| /* |
| BlueZ - Bluetooth protocol stack for Linux |
| |
| Copyright (C) 2014 Intel Corporation |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License version 2 as |
| published by the Free Software Foundation; |
| |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. |
| IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY |
| CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES |
| WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| |
| ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, |
| COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS |
| SOFTWARE IS DISCLAIMED. |
| */ |
| |
| #include <linux/sched/signal.h> |
| |
| #include <net/bluetooth/bluetooth.h> |
| #include <net/bluetooth/hci_core.h> |
| #include <net/bluetooth/mgmt.h> |
| |
| #include "smp.h" |
| #include "hci_request.h" |
| |
| #define HCI_REQ_DONE 0 |
| #define HCI_REQ_PEND 1 |
| #define HCI_REQ_CANCELED 2 |
| |
| void hci_req_init(struct hci_request *req, struct hci_dev *hdev) |
| { |
| skb_queue_head_init(&req->cmd_q); |
| req->hdev = hdev; |
| req->err = 0; |
| } |
| |
| static int req_run(struct hci_request *req, hci_req_complete_t complete, |
| hci_req_complete_skb_t complete_skb) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct sk_buff *skb; |
| unsigned long flags; |
| |
| BT_DBG("length %u", skb_queue_len(&req->cmd_q)); |
| |
| /* If an error occurred during request building, remove all HCI |
| * commands queued on the HCI request queue. |
| */ |
| if (req->err) { |
| skb_queue_purge(&req->cmd_q); |
| return req->err; |
| } |
| |
| /* Do not allow empty requests */ |
| if (skb_queue_empty(&req->cmd_q)) |
| return -ENODATA; |
| |
| skb = skb_peek_tail(&req->cmd_q); |
| if (complete) { |
| bt_cb(skb)->hci.req_complete = complete; |
| } else if (complete_skb) { |
| bt_cb(skb)->hci.req_complete_skb = complete_skb; |
| bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; |
| } |
| |
| spin_lock_irqsave(&hdev->cmd_q.lock, flags); |
| skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); |
| spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); |
| |
| queue_work(hdev->workqueue, &hdev->cmd_work); |
| |
| return 0; |
| } |
| |
| int hci_req_run(struct hci_request *req, hci_req_complete_t complete) |
| { |
| return req_run(req, complete, NULL); |
| } |
| |
| int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete) |
| { |
| return req_run(req, NULL, complete); |
| } |
| |
| static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, |
| struct sk_buff *skb) |
| { |
| BT_DBG("%s result 0x%2.2x", hdev->name, result); |
| |
| if (hdev->req_status == HCI_REQ_PEND) { |
| hdev->req_result = result; |
| hdev->req_status = HCI_REQ_DONE; |
| if (skb) |
| hdev->req_skb = skb_get(skb); |
| wake_up_interruptible(&hdev->req_wait_q); |
| } |
| } |
| |
| void hci_req_sync_cancel(struct hci_dev *hdev, int err) |
| { |
| BT_DBG("%s err 0x%2.2x", hdev->name, err); |
| |
| if (hdev->req_status == HCI_REQ_PEND) { |
| hdev->req_result = err; |
| hdev->req_status = HCI_REQ_CANCELED; |
| wake_up_interruptible(&hdev->req_wait_q); |
| } |
| } |
| |
| struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, |
| const void *param, u8 event, u32 timeout) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| struct hci_request req; |
| struct sk_buff *skb; |
| int err = 0; |
| |
| BT_DBG("%s", hdev->name); |
| |
| hci_req_init(&req, hdev); |
| |
| hci_req_add_ev(&req, opcode, plen, param, event); |
| |
| hdev->req_status = HCI_REQ_PEND; |
| |
| add_wait_queue(&hdev->req_wait_q, &wait); |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| err = hci_req_run_skb(&req, hci_req_sync_complete); |
| if (err < 0) { |
| remove_wait_queue(&hdev->req_wait_q, &wait); |
| set_current_state(TASK_RUNNING); |
| return ERR_PTR(err); |
| } |
| |
| schedule_timeout(timeout); |
| |
| remove_wait_queue(&hdev->req_wait_q, &wait); |
| |
| if (signal_pending(current)) |
| return ERR_PTR(-EINTR); |
| |
| switch (hdev->req_status) { |
| case HCI_REQ_DONE: |
| err = -bt_to_errno(hdev->req_result); |
| break; |
| |
| case HCI_REQ_CANCELED: |
| err = -hdev->req_result; |
| break; |
| |
| default: |
| err = -ETIMEDOUT; |
| break; |
| } |
| |
| hdev->req_status = hdev->req_result = 0; |
| skb = hdev->req_skb; |
| hdev->req_skb = NULL; |
| |
| BT_DBG("%s end: err %d", hdev->name, err); |
| |
| if (err < 0) { |
| kfree_skb(skb); |
| return ERR_PTR(err); |
| } |
| |
| if (!skb) |
| return ERR_PTR(-ENODATA); |
| |
| return skb; |
| } |
| EXPORT_SYMBOL(__hci_cmd_sync_ev); |
| |
| struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, |
| const void *param, u32 timeout) |
| { |
| return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout); |
| } |
| EXPORT_SYMBOL(__hci_cmd_sync); |
| |
| /* Execute request and wait for completion. */ |
| int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req, |
| unsigned long opt), |
| unsigned long opt, u32 timeout, u8 *hci_status) |
| { |
| struct hci_request req; |
| DECLARE_WAITQUEUE(wait, current); |
| int err = 0; |
| |
| BT_DBG("%s start", hdev->name); |
| |
| hci_req_init(&req, hdev); |
| |
| hdev->req_status = HCI_REQ_PEND; |
| |
| err = func(&req, opt); |
| if (err) { |
| if (hci_status) |
| *hci_status = HCI_ERROR_UNSPECIFIED; |
| return err; |
| } |
| |
| add_wait_queue(&hdev->req_wait_q, &wait); |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| err = hci_req_run_skb(&req, hci_req_sync_complete); |
| if (err < 0) { |
| hdev->req_status = 0; |
| |
| remove_wait_queue(&hdev->req_wait_q, &wait); |
| set_current_state(TASK_RUNNING); |
| |
| /* ENODATA means the HCI request command queue is empty. |
| * This can happen when a request with conditionals doesn't |
| * trigger any commands to be sent. This is normal behavior |
| * and should not trigger an error return. |
| */ |
| if (err == -ENODATA) { |
| if (hci_status) |
| *hci_status = 0; |
| return 0; |
| } |
| |
| if (hci_status) |
| *hci_status = HCI_ERROR_UNSPECIFIED; |
| |
| return err; |
| } |
| |
| schedule_timeout(timeout); |
| |
| remove_wait_queue(&hdev->req_wait_q, &wait); |
| |
| if (signal_pending(current)) |
| return -EINTR; |
| |
| switch (hdev->req_status) { |
| case HCI_REQ_DONE: |
| err = -bt_to_errno(hdev->req_result); |
| if (hci_status) |
| *hci_status = hdev->req_result; |
| break; |
| |
| case HCI_REQ_CANCELED: |
| err = -hdev->req_result; |
| if (hci_status) |
| *hci_status = HCI_ERROR_UNSPECIFIED; |
| break; |
| |
| default: |
| err = -ETIMEDOUT; |
| if (hci_status) |
| *hci_status = HCI_ERROR_UNSPECIFIED; |
| break; |
| } |
| |
| kfree_skb(hdev->req_skb); |
| hdev->req_skb = NULL; |
| hdev->req_status = hdev->req_result = 0; |
| |
| BT_DBG("%s end: err %d", hdev->name, err); |
| |
| return err; |
| } |
| |
| int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req, |
| unsigned long opt), |
| unsigned long opt, u32 timeout, u8 *hci_status) |
| { |
| int ret; |
| |
| if (!test_bit(HCI_UP, &hdev->flags)) |
