| /* |
| * Copyright (c) 2007-2017 Nicira, Inc. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of version 2 of the GNU General Public |
| * License as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/skbuff.h> |
| #include <linux/in.h> |
| #include <linux/ip.h> |
| #include <linux/openvswitch.h> |
| #include <linux/netfilter_ipv6.h> |
| #include <linux/sctp.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/in6.h> |
| #include <linux/if_arp.h> |
| #include <linux/if_vlan.h> |
| |
| #include <net/dst.h> |
| #include <net/ip.h> |
| #include <net/ipv6.h> |
| #include <net/ip6_fib.h> |
| #include <net/checksum.h> |
| #include <net/dsfield.h> |
| #include <net/mpls.h> |
| #include <net/sctp/checksum.h> |
| |
| #include "datapath.h" |
| #include "flow.h" |
| #include "conntrack.h" |
| #include "vport.h" |
| |
| struct deferred_action { |
| struct sk_buff *skb; |
| const struct nlattr *actions; |
| int actions_len; |
| |
| /* Store pkt_key clone when creating deferred action. */ |
| struct sw_flow_key pkt_key; |
| }; |
| |
| #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN) |
| struct ovs_frag_data { |
| unsigned long dst; |
| struct vport *vport; |
| struct ovs_skb_cb cb; |
| __be16 inner_protocol; |
| u16 network_offset; /* valid only for MPLS */ |
| u16 vlan_tci; |
| __be16 vlan_proto; |
| unsigned int l2_len; |
| u8 mac_proto; |
| u8 l2_data[MAX_L2_LEN]; |
| }; |
| |
| static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); |
| |
| #define DEFERRED_ACTION_FIFO_SIZE 10 |
| #define OVS_RECURSION_LIMIT 5 |
| #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) |
| struct action_fifo { |
| int head; |
| int tail; |
| /* Deferred action fifo queue storage. */ |
| struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; |
| }; |
| |
| struct action_flow_keys { |
| struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; |
| }; |
| |
| static struct action_fifo __percpu *action_fifos; |
| static struct action_flow_keys __percpu *flow_keys; |
| static DEFINE_PER_CPU(int, exec_actions_level); |
| |
| /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' |
| * space. Return NULL if out of key spaces. |
| */ |
| static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) |
| { |
| struct action_flow_keys *keys = this_cpu_ptr(flow_keys); |
| int level = this_cpu_read(exec_actions_level); |
| struct sw_flow_key *key = NULL; |
| |
| if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { |
| key = &keys->key[level - 1]; |
| *key = *key_; |
| } |
| |
| return key; |
| } |
| |
| static void action_fifo_init(struct action_fifo *fifo) |
| { |
| fifo->head = 0; |
| fifo->tail = 0; |
| } |
| |
| static bool action_fifo_is_empty(const struct action_fifo *fifo) |
| { |
| return (fifo->head == fifo->tail); |
| } |
| |
| static struct deferred_action *action_fifo_get(struct action_fifo *fifo) |
| { |
| if (action_fifo_is_empty(fifo)) |
| return NULL; |
| |
| return &fifo->fifo[fifo->tail++]; |
| } |
| |
| static struct deferred_action *action_fifo_put(struct action_fifo *fifo) |
| { |
| if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) |
| return NULL; |
| |
| return &fifo->fifo[fifo->head++]; |
| } |
| |
| /* Return true if fifo is not full */ |
| static struct deferred_action *add_deferred_actions(struct sk_buff *skb, |
| const struct sw_flow_key *key, |
| const struct nlattr *actions, |
| const int actions_len) |
| { |
| struct action_fifo *fifo; |
| struct deferred_action *da; |
| |
| fifo = this_cpu_ptr(action_fifos); |
| da = action_fifo_put(fifo); |
| if (da) { |
| da->skb = skb; |
| da->actions = actions; |
| da->actions_len = actions_len; |
| da->pkt_key = *key; |
| } |
| |
| return da; |
| } |
| |
| static void invalidate_flow_key(struct sw_flow_key *key) |
| { |
| key->mac_proto |= SW_FLOW_KEY_INVALID; |
| } |
| |
| static bool is_flow_key_valid(const struct sw_flow_key *key) |
| { |
| return !(key->mac_proto & SW_FLOW_KEY_INVALID); |
| } |
| |
| static int clone_execute(struct datapath *dp, struct sk_buff *skb, |
| struct sw_flow_key *key, |
| u32 recirc_id, |
| const struct nlattr *actions, int len, |
| bool last, bool clone_flow_key); |
| |
| static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr, |
| __be16 ethertype) |
| { |
| if (skb->ip_summed == CHECKSUM_COMPLETE) { |
| __be16 diff[] = { ~(hdr->h_proto), ethertype }; |
| |
| skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); |
| } |
| |
| hdr->h_proto = ethertype; |
| } |
| |
| static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, |
| const struct ovs_action_push_mpls *mpls) |
| { |
| struct mpls_shim_hdr *new_mpls_lse; |
| |
