if (KVM_GUEST_KERNEL_MODE(vcpu)) { |
| mm = kern_mm; |
| } else { |
| mm = user_mm; |
| |
| /* |
| * Lazy host ASID regeneration / PT flush for guest user mode. |
| * If the guest ASID has changed since the last guest usermode |
| * execution, invalidate the stale TLB entries and flush GVA PT |
| * entries too. |
| */ |
| gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID; |
| if (gasid != vcpu->arch.last_user_gasid) { |
| kvm_mips_flush_gva_pt(user_mm->pgd, KMF_USER); |
| for_each_possible_cpu(i) |
| cpu_context(i, user_mm) = 0; |
| vcpu->arch.last_user_gasid = gasid; |
| } |
| } |
| |
| /* |
| * Check if ASID is stale. This may happen due to a TLB flush request or |
| * a lazy user MM invalidation. |
| */ |
| if ((cpu_context(cpu, mm) ^ asid_cache(cpu)) & |
| asid_version_mask(cpu)) |
| get_new_mmu_context(mm, cpu); |
| } |
| |
| static int kvm_trap_emul_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) |
| { |
| int cpu = smp_processor_id(); |
| int r; |
| |
| /* Check if we have any exceptions/interrupts pending */ |
| kvm_mips_deliver_interrupts(vcpu, |
| kvm_read_c0_guest_cause(vcpu->arch.cop0)); |
| |
| kvm_trap_emul_vcpu_reenter(run, vcpu); |
| |
| /* |
| * We use user accessors to access guest memory, but we don't want to |
| * invoke Linux page faulting. |
| */ |
| pagefault_disable(); |
| |
| /* Disable hardware page table walking while in guest */ |
| htw_stop(); |
| |
| /* |
| * While in guest context we're in the guest's address space, not the |
| * host process address space, so we need to be careful not to confuse |
| * e.g. cache management IPIs. |
| */ |
| kvm_mips_suspend_mm(cpu); |
| |
| r = vcpu->arch.vcpu_run(run, vcpu); |
| |
| /* We may have migrated while handling guest exits */ |
| cpu = smp_processor_id(); |
| |
| /* Restore normal Linux process memory map */ |
| if (((cpu_context(cpu, current->mm) ^ asid_cache(cpu)) & |
| asid_version_mask(cpu))) |
| get_new_mmu_context(current->mm, cpu); |
| write_c0_entryhi(cpu_asid(cpu, current->mm)); |
| TLBMISS_HANDLER_SETUP_PGD(current->mm->pgd); |
| kvm_mips_resume_mm(cpu); |
| |
| htw_start(); |
| |
| pagefault_enable(); |
| |
| return r; |
| } |
| |
| static struct kvm_mips_callbacks kvm_trap_emul_callbacks = { |
| /* exit handlers */ |
| .handle_cop_unusable = kvm_trap_emul_handle_cop_unusable, |
| .handle_tlb_mod = kvm_trap_emul_handle_tlb_mod, |
| .handle_tlb_st_miss = kvm_trap_emul_handle_tlb_st_miss, |
| .handle_tlb_ld_miss = kvm_trap_emul_handle_tlb_ld_miss, |
| .handle_addr_err_st = kvm_trap_emul_handle_addr_err_st, |
| .handle_addr_err_ld = kvm_trap_emul_handle_addr_err_ld, |
| .handle_syscall = kvm_trap_emul_handle_syscall, |
| .handle_res_inst = kvm_trap_emul_handle_res_inst, |
| .handle_break = kvm_trap_emul_handle_break, |
| .handle_trap = kvm_trap_emul_handle_trap, |
| .handle_msa_fpe = kvm_trap_emul_handle_msa_fpe, |
| .handle_fpe = kvm_trap_emul_handle_fpe, |
| .handle_msa_disabled = kvm_trap_emul_handle_msa_disabled, |
| |
| .vcpu_init = kvm_trap_emul_vcpu_init, |
| .vcpu_uninit = kvm_trap_emul_vcpu_uninit, |
| .vcpu_setup = kvm_trap_emul_vcpu_setup, |
| .flush_shadow_all = kvm_trap_emul_flush_shadow_all, |
| .flush_shadow_memslot = kvm_trap_emul_flush_shadow_memslot, |
| .gva_to_gpa = kvm_trap_emul_gva_to_gpa_cb, |
| .queue_timer_int = kvm_mips_queue_timer_int_cb, |
| .dequeue_timer_int = kvm_mips_dequeue_timer_int_cb, |
| .queue_io_int = kvm_mips_queue_io_int_cb, |
| .dequeue_io_int = kvm_mips_dequeue_io_int_cb, |
| .irq_deliver = kvm_mips_irq_deliver_cb, |
| .irq_clear = kvm_mips_irq_clear_cb, |
| .num_regs = kvm_trap_emul_num_regs, |
| .copy_reg_indices = kvm_trap_emul_copy_reg_indices, |
| .get_one_reg = kvm_trap_emul_get_one_reg, |
| .set_one_reg = kvm_trap_emul_set_one_reg, |
| .vcpu_load = kvm_trap_emul_vcpu_load, |
| .vcpu_put = kvm_trap_emul_vcpu_put, |
| .vcpu_run = kvm_trap_emul_vcpu_run, |
| .vcpu_reenter = kvm_trap_emul_vcpu_reenter, |
| }; |
| |
| int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks) |
| { |
| *install_callbacks = &kvm_trap_emul_callbacks; |
| return 0; |
| } |