| return -ENETDOWN; |
| |
| /* Serialize all requests */ |
| hci_req_sync_lock(hdev); |
| ret = __hci_req_sync(hdev, req, opt, timeout, hci_status); |
| hci_req_sync_unlock(hdev); |
| |
| return ret; |
| } |
| |
| struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, |
| const void *param) |
| { |
| int len = HCI_COMMAND_HDR_SIZE + plen; |
| struct hci_command_hdr *hdr; |
| struct sk_buff *skb; |
| |
| skb = bt_skb_alloc(len, GFP_ATOMIC); |
| if (!skb) |
| return NULL; |
| |
| hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); |
| hdr->opcode = cpu_to_le16(opcode); |
| hdr->plen = plen; |
| |
| if (plen) |
| skb_put_data(skb, param, plen); |
| |
| BT_DBG("skb len %d", skb->len); |
| |
| hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; |
| hci_skb_opcode(skb) = opcode; |
| |
| return skb; |
| } |
| |
| /* Queue a command to an asynchronous HCI request */ |
| void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, |
| const void *param, u8 event) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct sk_buff *skb; |
| |
| BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); |
| |
| /* If an error occurred during request building, there is no point in |
| * queueing the HCI command. We can simply return. |
| */ |
| if (req->err) |
| return; |
| |
| skb = hci_prepare_cmd(hdev, opcode, plen, param); |
| if (!skb) { |
| BT_ERR("%s no memory for command (opcode 0x%4.4x)", |
| hdev->name, opcode); |
| req->err = -ENOMEM; |
| return; |
| } |
| |
| if (skb_queue_empty(&req->cmd_q)) |
| bt_cb(skb)->hci.req_flags |= HCI_REQ_START; |
| |
| bt_cb(skb)->hci.req_event = event; |
| |
| skb_queue_tail(&req->cmd_q, skb); |
| } |
| |
| void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, |
| const void *param) |
| { |
| hci_req_add_ev(req, opcode, plen, param, 0); |
| } |
| |
| void __hci_req_write_fast_connectable(struct hci_request *req, bool enable) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_write_page_scan_activity acp; |
| u8 type; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| return; |
| |
| if (hdev->hci_ver < BLUETOOTH_VER_1_2) |
| return; |
| |
| if (enable) { |
| type = PAGE_SCAN_TYPE_INTERLACED; |
| |
| /* 160 msec page scan interval */ |
| acp.interval = cpu_to_le16(0x0100); |
| } else { |
| type = PAGE_SCAN_TYPE_STANDARD; /* default */ |
| |
| /* default 1.28 sec page scan */ |
| acp.interval = cpu_to_le16(0x0800); |
| } |
| |
| acp.window = cpu_to_le16(0x0012); |
| |
| if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval || |
| __cpu_to_le16(hdev->page_scan_window) != acp.window) |
| hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, |
| sizeof(acp), &acp); |
| |
| if (hdev->page_scan_type != type) |
| hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type); |
| } |
| |
| /* This function controls the background scanning based on hdev->pend_le_conns |
| * list. If there are pending LE connection we start the background scanning, |
| * otherwise we stop it. |
| * |
| * This function requires the caller holds hdev->lock. |
| */ |
| static void __hci_update_background_scan(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| if (!test_bit(HCI_UP, &hdev->flags) || |
| test_bit(HCI_INIT, &hdev->flags) || |
| hci_dev_test_flag(hdev, HCI_SETUP) || |
| hci_dev_test_flag(hdev, HCI_CONFIG) || |
| hci_dev_test_flag(hdev, HCI_AUTO_OFF) || |
| hci_dev_test_flag(hdev, HCI_UNREGISTER)) |
| return; |
| |
| /* No point in doing scanning if LE support hasn't been enabled */ |
| if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) |
| return; |
| |
| /* If discovery is active don't interfere with it */ |
| if (hdev->discovery.state != DISCOVERY_STOPPED) |
| return; |
| |
| /* Reset RSSI and UUID filters when starting background scanning |
| * since these filters are meant for service discovery only. |
| * |
| * The Start Discovery and Start Service Discovery operations |
| * ensure to set proper values for RSSI threshold and UUID |
| * filter list. So it is safe to just reset them here. |
| */ |
| hci_discovery_filter_clear(hdev); |
| |
| if (list_empty(&hdev->pend_le_conns) && |
| list_empty(&hdev->pend_le_reports)) { |
| /* If there is no pending LE connections or devices |
| * to be scanned for, we should stop the background |
| * scanning. |
| */ |
| |
| /* If controller is not scanning we are done. */ |
| if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| return; |
| |
| hci_req_add_le_scan_disable(req); |
| |
| BT_DBG("%s stopping background scanning", hdev->name); |
| } else { |
| /* If there is at least one pending LE connection, we should |
| * keep the background scan running. |
| */ |
| |
| /* If controller is connecting, we should not start scanning |
| * since some controllers are not able to scan and connect at |
| * the same time. |
| */ |
| if (hci_lookup_le_connect(hdev)) |
| return; |
| |
| /* If controller is currently scanning, we stop it to ensure we |
| * don't miss any advertising (due to duplicates filter). |
| */ |
| if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| hci_req_add_le_scan_disable(req); |
| |
| hci_req_add_le_passive_scan(req); |
| |
| BT_DBG("%s starting background scanning", hdev->name); |
| } |
| } |
| |
| void __hci_req_update_name(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_write_local_name cp; |
| |
| memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); |
| |
| hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp); |
| } |
| |
| #define PNP_INFO_SVCLASS_ID 0x1200 |
| |
| static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) |
| { |
| u8 *ptr = data, *uuids_start = NULL; |
| struct bt_uuid *uuid; |
| |
| if (len < 4) |
| return ptr; |
| |
| list_for_each_entry(uuid, &hdev->uuids, list) { |
| u16 uuid16; |
| |
| if (uuid->size != 16) |
| continue; |
| |
| uuid16 = get_unaligned_le16(&uuid->uuid[12]); |
| if (uuid16 < 0x1100) |
| continue; |
| |
| if (uuid16 == PNP_INFO_SVCLASS_ID) |
| continue; |
| |
| if (!uuids_start) { |
| uuids_start = ptr; |
| uuids_start[0] = 1; |
| uuids_start[1] = EIR_UUID16_ALL; |
| ptr += 2; |
| } |
| |
| /* Stop if not enough space to put next UUID */ |
| if ((ptr - data) + sizeof(u16) > len) { |
| uuids_start[1] = EIR_UUID16_SOME; |
| break; |
| } |
| |
| *ptr++ = (uuid16 & 0x00ff); |
| *ptr++ = (uuid16 & 0xff00) >> 8; |
| uuids_start[0] += sizeof(uuid16); |
| } |
| |
| return ptr; |
| } |
| |
| static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) |
| { |
| u8 *ptr = data, *uuids_start = NULL; |
| struct bt_uuid *uuid; |
| |
| if (len < 6) |
| return ptr; |
| |
| list_for_each_entry(uuid, &hdev->uuids, list) { |
| if (uuid->size != 32) |
| continue; |
| |
| if (!uuids_start) { |
| uuids_start = ptr; |
| uuids_start[0] = 1; |
| uuids_start[1] = EIR_UUID32_ALL; |
| ptr += 2; |
| } |
| |
| /* Stop if not enough space to put next UUID */ |
| if ((ptr - data) + sizeof(u32) > len) { |
| uuids_start[1] = EIR_UUID32_SOME; |