| /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */ |
| if (skb->encapsulation) |
| return -ENOTSUPP; |
| |
| if (skb_cow_head(skb, MPLS_HLEN) < 0) |
| return -ENOMEM; |
| |
| if (!skb->inner_protocol) { |
| skb_set_inner_network_header(skb, skb->mac_len); |
| skb_set_inner_protocol(skb, skb->protocol); |
| } |
| |
| skb_push(skb, MPLS_HLEN); |
| memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), |
| skb->mac_len); |
| skb_reset_mac_header(skb); |
| skb_set_network_header(skb, skb->mac_len); |
| |
| new_mpls_lse = mpls_hdr(skb); |
| new_mpls_lse->label_stack_entry = mpls->mpls_lse; |
| |
| skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN); |
| |
| if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) |
| update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype); |
| skb->protocol = mpls->mpls_ethertype; |
| |
| invalidate_flow_key(key); |
| return 0; |
| } |
| |
| static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, |
| const __be16 ethertype) |
| { |
| int err; |
| |
| err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); |
| if (unlikely(err)) |
| return err; |
| |
| skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); |
| |
| memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), |
| skb->mac_len); |
| |
| __skb_pull(skb, MPLS_HLEN); |
| skb_reset_mac_header(skb); |
| skb_set_network_header(skb, skb->mac_len); |
| |
| if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) { |
| struct ethhdr *hdr; |
| |
| /* mpls_hdr() is used to locate the ethertype field correctly in the |
| * presence of VLAN tags. |
| */ |
| hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); |
| update_ethertype(skb, hdr, ethertype); |
| } |
| if (eth_p_mpls(skb->protocol)) |
| skb->protocol = ethertype; |
| |
| invalidate_flow_key(key); |
| return 0; |
| } |
| |
| static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| const __be32 *mpls_lse, const __be32 *mask) |
| { |
| struct mpls_shim_hdr *stack; |
| __be32 lse; |
| int err; |
| |
| err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); |
| if (unlikely(err)) |
| return err; |
| |
| stack = mpls_hdr(skb); |
| lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); |
| if (skb->ip_summed == CHECKSUM_COMPLETE) { |
| __be32 diff[] = { ~(stack->label_stack_entry), lse }; |
| |
| skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); |
| } |
| |
| stack->label_stack_entry = lse; |
| flow_key->mpls.top_lse = lse; |
| return 0; |
| } |
| |
| static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) |
| { |
| int err; |
| |
| err = skb_vlan_pop(skb); |
| if (skb_vlan_tag_present(skb)) { |
| invalidate_flow_key(key); |
| } else { |
| key->eth.vlan.tci = 0; |
| key->eth.vlan.tpid = 0; |
| } |
| return err; |
| } |
| |
| static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, |
| const struct ovs_action_push_vlan *vlan) |
| { |
| if (skb_vlan_tag_present(skb)) { |
| invalidate_flow_key(key); |
| } else { |
| key->eth.vlan.tci = vlan->vlan_tci; |
| key->eth.vlan.tpid = vlan->vlan_tpid; |
| } |
| return skb_vlan_push(skb, vlan->vlan_tpid, |
| ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); |
| } |
| |
| /* 'src' is already properly masked. */ |
| static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) |
| { |
| u16 *dst = (u16 *)dst_; |
| const u16 *src = (const u16 *)src_; |
| const u16 *mask = (const u16 *)mask_; |
| |
| OVS_SET_MASKED(dst[0], src[0], mask[0]); |
| OVS_SET_MASKED(dst[1], src[1], mask[1]); |
| OVS_SET_MASKED(dst[2], src[2], mask[2]); |
| } |
| |
| static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| const struct ovs_key_ethernet *key, |
| const struct ovs_key_ethernet *mask) |
| { |
| int err; |
| |
| err = skb_ensure_writable(skb, ETH_HLEN); |
| if (unlikely(err)) |
| return err; |
| |
| skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); |
| |
| ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, |
| mask->eth_src); |
| ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, |
| mask->eth_dst); |
| |
| skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); |
| |
| ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); |
| ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); |
| return 0; |
| } |
| |
| /* pop_eth does not support VLAN packets as this action is never called |
| * for them. |
| */ |
| static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) |
| { |
| skb_pull_rcsum(skb, ETH_HLEN); |
| skb_reset_mac_header(skb); |
| skb_reset_mac_len(skb); |
| |
| /* safe right before invalidate_flow_key */ |
| key->mac_proto = MAC_PROTO_NONE; |
| invalidate_flow_key(key); |
| return 0; |
| } |
| |
| static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, |
| const struct ovs_action_push_eth *ethh) |
| { |
| struct ethhdr *hdr; |
| |
| /* Add the new Ethernet header */ |
| if (skb_cow_head(skb, ETH_HLEN) < 0) |
| return -ENOMEM; |
| |
| skb_push(skb, ETH_HLEN); |
| skb_reset_mac_header(skb); |
| skb_reset_mac_len(skb); |
| |
| hdr = eth_hdr(skb); |
| ether_addr_copy(hdr->h_source, ethh->addresses.eth_src); |
| ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst); |
| hdr->h_proto = skb->protocol; |
| |
| skb_postpush_rcsum(skb, hdr, ETH_HLEN); |
| |
| /* safe right before invalidate_flow_key */ |
| key->mac_proto = MAC_PROTO_ETHERNET; |
| invalidate_flow_key(key); |
| return 0; |
| } |
| |
| static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, |
| __be32 addr, __be32 new_addr) |
| { |
| int transport_len = skb->len - skb_transport_offset(skb); |
| |
| if (nh->frag_off & htons(IP_OFFSET)) |
| return; |
| |
| if (nh->protocol == IPPROTO_TCP) { |
| if (likely(transport_len >= sizeof(struct tcphdr))) |
| inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, |
| addr, new_addr, true); |
| } else if (nh->protocol == IPPROTO_UDP) { |
| if (likely(transport_len >= sizeof(struct udphdr))) { |
| struct udphdr *uh = udp_hdr(skb); |
| |
| if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { |
| inet_proto_csum_replace4(&uh->check, skb, |
| addr, new_addr, true); |
| if (!uh->check) |
| uh->check = CSUM_MANGLED_0; |
| } |
| } |
| } |
| } |
| |
| static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, |
| __be32 *addr, __be32 new_addr) |
| { |
| update_ip_l4_checksum(skb, nh, *addr, new_addr); |
| csum_replace4(&nh->check, *addr, new_addr); |
| skb_clear_hash(skb); |
| *addr = new_addr; |
| } |
| |
| static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, |
| __be32 addr[4], const __be32 new_addr[4]) |
| { |
| int transport_len = skb->len - skb_transport_offset(skb); |
| |
| if (l4_proto == NEXTHDR_TCP) { |
| if (likely(transport_len >= sizeof(struct tcphdr))) |
| inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, |
| addr, new_addr, true); |
| } else if (l4_proto == NEXTHDR_UDP) { |
| if (likely(transport_len >= sizeof(struct udphdr))) { |
| struct udphdr *uh = udp_hdr(skb); |
| |
| if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { |
| inet_proto_csum_replace16(&uh->check, skb, |
| addr, new_addr, true); |
| if (!uh->check) |
| uh->check = CSUM_MANGLED_0; |
| } |
| } |
| } else if (l4_proto == NEXTHDR_ICMP) { |
| if (likely(transport_len >= sizeof(struct icmp6hdr))) |
| inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, |
| skb, addr, new_addr, true); |
| } |
| } |
| |
| static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], |
| const __be32 mask[4], __be32 masked[4]) |
| { |
| masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); |
| masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); |
| masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); |
| masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); |
| } |
| |
| static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, |
| __be32 addr[4], const __be32 new_addr[4], |
| bool recalculate_csum) |
| { |
| if (recalculate_csum) |
| update_ipv6_checksum(skb, l4_proto, addr, new_addr); |
| |
| skb_clear_hash(skb); |
| memcpy(addr, new_addr, sizeof(__be32[4])); |
| } |
| |
| static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask) |
| { |
| /* Bits 21-24 are always unmasked, so this retains their values. */ |
| OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16)); |
| OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8)); |
| OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask); |
| } |
| |
| static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, |
| u8 mask) |
| { |
| new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); |
| |
| csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); |
| nh->ttl = new_ttl; |
| } |
| |
| static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| const struct ovs_key_ipv4 *key, |
| const struct ovs_key_ipv4 *mask) |
| { |
| struct iphdr *nh; |
| __be32 new_addr; |
| int err; |
| |
| err = skb_ensure_writable(skb, skb_network_offset(skb) + |
| sizeof(struct iphdr)); |
| if (unlikely(err)) |
| return err; |
| |
| nh = ip_hdr(skb); |
| |
| /* Setting an IP addresses is typically only a side effect of |
| * matching on them in the current userspace implementation, so it |
| * makes sense to check if the value actually changed. |
| */ |
| if (mask->ipv4_src) { |
| new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); |
| |
| if (unlikely(new_addr != nh->saddr)) { |