| break; |
| } |
| |
| memcpy(ptr, &uuid->uuid[12], sizeof(u32)); |
| ptr += sizeof(u32); |
| uuids_start[0] += sizeof(u32); |
| } |
| |
| return ptr; |
| } |
| |
| static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) |
| { |
| u8 *ptr = data, *uuids_start = NULL; |
| struct bt_uuid *uuid; |
| |
| if (len < 18) |
| return ptr; |
| |
| list_for_each_entry(uuid, &hdev->uuids, list) { |
| if (uuid->size != 128) |
| continue; |
| |
| if (!uuids_start) { |
| uuids_start = ptr; |
| uuids_start[0] = 1; |
| uuids_start[1] = EIR_UUID128_ALL; |
| ptr += 2; |
| } |
| |
| /* Stop if not enough space to put next UUID */ |
| if ((ptr - data) + 16 > len) { |
| uuids_start[1] = EIR_UUID128_SOME; |
| break; |
| } |
| |
| memcpy(ptr, uuid->uuid, 16); |
| ptr += 16; |
| uuids_start[0] += 16; |
| } |
| |
| return ptr; |
| } |
| |
| static void create_eir(struct hci_dev *hdev, u8 *data) |
| { |
| u8 *ptr = data; |
| size_t name_len; |
| |
| name_len = strlen(hdev->dev_name); |
| |
| if (name_len > 0) { |
| /* EIR Data type */ |
| if (name_len > 48) { |
| name_len = 48; |
| ptr[1] = EIR_NAME_SHORT; |
| } else |
| ptr[1] = EIR_NAME_COMPLETE; |
| |
| /* EIR Data length */ |
| ptr[0] = name_len + 1; |
| |
| memcpy(ptr + 2, hdev->dev_name, name_len); |
| |
| ptr += (name_len + 2); |
| } |
| |
| if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) { |
| ptr[0] = 2; |
| ptr[1] = EIR_TX_POWER; |
| ptr[2] = (u8) hdev->inq_tx_power; |
| |
| ptr += 3; |
| } |
| |
| if (hdev->devid_source > 0) { |
| ptr[0] = 9; |
| ptr[1] = EIR_DEVICE_ID; |
| |
| put_unaligned_le16(hdev->devid_source, ptr + 2); |
| put_unaligned_le16(hdev->devid_vendor, ptr + 4); |
| put_unaligned_le16(hdev->devid_product, ptr + 6); |
| put_unaligned_le16(hdev->devid_version, ptr + 8); |
| |
| ptr += 10; |
| } |
| |
| ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); |
| ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); |
| ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); |
| } |
| |
| void __hci_req_update_eir(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_write_eir cp; |
| |
| if (!hdev_is_powered(hdev)) |
| return; |
| |
| if (!lmp_ext_inq_capable(hdev)) |
| return; |
| |
| if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) |
| return; |
| |
| if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) |
| return; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| create_eir(hdev, cp.data); |
| |
| if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) |
| return; |
| |
| memcpy(hdev->eir, cp.data, sizeof(cp.data)); |
| |
| hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); |
| } |
| |
| void hci_req_add_le_scan_disable(struct hci_request *req) |
| { |
| struct hci_cp_le_set_scan_enable cp; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.enable = LE_SCAN_DISABLE; |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); |
| } |
| |
| static void add_to_white_list(struct hci_request *req, |
| struct hci_conn_params *params) |
| { |
| struct hci_cp_le_add_to_white_list cp; |
| |
| cp.bdaddr_type = params->addr_type; |
| bacpy(&cp.bdaddr, ¶ms->addr); |
| |
| hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp); |
| } |
| |
| static u8 update_white_list(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_conn_params *params; |
| struct bdaddr_list *b; |
| uint8_t white_list_entries = 0; |
| |
| /* Go through the current white list programmed into the |
| * controller one by one and check if that address is still |
| * in the list of pending connections or list of devices to |
| * report. If not present in either list, then queue the |
| * command to remove it from the controller. |
| */ |
| list_for_each_entry(b, &hdev->le_white_list, list) { |
| /* If the device is neither in pend_le_conns nor |
| * pend_le_reports then remove it from the whitelist. |
| */ |
| if (!hci_pend_le_action_lookup(&hdev->pend_le_conns, |
| &b->bdaddr, b->bdaddr_type) && |
| !hci_pend_le_action_lookup(&hdev->pend_le_reports, |
| &b->bdaddr, b->bdaddr_type)) { |
| struct hci_cp_le_del_from_white_list cp; |
| |
| cp.bdaddr_type = b->bdaddr_type; |
| bacpy(&cp.bdaddr, &b->bdaddr); |
| |
| hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, |
| sizeof(cp), &cp); |
| continue; |
| } |
| |
| if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) { |
| /* White list can not be used with RPAs */ |
| return 0x00; |
| } |
| |
| white_list_entries++; |
| } |
| |
| /* Since all no longer valid white list entries have been |
| * removed, walk through the list of pending connections |
| * and ensure that any new device gets programmed into |
| * the controller. |
| * |
| * If the list of the devices is larger than the list of |
| * available white list entries in the controller, then |
| * just abort and return filer policy value to not use the |
| * white list. |
| */ |
| list_for_each_entry(params, &hdev->pend_le_conns, action) { |
| if (hci_bdaddr_list_lookup(&hdev->le_white_list, |
| ¶ms->addr, params->addr_type)) |
| continue; |
| |
| if (white_list_entries >= hdev->le_white_list_size) { |
| /* Select filter policy to accept all advertising */ |
| return 0x00; |
| } |
| |
| if (hci_find_irk_by_addr(hdev, ¶ms->addr, |
| params->addr_type)) { |
| /* White list can not be used with RPAs */ |
| return 0x00; |
| } |
| |
| white_list_entries++; |
| add_to_white_list(req, params); |
| } |
| |
| /* After adding all new pending connections, walk through |
| * the list of pending reports and also add these to the |
| * white list if there is still space. |
| */ |
| list_for_each_entry(params, &hdev->pend_le_reports, action) { |
| if (hci_bdaddr_list_lookup(&hdev->le_white_list, |
| ¶ms->addr, params->addr_type)) |
| continue; |
| |
| if (white_list_entries >= hdev->le_white_list_size) { |
| /* Select filter policy to accept all advertising */ |
| return 0x00; |
| } |
| |
| if (hci_find_irk_by_addr(hdev, ¶ms->addr, |
| params->addr_type)) { |
| /* White list can not be used with RPAs */ |
| return 0x00; |
| } |
| |
| white_list_entries++; |
| add_to_white_list(req, params); |
| } |
| |
| /* Select filter policy to use white list */ |
| return 0x01; |
| } |
| |
| static bool scan_use_rpa(struct hci_dev *hdev) |
| { |
| return hci_dev_test_flag(hdev, HCI_PRIVACY); |
| } |
| |
| void hci_req_add_le_passive_scan(struct hci_request *req) |
| { |
| struct hci_cp_le_set_scan_param param_cp; |
| struct hci_cp_le_set_scan_enable enable_cp; |
| struct hci_dev *hdev = req->hdev; |
| u8 own_addr_type; |
| u8 filter_policy; |
| |
| /* Set require_privacy to false since no SCAN_REQ are send |
| * during passive scanning. Not using an non-resolvable address |
| * here is important so that peer devices using direct |
| * advertising with our address will be correctly reported |
| * by the controller. |
| */ |
| if (hci_update_random_address(req, false, scan_use_rpa(hdev), |
| &own_addr_type)) |
| return; |
| |