| set_ip_addr(skb, nh, &nh->saddr, new_addr); |
| flow_key->ipv4.addr.src = new_addr; |
| } |
| } |
| if (mask->ipv4_dst) { |
| new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); |
| |
| if (unlikely(new_addr != nh->daddr)) { |
| set_ip_addr(skb, nh, &nh->daddr, new_addr); |
| flow_key->ipv4.addr.dst = new_addr; |
| } |
| } |
| if (mask->ipv4_tos) { |
| ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); |
| flow_key->ip.tos = nh->tos; |
| } |
| if (mask->ipv4_ttl) { |
| set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); |
| flow_key->ip.ttl = nh->ttl; |
| } |
| |
| return 0; |
| } |
| |
| static bool is_ipv6_mask_nonzero(const __be32 addr[4]) |
| { |
| return !!(addr[0] | addr[1] | addr[2] | addr[3]); |
| } |
| |
| static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| const struct ovs_key_ipv6 *key, |
| const struct ovs_key_ipv6 *mask) |
| { |
| struct ipv6hdr *nh; |
| int err; |
| |
| err = skb_ensure_writable(skb, skb_network_offset(skb) + |
| sizeof(struct ipv6hdr)); |
| if (unlikely(err)) |
| return err; |
| |
| nh = ipv6_hdr(skb); |
| |
| /* Setting an IP addresses is typically only a side effect of |
| * matching on them in the current userspace implementation, so it |
| * makes sense to check if the value actually changed. |
| */ |
| if (is_ipv6_mask_nonzero(mask->ipv6_src)) { |
| __be32 *saddr = (__be32 *)&nh->saddr; |
| __be32 masked[4]; |
| |
| mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); |
| |
| if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { |
| set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, |
| true); |
| memcpy(&flow_key->ipv6.addr.src, masked, |
| sizeof(flow_key->ipv6.addr.src)); |
| } |
| } |
| if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { |
| unsigned int offset = 0; |
| int flags = IP6_FH_F_SKIP_RH; |
| bool recalc_csum = true; |
| __be32 *daddr = (__be32 *)&nh->daddr; |
| __be32 masked[4]; |
| |
| mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); |
| |
| if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { |
| if (ipv6_ext_hdr(nh->nexthdr)) |
| recalc_csum = (ipv6_find_hdr(skb, &offset, |
| NEXTHDR_ROUTING, |
| NULL, &flags) |
| != NEXTHDR_ROUTING); |
| |
| set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, |
| recalc_csum); |
| memcpy(&flow_key->ipv6.addr.dst, masked, |
| sizeof(flow_key->ipv6.addr.dst)); |
| } |
| } |
| if (mask->ipv6_tclass) { |
| ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass); |
| flow_key->ip.tos = ipv6_get_dsfield(nh); |
| } |
| if (mask->ipv6_label) { |
| set_ipv6_fl(nh, ntohl(key->ipv6_label), |
| ntohl(mask->ipv6_label)); |
| flow_key->ipv6.label = |
| *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); |
| } |
| if (mask->ipv6_hlimit) { |
| OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit, |
| mask->ipv6_hlimit); |
| flow_key->ip.ttl = nh->hop_limit; |
| } |
| return 0; |
| } |
| |
| /* Must follow skb_ensure_writable() since that can move the skb data. */ |
| static void set_tp_port(struct sk_buff *skb, __be16 *port, |
| __be16 new_port, __sum16 *check) |
| { |
| inet_proto_csum_replace2(check, skb, *port, new_port, false); |
| *port = new_port; |
| } |
| |
| static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| const struct ovs_key_udp *key, |
| const struct ovs_key_udp *mask) |
| { |
| struct udphdr *uh; |
| __be16 src, dst; |
| int err; |
| |
| err = skb_ensure_writable(skb, skb_transport_offset(skb) + |
| sizeof(struct udphdr)); |
| if (unlikely(err)) |
| return err; |
| |
| uh = udp_hdr(skb); |
| /* Either of the masks is non-zero, so do not bother checking them. */ |
| src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); |
| dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); |
| |
| if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { |
| if (likely(src != uh->source)) { |
| set_tp_port(skb, &uh->source, src, &uh->check); |
| flow_key->tp.src = src; |
| } |
| if (likely(dst != uh->dest)) { |
| set_tp_port(skb, &uh->dest, dst, &uh->check); |
| flow_key->tp.dst = dst; |
| } |
| |
| if (unlikely(!uh->check)) |
| uh->check = CSUM_MANGLED_0; |
| } else { |
| uh->source = src; |
| uh->dest = dst; |
| flow_key->tp.src = src; |
| flow_key->tp.dst = dst; |
| } |
| |
| skb_clear_hash(skb); |
| |
| return 0; |
| } |
| |
| static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| const struct ovs_key_tcp *key, |
| const struct ovs_key_tcp *mask) |
| { |
| struct tcphdr *th; |
| __be16 src, dst; |
| int err; |
| |
| err = skb_ensure_writable(skb, skb_transport_offset(skb) + |
| sizeof(struct tcphdr)); |
| if (unlikely(err)) |
| return err; |
| |
| th = tcp_hdr(skb); |