| /* Adding or removing entries from the white list must |
| * happen before enabling scanning. The controller does |
| * not allow white list modification while scanning. |
| */ |
| filter_policy = update_white_list(req); |
| |
| /* When the controller is using random resolvable addresses and |
| * with that having LE privacy enabled, then controllers with |
| * Extended Scanner Filter Policies support can now enable support |
| * for handling directed advertising. |
| * |
| * So instead of using filter polices 0x00 (no whitelist) |
| * and 0x01 (whitelist enabled) use the new filter policies |
| * 0x02 (no whitelist) and 0x03 (whitelist enabled). |
| */ |
| if (hci_dev_test_flag(hdev, HCI_PRIVACY) && |
| (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) |
| filter_policy |= 0x02; |
| |
| memset(¶m_cp, 0, sizeof(param_cp)); |
| param_cp.type = LE_SCAN_PASSIVE; |
| param_cp.interval = cpu_to_le16(hdev->le_scan_interval); |
| param_cp.window = cpu_to_le16(hdev->le_scan_window); |
| param_cp.own_address_type = own_addr_type; |
| param_cp.filter_policy = filter_policy; |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), |
| ¶m_cp); |
| |
| memset(&enable_cp, 0, sizeof(enable_cp)); |
| enable_cp.enable = LE_SCAN_ENABLE; |
| enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), |
| &enable_cp); |
| } |
| |
| static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev) |
| { |
| u8 instance = hdev->cur_adv_instance; |
| struct adv_info *adv_instance; |
| |
| /* Ignore instance 0 */ |
| if (instance == 0x00) |
| return 0; |
| |
| adv_instance = hci_find_adv_instance(hdev, instance); |
| if (!adv_instance) |
| return 0; |
| |
| /* TODO: Take into account the "appearance" and "local-name" flags here. |
| * These are currently being ignored as they are not supported. |
| */ |
| return adv_instance->scan_rsp_len; |
| } |
| |
| void __hci_req_disable_advertising(struct hci_request *req) |
| { |
| u8 enable = 0x00; |
| |
| hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); |
| } |
| |
| static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance) |
| { |
| u32 flags; |
| struct adv_info *adv_instance; |
| |
| if (instance == 0x00) { |
| /* Instance 0 always manages the "Tx Power" and "Flags" |
| * fields |
| */ |
| flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; |
| |
| /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting |
| * corresponds to the "connectable" instance flag. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) |
| flags |= MGMT_ADV_FLAG_CONNECTABLE; |
| |
| if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) |
| flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; |
| else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) |
| flags |= MGMT_ADV_FLAG_DISCOV; |
| |
| return flags; |
| } |
| |
| adv_instance = hci_find_adv_instance(hdev, instance); |
| |
| /* Return 0 when we got an invalid instance identifier. */ |
| if (!adv_instance) |
| return 0; |
| |
| return adv_instance->flags; |
| } |
| |
| static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) |
| { |
| /* If privacy is not enabled don't use RPA */ |
| if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) |
| return false; |
| |
| /* If basic privacy mode is enabled use RPA */ |
| if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) |
| return true; |
| |
| /* If limited privacy mode is enabled don't use RPA if we're |
| * both discoverable and bondable. |
| */ |
| if ((flags & MGMT_ADV_FLAG_DISCOV) && |
| hci_dev_test_flag(hdev, HCI_BONDABLE)) |
| return false; |
| |
| /* We're neither bondable nor discoverable in the limited |
| * privacy mode, therefore use RPA. |
| */ |
| return true; |
| } |
| |
| void __hci_req_enable_advertising(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_le_set_adv_param cp; |
| u8 own_addr_type, enable = 0x01; |
| bool connectable; |
| u32 flags; |
| |
| if (hci_conn_num(hdev, LE_LINK) > 0) |
| return; |
| |
| if (hci_dev_test_flag(hdev, HCI_LE_ADV)) |
| __hci_req_disable_advertising(req); |
| |
| /* Clear the HCI_LE_ADV bit temporarily so that the |
| * hci_update_random_address knows that it's safe to go ahead |
| * and write a new random address. The flag will be set back on |
| * as soon as the SET_ADV_ENABLE HCI command completes. |
| */ |
| hci_dev_clear_flag(hdev, HCI_LE_ADV); |
| |
| flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance); |
| |
| /* If the "connectable" instance flag was not set, then choose between |
| * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. |
| */ |
| connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || |
| mgmt_get_connectable(hdev); |
| |
| /* Set require_privacy to true only when non-connectable |
| * advertising is used. In that case it is fine to use a |
| * non-resolvable private address. |
| */ |
| if (hci_update_random_address(req, !connectable, |
| adv_use_rpa(hdev, flags), |
| &own_addr_type) < 0) |
| return; |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval); |
| cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval); |
| |
| if (connectable) |
| cp.type = LE_ADV_IND; |
| else if (get_cur_adv_instance_scan_rsp_len(hdev)) |
| cp.type = LE_ADV_SCAN_IND; |
| else |
| cp.type = LE_ADV_NONCONN_IND; |
| |
| cp.own_address_type = own_addr_type; |
| cp.channel_map = hdev->le_adv_channel_map; |
| |
| hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); |
| |
| hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); |
| } |
| |
| u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len) |
| { |
| size_t short_len; |
| size_t complete_len; |
| |
| /* no space left for name (+ NULL + type + len) */ |
| if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3) |
| return ad_len; |
| |
| /* use complete name if present and fits */ |
| complete_len = strlen(hdev->dev_name); |
| if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH) |
| return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE, |
| hdev->dev_name, complete_len + 1); |
| |
| /* use short name if present */ |
| short_len = strlen(hdev->short_name); |
| if (short_len) |
| return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, |
| hdev->short_name, short_len + 1); |
| |
| /* use shortened full name if present, we already know that name |
| * is longer then HCI_MAX_SHORT_NAME_LENGTH |
| */ |
| if (complete_len) { |
| u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1]; |
| |
| memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH); |
| name[HCI_MAX_SHORT_NAME_LENGTH] = '\0'; |
| |
| return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name, |
| sizeof(name)); |
| } |
| |
| return ad_len; |
| } |
| |
| static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len) |
| { |
| return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance); |
| } |
| |
| static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr) |
| { |
| u8 scan_rsp_len = 0; |
| |
| if (hdev->appearance) { |
| scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); |
| } |
| |
| return append_local_name(hdev, ptr, scan_rsp_len); |
| } |
| |
| static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance, |
| u8 *ptr) |
| { |
| struct adv_info *adv_instance; |
| u32 instance_flags; |
| u8 scan_rsp_len = 0; |
| |
| adv_instance = hci_find_adv_instance(hdev, instance); |
| if (!adv_instance) |
| return 0; |
| |
| instance_flags = adv_instance->flags; |
| |
| if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) { |
| scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); |
| } |
| |
| memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data, |
| adv_instance->scan_rsp_len); |
| |
| scan_rsp_len += adv_instance->scan_rsp_len; |
| |
| if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME) |
| scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len); |
| |
| return scan_rsp_len; |
| } |
| |
| void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_le_set_scan_rsp_data cp; |
| u8 len; |
| |
| if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) |
| return; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (instance) |
| len = create_instance_scan_rsp_data(hdev, instance, cp.data); |
| else |
| len = create_default_scan_rsp_data(hdev, cp.data); |
| |
| if (hdev->scan_rsp_data_len == len && |
| !memcmp(cp.data, hdev->scan_rsp_data, len)) |
| return; |
| |
| memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); |
| hdev->scan_rsp_data_len = len; |
| |
| cp.length = len; |
| |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp); |
| } |
| |
| static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr) |
| { |
| struct adv_info *adv_instance = NULL; |
| u8 ad_len = 0, flags = 0; |
| u32 instance_flags; |
| |
| /* Return 0 when the current instance identifier is invalid. */ |
| if (instance) { |
| adv_instance = hci_find_adv_instance(hdev, instance); |
| if (!adv_instance) |
| return 0; |
| } |
| |
| instance_flags = get_adv_instance_flags(hdev, instance); |
| |
| /* If instance already has the flags set skip adding it once |
| * again. |
| */ |
| if (adv_instance && eir_get_data(adv_instance->adv_data, |
| adv_instance->adv_data_len, EIR_FLAGS, |
| NULL)) |
| goto skip_flags; |
| |
| /* The Add Advertising command allows userspace to set both the general |
| * and limited discoverable flags. |
| */ |
| if (instance_flags & MGMT_ADV_FLAG_DISCOV) |
| flags |= LE_AD_GENERAL; |
| |
| if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV) |
| flags |= LE_AD_LIMITED; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| flags |= LE_AD_NO_BREDR; |
| |
| if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) { |
| /* If a discovery flag wasn't provided, simply use the global |
| * settings. |
| */ |
| if (!flags) |
| flags |= mgmt_get_adv_discov_flags(hdev); |
| |
| /* If flags would still be empty, then there is no need to |
| * include the "Flags" AD field". |
| */ |
| if (flags) { |
| ptr[0] = 0x02; |
| ptr[1] = EIR_FLAGS; |
| ptr[2] = flags; |
| |
| ad_len += 3; |
| ptr += 3; |
| } |
| } |
| |
| skip_flags: |
| if (adv_instance) { |
| memcpy(ptr, adv_instance->adv_data, |
| adv_instance->adv_data_len); |
| ad_len += adv_instance->adv_data_len; |
| ptr += adv_instance->adv_data_len; |
| } |
| |
| /* Provide Tx Power only if we can provide a valid value for it */ |
| if (hdev->adv_tx_power != HCI_TX_POWER_INVALID && |
| (instance_flags & MGMT_ADV_FLAG_TX_POWER)) { |
| ptr[0] = 0x02; |
| ptr[1] = EIR_TX_POWER; |
| ptr[2] = (u8)hdev->adv_tx_power; |
| |
| ad_len += 3; |
| ptr += 3; |
| } |
| |
| return ad_len; |
| } |
| |
| void __hci_req_update_adv_data(struct hci_request *req, u8 instance) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_le_set_adv_data cp; |
| u8 len; |
| |
| if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) |
| return; |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| len = create_instance_adv_data(hdev, instance, cp.data); |
| |
| /* There's nothing to do if the data hasn't changed */ |
| if (hdev->adv_data_len == len && |
| memcmp(cp.data, hdev->adv_data, len) == 0) |
| return; |
| |
| memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); |
| hdev->adv_data_len = len; |
| |
| cp.length = len; |
| |
| hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp); |
| } |
| |
| int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance) |
| { |
| struct hci_request req; |
| |
| hci_req_init(&req, hdev); |
| __hci_req_update_adv_data(&req, instance); |
| |
| return hci_req_run(&req, NULL); |
| } |
| |
| static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode) |
| { |
| BT_DBG("%s status %u", hdev->name, status); |
| } |
| |
| void hci_req_reenable_advertising(struct hci_dev *hdev) |
| { |
| struct hci_request req; |
| |
| if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && |
| list_empty(&hdev->adv_instances)) |
| return; |
| |
| hci_req_init(&req, hdev); |
| |
| if (hdev->cur_adv_instance) { |
| __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance, |
| true); |
| } else { |
| __hci_req_update_adv_data(&req, 0x00); |
| __hci_req_update_scan_rsp_data(&req, 0x00); |
| __hci_req_enable_advertising(&req); |
| } |
| |
| hci_req_run(&req, adv_enable_complete); |
| } |
| |
| static void adv_timeout_expire(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| adv_instance_expire.work); |
| |
| struct hci_request req; |
| u8 instance; |
| |
| BT_DBG("%s", hdev->name); |
| |
| hci_dev_lock(hdev); |
| |
| hdev->adv_instance_timeout = 0; |
| |
| instance = hdev->cur_adv_instance; |
| if (instance == 0x00) |
| goto unlock; |
| |
| hci_req_init(&req, hdev); |
| |
| hci_req_clear_adv_instance(hdev, NULL, &req, instance, false); |
| |
| if (list_empty(&hdev->adv_instances)) |
| __hci_req_disable_advertising(&req); |
| |
| hci_req_run(&req, NULL); |
| |
| unlock: |
| hci_dev_unlock(hdev); |
| } |
| |
| int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance, |
| bool force) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct adv_info *adv_instance = NULL; |
| u16 timeout; |
| |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || |
| list_empty(&hdev->adv_instances)) |
| return -EPERM; |
| |
| if (hdev->adv_instance_timeout) |
| return -EBUSY; |
| |
| adv_instance = hci_find_adv_instance(hdev, instance); |
| if (!adv_instance) |
| return -ENOENT; |
| |
| /* A zero timeout means unlimited advertising. As long as there is |
| * only one instance, duration should be ignored. We still set a timeout |
| * in case further instances are being added later on. |
| * |
| * If the remaining lifetime of the instance is more than the duration |
| * then the timeout corresponds to the duration, otherwise it will be |
| * reduced to the remaining instance lifetime. |
| */ |
| if (adv_instance->timeout == 0 || |
| adv_instance->duration <= adv_instance->remaining_time) |
| timeout = adv_instance->duration; |
| else |
| timeout = adv_instance->remaining_time; |
| |
| /* The remaining time is being reduced unless the instance is being |
| * advertised without time limit. |
| */ |
| if (adv_instance->timeout) |
| adv_instance->remaining_time = |
| adv_instance->remaining_time - timeout; |
| |
| hdev->adv_instance_timeout = timeout; |
| queue_delayed_work(hdev->req_workqueue, |
| &hdev->adv_instance_expire, |
| msecs_to_jiffies(timeout * 1000)); |
| |
| /* If we're just re-scheduling the same instance again then do not |
| * execute any HCI commands. This happens when a single instance is |
| * being advertised. |
| */ |
| if (!force && hdev->cur_adv_instance == instance && |
| hci_dev_test_flag(hdev, HCI_LE_ADV)) |
| return 0; |
| |
| hdev->cur_adv_instance = instance; |
| __hci_req_update_adv_data(req, instance); |
| __hci_req_update_scan_rsp_data(req, instance); |
| __hci_req_enable_advertising(req); |
| |
| return 0; |
| } |
| |
| static void cancel_adv_timeout(struct hci_dev *hdev) |
| { |
| if (hdev->adv_instance_timeout) { |
| hdev->adv_instance_timeout = 0; |
| cancel_delayed_work(&hdev->adv_instance_expire); |
| } |
| } |
| |
| /* For a single instance: |
| * - force == true: The instance will be removed even when its remaining |
| * lifetime is not zero. |
| * - force == false: the instance will be deactivated but kept stored unless |
| * the remaining lifetime is zero. |
| * |
| * For instance == 0x00: |
| * - force == true: All instances will be removed regardless of their timeout |
| * setting. |
| * - force == false: Only instances that have a timeout will be removed. |
| */ |
| void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk, |
| struct hci_request *req, u8 instance, |
| bool force) |
| { |
| struct adv_info *adv_instance, *n, *next_instance = NULL; |
| int err; |
| u8 rem_inst; |
| |
| /* Cancel any timeout concerning the removed instance(s). */ |
| if (!instance || hdev->cur_adv_instance == instance) |
| cancel_adv_timeout(hdev); |
| |
| /* Get the next instance to advertise BEFORE we remove |
| * the current one. This can be the same instance again |
| * if there is only one instance. |
| */ |
| if (instance && hdev->cur_adv_instance == instance) |
| next_instance = hci_get_next_instance(hdev, instance); |
| |
| if (instance == 0x00) { |
| list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, |
| list) { |
| if (!(force || adv_instance->timeout)) |
| continue; |
| |
| rem_inst = adv_instance->instance; |
| err = hci_remove_adv_instance(hdev, rem_inst); |
| if (!err) |
| mgmt_advertising_removed(sk, hdev, rem_inst); |
| } |
| } else { |
| adv_instance = hci_find_adv_instance(hdev, instance); |
| |
| if (force || (adv_instance && adv_instance->timeout && |
| !adv_instance->remaining_time)) { |
| /* Don't advertise a removed instance. */ |
| if (next_instance && |
| next_instance->instance == instance) |
| next_instance = NULL; |
| |
| err = hci_remove_adv_instance(hdev, instance); |
| if (!err) |
| mgmt_advertising_removed(sk, hdev, instance); |
| } |
| } |
| |
| if (!req || !hdev_is_powered(hdev) || |
| hci_dev_test_flag(hdev, HCI_ADVERTISING)) |
| return; |
| |
| if (next_instance) |
| __hci_req_schedule_adv_instance(req, next_instance->instance, |
| false); |
| } |
| |
| static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| /* If we're advertising or initiating an LE connection we can't |
| * go ahead and change the random address at this time. This is |
| * because the eventual initiator address used for the |
| * subsequently created connection will be undefined (some |
| * controllers use the new address and others the one we had |
| * when the operation started). |
| * |
| * In this kind of scenario skip the update and let the random |
| * address be updated at the next cycle. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_LE_ADV) || |
| hci_lookup_le_connect(hdev)) { |
| BT_DBG("Deferring random address update"); |
| hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); |
| return; |
| } |
| |
| hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); |
| } |
| |
| int hci_update_random_address(struct hci_request *req, bool require_privacy, |
| bool use_rpa, u8 *own_addr_type) |
| { |
| struct hci_dev *hdev = req->hdev; |
| int err; |
| |
| /* If privacy is enabled use a resolvable private address. If |
| * current RPA has expired or there is something else than |
| * the current RPA in use, then generate a new one. |
| */ |
| if (use_rpa) { |
| int to; |
| |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| |
| if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && |
| !bacmp(&hdev->random_addr, &hdev->rpa)) |
| return 0; |
| |
| err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); |
| if (err < 0) { |
| BT_ERR("%s failed to generate new RPA", hdev->name); |
| return err; |
| } |
| |
| set_random_addr(req, &hdev->rpa); |
| |
| to = msecs_to_jiffies(hdev->rpa_timeout * 1000); |
| queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to); |
| |
| return 0; |
| } |
| |
| /* In case of required privacy without resolvable private address, |
| * use an non-resolvable private address. This is useful for active |
| * scanning and non-connectable advertising. |
| */ |
| if (require_privacy) { |
| bdaddr_t nrpa; |
| |
| while (true) { |
| /* The non-resolvable private address is generated |
| * from random six bytes with the two most significant |
| * bits cleared. |
| */ |
| get_random_bytes(&nrpa, 6); |
| nrpa.b[5] &= 0x3f; |
| |
| /* The non-resolvable private address shall not be |
| * equal to the public address. |
| */ |
| if (bacmp(&hdev->bdaddr, &nrpa)) |
| break; |
| } |
| |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| set_random_addr(req, &nrpa); |
| return 0; |
| } |
| |
| /* If forcing static address is in use or there is no public |
| * address use the static address as random address (but skip |
| * the HCI command if the current random address is already the |
| * static one. |
| * |
| * In case BR/EDR has been disabled on a dual-mode controller |
| * and a static address has been configured, then use that |
| * address instead of the public BR/EDR address. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || |
| !bacmp(&hdev->bdaddr, BDADDR_ANY) || |
| (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && |
| bacmp(&hdev->static_addr, BDADDR_ANY))) { |
| *own_addr_type = ADDR_LE_DEV_RANDOM; |
| if (bacmp(&hdev->static_addr, &hdev->random_addr)) |
| hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, |
| &hdev->static_addr); |
| return 0; |
| } |
| |
| /* Neither privacy nor static address is being used so use a |
| * public address. |
| */ |
| *own_addr_type = ADDR_LE_DEV_PUBLIC; |
| |
| return 0; |
| } |
| |
| static bool disconnected_whitelist_entries(struct hci_dev *hdev) |
| { |
| struct bdaddr_list *b; |
| |
| list_for_each_entry(b, &hdev->whitelist, list) { |
| struct hci_conn *conn; |
| |
| conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); |