| src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); |
| if (likely(src != th->source)) { |
| set_tp_port(skb, &th->source, src, &th->check); |
| flow_key->tp.src = src; |
| } |
| dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); |
| if (likely(dst != th->dest)) { |
| set_tp_port(skb, &th->dest, dst, &th->check); |
| flow_key->tp.dst = dst; |
| } |
| skb_clear_hash(skb); |
| |
| return 0; |
| } |
| |
| static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| const struct ovs_key_sctp *key, |
| const struct ovs_key_sctp *mask) |
| { |
| unsigned int sctphoff = skb_transport_offset(skb); |
| struct sctphdr *sh; |
| __le32 old_correct_csum, new_csum, old_csum; |
| int err; |
| |
| err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); |
| if (unlikely(err)) |
| return err; |
| |
| sh = sctp_hdr(skb); |
| old_csum = sh->checksum; |
| old_correct_csum = sctp_compute_cksum(skb, sctphoff); |
| |
| sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); |
| sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); |
| |
| new_csum = sctp_compute_cksum(skb, sctphoff); |
| |
| /* Carry any checksum errors through. */ |
| sh->checksum = old_csum ^ old_correct_csum ^ new_csum; |
| |
| skb_clear_hash(skb); |
| flow_key->tp.src = sh->source; |
| flow_key->tp.dst = sh->dest; |
| |
| return 0; |
| } |
| |
| static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
| { |
| struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); |
| struct vport *vport = data->vport; |
| |
| if (skb_cow_head(skb, data->l2_len) < 0) { |
| kfree_skb(skb); |
| return -ENOMEM; |
| } |
| |
| __skb_dst_copy(skb, data->dst); |
| *OVS_CB(skb) = data->cb; |
| skb->inner_protocol = data->inner_protocol; |
| skb->vlan_tci = data->vlan_tci; |
| skb->vlan_proto = data->vlan_proto; |
| |
| /* Reconstruct the MAC header. */ |
| skb_push(skb, data->l2_len); |
| memcpy(skb->data, &data->l2_data, data->l2_len); |
| skb_postpush_rcsum(skb, skb->data, data->l2_len); |
| skb_reset_mac_header(skb); |
| |
| if (eth_p_mpls(skb->protocol)) { |
| skb->inner_network_header = skb->network_header; |
| skb_set_network_header(skb, data->network_offset); |
| skb_reset_mac_len(skb); |
| } |
| |
| ovs_vport_send(vport, skb, data->mac_proto); |
| return 0; |
| } |
| |
| static unsigned int |
| ovs_dst_get_mtu(const struct dst_entry *dst) |
| { |
| return dst->dev->mtu; |
| } |
| |
| static struct dst_ops ovs_dst_ops = { |
| .family = AF_UNSPEC, |
| .mtu = ovs_dst_get_mtu, |
| }; |
| |
| /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is |
| * ovs_vport_output(), which is called once per fragmented packet. |
| */ |
| static void prepare_frag(struct vport *vport, struct sk_buff *skb, |
| u16 orig_network_offset, u8 mac_proto) |
| { |
| unsigned int hlen = skb_network_offset(skb); |
| struct ovs_frag_data *data; |
| |
| data = this_cpu_ptr(&ovs_frag_data_storage); |
| data->dst = skb->_skb_refdst; |
| data->vport = vport; |
| data->cb = *OVS_CB(skb); |
| data->inner_protocol = skb->inner_protocol; |
| data->network_offset = orig_network_offset; |
| data->vlan_tci = skb->vlan_tci; |
| data->vlan_proto = skb->vlan_proto; |
| data->mac_proto = mac_proto; |
| data->l2_len = hlen; |
| memcpy(&data->l2_data, skb->data, hlen); |
| |
| memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); |
| skb_pull(skb, hlen); |
| } |
| |
| static void ovs_fragment(struct net *net, struct vport *vport, |
| struct sk_buff *skb, u16 mru, |
| struct sw_flow_key *key) |
| { |
| u16 orig_network_offset = 0; |
| |
| if (eth_p_mpls(skb->protocol)) { |
| orig_network_offset = skb_network_offset(skb); |
| skb->network_header = skb->inner_network_header; |
| } |
| |
| if (skb_network_offset(skb) > MAX_L2_LEN) { |
| OVS_NLERR(1, "L2 header too long to fragment"); |
| goto err; |
| } |
| |
| if (key->eth.type == htons(ETH_P_IP)) { |
| struct rtable ovs_rt = { 0 }; |
| unsigned long orig_dst; |
| |
| prepare_frag(vport, skb, orig_network_offset, |
| ovs_key_mac_proto(key)); |
| dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, |
| DST_OBSOLETE_NONE, DST_NOCOUNT); |
| ovs_rt.dst.dev = vport->dev; |
| |
| orig_dst = skb->_skb_refdst; |
| skb_dst_set_noref(skb, &ovs_rt.dst); |
| IPCB(skb)->frag_max_size = mru; |
| |
| ip_do_fragment(net, skb->sk, skb, ovs_vport_output); |
| refdst_drop(orig_dst); |
| } else if (key->eth.type == htons(ETH_P_IPV6)) { |
| const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops(); |
| unsigned long orig_dst; |
| struct rt6_info ovs_rt; |
| |
| if (!v6ops) |
| goto err; |
| |
| prepare_frag(vport, skb, orig_network_offset, |
| ovs_key_mac_proto(key)); |
| memset(&ovs_rt, 0, sizeof(ovs_rt)); |
| dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, |
| DST_OBSOLETE_NONE, DST_NOCOUNT); |
| ovs_rt.dst.dev = vport->dev; |
| |
| orig_dst = skb->_skb_refdst; |
| skb_dst_set_noref(skb, &ovs_rt.dst); |
| IP6CB(skb)->frag_max_size = mru; |
| |
| v6ops->fragment(net, skb->sk, skb, ovs_vport_output); |
| refdst_drop(orig_dst); |
| } else { |
| WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", |
| ovs_vport_name(vport), ntohs(key->eth.type), mru, |
| vport->dev->mtu); |
| goto err; |
| } |
| |
| return; |
| err: |
| kfree_skb(skb); |
| } |
| |
| static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, |
| struct sw_flow_key *key) |
| { |
| struct vport *vport = ovs_vport_rcu(dp, out_port); |
| |
| if (likely(vport)) { |
| u16 mru = OVS_CB(skb)->mru; |
| u32 cutlen = OVS_CB(skb)->cutlen; |
| |
| if (unlikely(cutlen > 0)) { |
| if (skb->len - cutlen > ovs_mac_header_len(key)) |
| pskb_trim(skb, skb->len - cutlen); |
| else |
| pskb_trim(skb, ovs_mac_header_len(key)); |
| } |
| |
| if (likely(!mru || |
| (skb->len <= mru + vport->dev->hard_header_len))) { |
| ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); |
| } else if (mru <= vport->dev->mtu) { |
| struct net *net = read_pnet(&dp->net); |
| |
| ovs_fragment(net, vport, skb, mru, key); |
| } else { |
| kfree_skb(skb); |
| } |
| } else { |
| kfree_skb(skb); |
| } |
| } |
| |
| static int output_userspace(struct datapath *dp, struct sk_buff *skb, |
| struct sw_flow_key *key, const struct nlattr *attr, |
| const struct nlattr *actions, int actions_len, |
| uint32_t cutlen) |
| { |
| struct dp_upcall_info upcall; |
| const struct nlattr *a; |
| int rem; |
| |
| memset(&upcall, 0, sizeof(upcall)); |
| upcall.cmd = OVS_PACKET_CMD_ACTION; |
| upcall.mru = OVS_CB(skb)->mru; |
| |
| for (a = nla_data(attr), rem = nla_len(attr); rem > 0; |
| a = nla_next(a, &rem)) { |
| switch (nla_type(a)) { |
| case OVS_USERSPACE_ATTR_USERDATA: |
| upcall.userdata = a; |
| break; |
| |
| case OVS_USERSPACE_ATTR_PID: |
| upcall.portid = nla_get_u32(a); |
| break; |
| |
| case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { |
| /* Get out tunnel info. */ |
| struct vport *vport; |
| |
| vport = ovs_vport_rcu(dp, nla_get_u32(a)); |
| if (vport) { |
| int err; |
| |
| err = dev_fill_metadata_dst(vport->dev, skb); |
| if (!err) |
| upcall.egress_tun_info = skb_tunnel_info(skb); |
| } |
| |
| break; |
| } |
| |
| case OVS_USERSPACE_ATTR_ACTIONS: { |
| /* Include actions. */ |
| upcall.actions = actions; |
| upcall.actions_len = actions_len; |
| break; |
| } |
| |
| } /* End of switch. */ |
| } |
| |
| return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); |
| } |
| |
| /* When 'last' is true, sample() should always consume the 'skb'. |
| * Otherwise, sample() should keep 'skb' intact regardless what |
| * actions are executed within sample(). |
| */ |
| static int sample(struct datapath *dp, struct sk_buff *skb, |
| struct sw_flow_key *key, const struct nlattr *attr, |
| bool last) |
| { |
| struct nlattr *actions; |
| struct nlattr *sample_arg; |
| int rem = nla_len(attr); |
| const struct sample_arg *arg; |
| bool clone_flow_key; |
| |
| /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ |
| sample_arg = nla_data(attr); |
| arg = nla_data(sample_arg); |
| actions = nla_next(sample_arg, &rem); |
| |
| if ((arg->probability != U32_MAX) && |
| (!arg->probability || prandom_u32() > arg->probability)) { |
| if (last) |
| consume_skb(skb); |
| return 0; |
| } |
| |
| clone_flow_key = !arg->exec; |
| return clone_execute(dp, skb, key, 0, actions, rem, last, |
| clone_flow_key); |
| } |
| |
| static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, |
| const struct nlattr *attr) |
| { |
| struct ovs_action_hash *hash_act = nla_data(attr); |
| u32 hash = 0; |
| |
| /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */ |
| hash = skb_get_hash(skb); |
| hash = jhash_1word(hash, hash_act->hash_basis); |
| if (!hash) |
| hash = 0x1; |
| |
| key->ovs_flow_hash = hash; |
| } |
| |
| static int execute_set_action(struct sk_buff *skb, |
| struct sw_flow_key *flow_key, |
| const struct nlattr *a) |
| { |
| /* Only tunnel set execution is supported without a mask. */ |
| if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { |
| struct ovs_tunnel_info *tun = nla_data(a); |
| |
| skb_dst_drop(skb); |
| dst_hold((struct dst_entry *)tun->tun_dst); |
| skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| /* Mask is at the midpoint of the data. */ |
| #define get_mask(a, type) ((const type)nla_data(a) + 1) |
| |
| static int execute_masked_set_action(struct sk_buff *skb, |