| if (!conn) |
| return true; |
| |
| if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void __hci_req_update_scan(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| u8 scan; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| return; |
| |
| if (!hdev_is_powered(hdev)) |
| return; |
| |
| if (mgmt_powering_down(hdev)) |
| return; |
| |
| if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || |
| disconnected_whitelist_entries(hdev)) |
| scan = SCAN_PAGE; |
| else |
| scan = SCAN_DISABLED; |
| |
| if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) |
| scan |= SCAN_INQUIRY; |
| |
| if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && |
| test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) |
| return; |
| |
| hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); |
| } |
| |
| static int update_scan(struct hci_request *req, unsigned long opt) |
| { |
| hci_dev_lock(req->hdev); |
| __hci_req_update_scan(req); |
| hci_dev_unlock(req->hdev); |
| return 0; |
| } |
| |
| static void scan_update_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update); |
| |
| hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL); |
| } |
| |
| static int connectable_update(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| hci_dev_lock(hdev); |
| |
| __hci_req_update_scan(req); |
| |
| /* If BR/EDR is not enabled and we disable advertising as a |
| * by-product of disabling connectable, we need to update the |
| * advertising flags. |
| */ |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| __hci_req_update_adv_data(req, hdev->cur_adv_instance); |
| |
| /* Update the advertising parameters if necessary */ |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || |
| !list_empty(&hdev->adv_instances)) |
| __hci_req_enable_advertising(req); |
| |
| __hci_update_background_scan(req); |
| |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static void connectable_update_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| connectable_update); |
| u8 status; |
| |
| hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status); |
| mgmt_set_connectable_complete(hdev, status); |
| } |
| |
| static u8 get_service_classes(struct hci_dev *hdev) |
| { |
| struct bt_uuid *uuid; |
| u8 val = 0; |
| |
| list_for_each_entry(uuid, &hdev->uuids, list) |
| val |= uuid->svc_hint; |
| |
| return val; |
| } |
| |
| void __hci_req_update_class(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| u8 cod[3]; |
| |
| BT_DBG("%s", hdev->name); |
| |
| if (!hdev_is_powered(hdev)) |
| return; |
| |
| if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) |
| return; |
| |
| if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) |
| return; |
| |
| cod[0] = hdev->minor_class; |
| cod[1] = hdev->major_class; |
| cod[2] = get_service_classes(hdev); |
| |
| if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) |
| cod[1] |= 0x20; |
| |
| if (memcmp(cod, hdev->dev_class, 3) == 0) |
| return; |
| |
| hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod); |
| } |
| |
| static void write_iac(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_write_current_iac_lap cp; |
| |
| if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) |
| return; |
| |
| if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { |
| /* Limited discoverable mode */ |
| cp.num_iac = min_t(u8, hdev->num_iac, 2); |
| cp.iac_lap[0] = 0x00; /* LIAC */ |
| cp.iac_lap[1] = 0x8b; |
| cp.iac_lap[2] = 0x9e; |
| cp.iac_lap[3] = 0x33; /* GIAC */ |
| cp.iac_lap[4] = 0x8b; |
| cp.iac_lap[5] = 0x9e; |
| } else { |
| /* General discoverable mode */ |
| cp.num_iac = 1; |
| cp.iac_lap[0] = 0x33; /* GIAC */ |
| cp.iac_lap[1] = 0x8b; |
| cp.iac_lap[2] = 0x9e; |
| } |
| |
| hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP, |
| (cp.num_iac * 3) + 1, &cp); |
| } |
| |
| static int discoverable_update(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| |
| hci_dev_lock(hdev); |
| |
| if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { |
| write_iac(req); |
| __hci_req_update_scan(req); |
| __hci_req_update_class(req); |
| } |
| |
| /* Advertising instances don't use the global discoverable setting, so |
| * only update AD if advertising was enabled using Set Advertising. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { |
| __hci_req_update_adv_data(req, 0x00); |
| |
| /* Discoverable mode affects the local advertising |
| * address in limited privacy mode. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) |
| __hci_req_enable_advertising(req); |
| } |
| |
| hci_dev_unlock(hdev); |
| |
| return 0; |
| } |
| |
| static void discoverable_update_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| discoverable_update); |
| u8 status; |
| |
| hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status); |
| mgmt_set_discoverable_complete(hdev, status); |
| } |
| |
| void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn, |
| u8 reason) |
| { |
| switch (conn->state) { |
| case BT_CONNECTED: |
| case BT_CONFIG: |
| if (conn->type == AMP_LINK) { |
| struct hci_cp_disconn_phy_link cp; |
| |
| cp.phy_handle = HCI_PHY_HANDLE(conn->handle); |
| cp.reason = reason; |
| hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp), |
| &cp); |
| } else { |
| struct hci_cp_disconnect dc; |
| |
| dc.handle = cpu_to_le16(conn->handle); |
| dc.reason = reason; |
| hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc); |
| } |
| |
| conn->state = BT_DISCONN; |
| |
| break; |
| case BT_CONNECT: |
| if (conn->type == LE_LINK) { |
| if (test_bit(HCI_CONN_SCANNING, &conn->flags)) |
| break; |
| hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL, |
| 0, NULL); |
| } else if (conn->type == ACL_LINK) { |
| if (req->hdev->hci_ver < BLUETOOTH_VER_1_2) |
| break; |
| hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL, |
| 6, &conn->dst); |
| } |
| break; |
| case BT_CONNECT2: |
| if (conn->type == ACL_LINK) { |
| struct hci_cp_reject_conn_req rej; |
| |
| bacpy(&rej.bdaddr, &conn->dst); |
| rej.reason = reason; |
| |
| hci_req_add(req, HCI_OP_REJECT_CONN_REQ, |
| sizeof(rej), &rej); |
| } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { |
| struct hci_cp_reject_sync_conn_req rej; |
| |
| bacpy(&rej.bdaddr, &conn->dst); |
| |
| /* SCO rejection has its own limited set of |
| * allowed error values (0x0D-0x0F) which isn't |
| * compatible with most values passed to this |
| * function. To be safe hard-code one of the |
| * values that's suitable for SCO. |
| */ |
| rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; |
| |
| hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ, |
| sizeof(rej), &rej); |
| } |
| break; |
| default: |
| conn->state = BT_CLOSED; |
| break; |
| } |
| } |
| |
| static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) |
| { |
| if (status) |
| BT_DBG("Failed to abort connection: status 0x%2.2x", status); |
| } |
| |
| int hci_abort_conn(struct hci_conn *conn, u8 reason) |