| struct sw_flow_key *flow_key, |
| const struct nlattr *a) |
| { |
| int err = 0; |
| |
| switch (nla_type(a)) { |
| case OVS_KEY_ATTR_PRIORITY: |
| OVS_SET_MASKED(skb->priority, nla_get_u32(a), |
| *get_mask(a, u32 *)); |
| flow_key->phy.priority = skb->priority; |
| break; |
| |
| case OVS_KEY_ATTR_SKB_MARK: |
| OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); |
| flow_key->phy.skb_mark = skb->mark; |
| break; |
| |
| case OVS_KEY_ATTR_TUNNEL_INFO: |
| /* Masked data not supported for tunnel. */ |
| err = -EINVAL; |
| break; |
| |
| case OVS_KEY_ATTR_ETHERNET: |
| err = set_eth_addr(skb, flow_key, nla_data(a), |
| get_mask(a, struct ovs_key_ethernet *)); |
| break; |
| |
| case OVS_KEY_ATTR_IPV4: |
| err = set_ipv4(skb, flow_key, nla_data(a), |
| get_mask(a, struct ovs_key_ipv4 *)); |
| break; |
| |
| case OVS_KEY_ATTR_IPV6: |
| err = set_ipv6(skb, flow_key, nla_data(a), |
| get_mask(a, struct ovs_key_ipv6 *)); |
| break; |
| |
| case OVS_KEY_ATTR_TCP: |
| err = set_tcp(skb, flow_key, nla_data(a), |
| get_mask(a, struct ovs_key_tcp *)); |
| break; |
| |
| case OVS_KEY_ATTR_UDP: |
| err = set_udp(skb, flow_key, nla_data(a), |
| get_mask(a, struct ovs_key_udp *)); |
| break; |
| |
| case OVS_KEY_ATTR_SCTP: |
| err = set_sctp(skb, flow_key, nla_data(a), |
| get_mask(a, struct ovs_key_sctp *)); |
| break; |
| |
| case OVS_KEY_ATTR_MPLS: |
| err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, |
| __be32 *)); |
| break; |
| |
| case OVS_KEY_ATTR_CT_STATE: |
| case OVS_KEY_ATTR_CT_ZONE: |
| case OVS_KEY_ATTR_CT_MARK: |
| case OVS_KEY_ATTR_CT_LABELS: |
| case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: |
| case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: |
| err = -EINVAL; |
| break; |
| } |
| |
| return err; |
| } |
| |
| static int execute_recirc(struct datapath *dp, struct sk_buff *skb, |
| struct sw_flow_key *key, |
| const struct nlattr *a, bool last) |
| { |
| u32 recirc_id; |
| |
| if (!is_flow_key_valid(key)) { |
| int err; |
| |
| err = ovs_flow_key_update(skb, key); |
| if (err) |
| return err; |
| } |
| BUG_ON(!is_flow_key_valid(key)); |
| |
| recirc_id = nla_get_u32(a); |
| return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); |
| } |
| |
| /* Execute a list of actions against 'skb'. */ |
| static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, |
| struct sw_flow_key *key, |
| const struct nlattr *attr, int len) |
| { |
| const struct nlattr *a; |
| int rem; |
| |
| for (a = attr, rem = len; rem > 0; |
| a = nla_next(a, &rem)) { |
| int err = 0; |
| |
| switch (nla_type(a)) { |
| case OVS_ACTION_ATTR_OUTPUT: { |
| int port = nla_get_u32(a); |
| struct sk_buff *clone; |
| |
| /* Every output action needs a separate clone |
| * of 'skb', In case the output action is the |
| * last action, cloning can be avoided. |
| */ |
| if (nla_is_last(a, rem)) { |
| do_output(dp, skb, port, key); |
| /* 'skb' has been used for output. |
| */ |
| return 0; |
| } |
| |
| clone = skb_clone(skb, GFP_ATOMIC); |
| if (clone) |
| do_output(dp, clone, port, key); |
| OVS_CB(skb)->cutlen = 0; |
| break; |
| } |
| |
| case OVS_ACTION_ATTR_TRUNC: { |
| struct ovs_action_trunc *trunc = nla_data(a); |
| |
| if (skb->len > trunc->max_len) |
| OVS_CB(skb)->cutlen = skb->len - trunc->max_len; |
| break; |
| } |
| |
| case OVS_ACTION_ATTR_USERSPACE: |
| output_userspace(dp, skb, key, a, attr, |
| len, OVS_CB(skb)->cutlen); |
| OVS_CB(skb)->cutlen = 0; |
| break; |
| |
| case OVS_ACTION_ATTR_HASH: |
| execute_hash(skb, key, a); |
| break; |
| |
| case OVS_ACTION_ATTR_PUSH_MPLS: |
| err = push_mpls(skb, key, nla_data(a)); |
| break; |
| |
| case OVS_ACTION_ATTR_POP_MPLS: |
| err = pop_mpls(skb, key, nla_get_be16(a)); |
| break; |
| |
| case OVS_ACTION_ATTR_PUSH_VLAN: |
| err = push_vlan(skb, key, nla_data(a)); |
| break; |
| |
| case OVS_ACTION_ATTR_POP_VLAN: |
| err = pop_vlan(skb, key); |
| break; |
| |
| case OVS_ACTION_ATTR_RECIRC: { |
| bool last = nla_is_last(a, rem); |
| |
| err = execute_recirc(dp, skb, key, a, last); |
| if (last) { |
| /* If this is the last action, the skb has |
| * been consumed or freed. |
| * Return immediately. |
| */ |
| return err; |
| } |
| break; |
| } |
| |
| case OVS_ACTION_ATTR_SET: |
| err = execute_set_action(skb, key, nla_data(a)); |
| break; |
| |
| case OVS_ACTION_ATTR_SET_MASKED: |
| case OVS_ACTION_ATTR_SET_TO_MASKED: |
| err = execute_masked_set_action(skb, key, nla_data(a)); |
| break; |
| |
| case OVS_ACTION_ATTR_SAMPLE: { |
| bool last = nla_is_last(a, rem); |
| |
| err = sample(dp, skb, key, a, last); |
| if (last) |
| return err; |
| |
| break; |
| } |
| |
| case OVS_ACTION_ATTR_CT: |
| if (!is_flow_key_valid(key)) { |
| err = ovs_flow_key_update(skb, key); |
| if (err) |
| return err; |
| } |
| |
| err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, |
| nla_data(a)); |
| |
| /* Hide stolen IP fragments from user space. */ |
| if (err) |
| return err == -EINPROGRESS ? 0 : err; |
| break; |
| |
| case OVS_ACTION_ATTR_PUSH_ETH: |
| err = push_eth(skb, key, nla_data(a)); |
| break; |
| |
| case OVS_ACTION_ATTR_POP_ETH: |
| err = pop_eth(skb, key); |
| break; |
| } |
| |
| if (unlikely(err)) { |
| kfree_skb(skb); |
| return err; |
| } |
| } |
| |
| consume_skb(skb); |
| return 0; |
| } |
| |
| /* Execute the actions on the clone of the packet. The effect of the |
| * execution does not affect the original 'skb' nor the original 'key'. |
| * |
| * The execution may be deferred in case the actions can not be executed |
| * immediately. |
| */ |
| static int clone_execute(struct datapath *dp, struct sk_buff *skb, |
| struct sw_flow_key *key, u32 recirc_id, |
| const struct nlattr *actions, int len, |
| bool last, bool clone_flow_key) |
| { |
| struct deferred_action *da; |
| struct sw_flow_key *clone; |
| |
| skb = last ? skb : skb_clone(skb, GFP_ATOMIC); |
| if (!skb) { |
| /* Out of memory, skip this action. |
| */ |
| return 0; |
| } |
| |
| /* When clone_flow_key is false, the 'key' will not be change |
| * by the actions, then the 'key' can be used directly. |
| * Otherwise, try to clone key from the next recursion level of |
| * 'flow_keys'. If clone is successful, execute the actions |
| * without deferring. |
| */ |
| clone = clone_flow_key ? clone_key(key) : key; |
| if (clone) { |
| int err = 0; |
| |
| if (actions) { /* Sample action */ |
| if (clone_flow_key) |
| __this_cpu_inc(exec_actions_level); |
| |
| err = do_execute_actions(dp, skb, clone, |
| actions, len); |
| |
| if (clone_flow_key) |
| __this_cpu_dec(exec_actions_level); |
| } else { /* Recirc action */ |
| clone->recirc_id = recirc_id; |
| ovs_dp_process_packet(skb, clone); |
| } |
| return err; |
| } |
| |
| /* Out of 'flow_keys' space. Defer actions */ |
| da = add_deferred_actions(skb, key, actions, len); |
| if (da) { |
| if (!actions) { /* Recirc action */ |
| key = &da->pkt_key; |
| key->recirc_id = recirc_id; |
| } |
| } else { |
| /* Out of per CPU action FIFO space. Drop the 'skb' and |
| * log an error. |
| */ |
| kfree_skb(skb); |
| |
| if (net_ratelimit()) { |
| if (actions) { /* Sample action */ |
| pr_warn("%s: deferred action limit reached, drop sample action\n", |
| ovs_dp_name(dp)); |
| } else { /* Recirc action */ |
| pr_warn("%s: deferred action limit reached, drop recirc action\n", |
| ovs_dp_name(dp)); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static void process_deferred_actions(struct datapath *dp) |
| { |
| struct action_fifo *fifo = this_cpu_ptr(action_fifos); |
| |
| /* Do not touch the FIFO in case there is no deferred actions. */ |
| if (action_fifo_is_empty(fifo)) |
| return; |
| |
| /* Finishing executing all deferred actions. */ |
| do { |
| struct deferred_action *da = action_fifo_get(fifo); |
| struct sk_buff *skb = da->skb; |
| struct sw_flow_key *key = &da->pkt_key; |
| const struct nlattr *actions = da->actions; |
| int actions_len = da->actions_len; |
| |
| if (actions) |
| do_execute_actions(dp, skb, key, actions, actions_len); |
| else |
| ovs_dp_process_packet(skb, key); |
| } while (!action_fifo_is_empty(fifo)); |
| |
| /* Reset FIFO for the next packet. */ |
| action_fifo_init(fifo); |
| } |
| |
| /* Execute a list of actions against 'skb'. */ |
| int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, |
| const struct sw_flow_actions *acts, |
| struct sw_flow_key *key) |
| { |
| int err, level; |
| |
| level = __this_cpu_inc_return(exec_actions_level); |
| if (unlikely(level > OVS_RECURSION_LIMIT)) { |
| net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", |
| ovs_dp_name(dp)); |
| kfree_skb(skb); |
| err = -ENETDOWN; |
| goto out; |
| } |
| |
| OVS_CB(skb)->acts_origlen = acts->orig_len; |
| err = do_execute_actions(dp, skb, key, |
| acts->actions, acts->actions_len); |
| |
| if (level == 1) |
| process_deferred_actions(dp); |
| |
| out: |
| __this_cpu_dec(exec_actions_level); |
| return err; |
| } |
| |
| int action_fifos_init(void) |
| { |
| action_fifos = alloc_percpu(struct action_fifo); |
| if (!action_fifos) |
| return -ENOMEM; |
| |
| flow_keys = alloc_percpu(struct action_flow_keys); |
| if (!flow_keys) { |
| free_percpu(action_fifos); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| void action_fifos_exit(void) |
| { |
| free_percpu(action_fifos); |
| free_percpu(flow_keys); |
| } |