| { |
| struct hci_request req; |
| int err; |
| |
| hci_req_init(&req, conn->hdev); |
| |
| __hci_abort_conn(&req, conn, reason); |
| |
| err = hci_req_run(&req, abort_conn_complete); |
| if (err && err != -ENODATA) { |
| BT_ERR("Failed to run HCI request: err %d", err); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int update_bg_scan(struct hci_request *req, unsigned long opt) |
| { |
| hci_dev_lock(req->hdev); |
| __hci_update_background_scan(req); |
| hci_dev_unlock(req->hdev); |
| return 0; |
| } |
| |
| static void bg_scan_update(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| bg_scan_update); |
| struct hci_conn *conn; |
| u8 status; |
| int err; |
| |
| err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status); |
| if (!err) |
| return; |
| |
| hci_dev_lock(hdev); |
| |
| conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); |
| if (conn) |
| hci_le_conn_failed(conn, status); |
| |
| hci_dev_unlock(hdev); |
| } |
| |
| static int le_scan_disable(struct hci_request *req, unsigned long opt) |
| { |
| hci_req_add_le_scan_disable(req); |
| return 0; |
| } |
| |
| static int bredr_inquiry(struct hci_request *req, unsigned long opt) |
| { |
| u8 length = opt; |
| const u8 giac[3] = { 0x33, 0x8b, 0x9e }; |
| const u8 liac[3] = { 0x00, 0x8b, 0x9e }; |
| struct hci_cp_inquiry cp; |
| |
| BT_DBG("%s", req->hdev->name); |
| |
| hci_dev_lock(req->hdev); |
| hci_inquiry_cache_flush(req->hdev); |
| hci_dev_unlock(req->hdev); |
| |
| memset(&cp, 0, sizeof(cp)); |
| |
| if (req->hdev->discovery.limited) |
| memcpy(&cp.lap, liac, sizeof(cp.lap)); |
| else |
| memcpy(&cp.lap, giac, sizeof(cp.lap)); |
| |
| cp.length = length; |
| |
| hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); |
| |
| return 0; |
| } |
| |
| static void le_scan_disable_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| le_scan_disable.work); |
| u8 status; |
| |
| BT_DBG("%s", hdev->name); |
| |
| if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| return; |
| |
| cancel_delayed_work(&hdev->le_scan_restart); |
| |
| hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status); |
| if (status) { |
| BT_ERR("Failed to disable LE scan: status 0x%02x", status); |
| return; |
| } |
| |
| hdev->discovery.scan_start = 0; |
| |
| /* If we were running LE only scan, change discovery state. If |
| * we were running both LE and BR/EDR inquiry simultaneously, |
| * and BR/EDR inquiry is already finished, stop discovery, |
| * otherwise BR/EDR inquiry will stop discovery when finished. |
| * If we will resolve remote device name, do not change |
| * discovery state. |
| */ |
| |
| if (hdev->discovery.type == DISCOV_TYPE_LE) |
| goto discov_stopped; |
| |
| if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) |
| return; |
| |
| if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { |
| if (!test_bit(HCI_INQUIRY, &hdev->flags) && |
| hdev->discovery.state != DISCOVERY_RESOLVING) |
| goto discov_stopped; |
| |
| return; |
| } |
| |
| hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN, |
| HCI_CMD_TIMEOUT, &status); |
| if (status) { |
| BT_ERR("Inquiry failed: status 0x%02x", status); |
| goto discov_stopped; |
| } |
| |
| return; |
| |
| discov_stopped: |
| hci_dev_lock(hdev); |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| hci_dev_unlock(hdev); |
| } |
| |
| static int le_scan_restart(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_le_set_scan_enable cp; |
| |
| /* If controller is not scanning we are done. */ |
| if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| return 0; |
| |
| hci_req_add_le_scan_disable(req); |
| |
| memset(&cp, 0, sizeof(cp)); |
| cp.enable = LE_SCAN_ENABLE; |
| cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); |
| |
| return 0; |
| } |
| |
| static void le_scan_restart_work(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| le_scan_restart.work); |
| unsigned long timeout, duration, scan_start, now; |
| u8 status; |
| |
| BT_DBG("%s", hdev->name); |
| |
| hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status); |
| if (status) { |
| BT_ERR("Failed to restart LE scan: status %d", status); |
| return; |
| } |
| |
| hci_dev_lock(hdev); |
| |
| if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || |
| !hdev->discovery.scan_start) |
| goto unlock; |
| |
| /* When the scan was started, hdev->le_scan_disable has been queued |
| * after duration from scan_start. During scan restart this job |
| * has been canceled, and we need to queue it again after proper |
| * timeout, to make sure that scan does not run indefinitely. |
| */ |
| duration = hdev->discovery.scan_duration; |
| scan_start = hdev->discovery.scan_start; |
| now = jiffies; |
| if (now - scan_start <= duration) { |
| int elapsed; |
| |
| if (now >= scan_start) |
| elapsed = now - scan_start; |
| else |
| elapsed = ULONG_MAX - scan_start + now; |
| |
| timeout = duration - elapsed; |
| } else { |
| timeout = 0; |
| } |
| |
| queue_delayed_work(hdev->req_workqueue, |
| &hdev->le_scan_disable, timeout); |
| |
| unlock: |
| hci_dev_unlock(hdev); |
| } |
| |
| static void disable_advertising(struct hci_request *req) |
| { |
| u8 enable = 0x00; |
| |
| hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); |
| } |
| |
| static int active_scan(struct hci_request *req, unsigned long opt) |
| { |
| uint16_t interval = opt; |
| struct hci_dev *hdev = req->hdev; |
| struct hci_cp_le_set_scan_param param_cp; |
| struct hci_cp_le_set_scan_enable enable_cp; |
| u8 own_addr_type; |
| int err; |
| |
| BT_DBG("%s", hdev->name); |
| |
| if (hci_dev_test_flag(hdev, HCI_LE_ADV)) { |
| hci_dev_lock(hdev); |
| |
| /* Don't let discovery abort an outgoing connection attempt |
| * that's using directed advertising. |
| */ |
| if (hci_lookup_le_connect(hdev)) { |
| hci_dev_unlock(hdev); |
| return -EBUSY; |
| } |
| |
| cancel_adv_timeout(hdev); |
| hci_dev_unlock(hdev); |
| |
| disable_advertising(req); |
| } |
| |
| /* If controller is scanning, it means the background scanning is |
| * running. Thus, we should temporarily stop it in order to set the |
| * discovery scanning parameters. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) |
| hci_req_add_le_scan_disable(req); |
| |
| /* All active scans will be done with either a resolvable private |
| * address (when privacy feature has been enabled) or non-resolvable |
| * private address. |
| */ |
| err = hci_update_random_address(req, true, scan_use_rpa(hdev), |
| &own_addr_type); |
| if (err < 0) |
| own_addr_type = ADDR_LE_DEV_PUBLIC; |
| |
| memset(¶m_cp, 0, sizeof(param_cp)); |
| param_cp.type = LE_SCAN_ACTIVE; |
| param_cp.interval = cpu_to_le16(interval); |
| param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN); |
| param_cp.own_address_type = own_addr_type; |
| |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), |
| ¶m_cp); |
| |
| memset(&enable_cp, 0, sizeof(enable_cp)); |
| enable_cp.enable = LE_SCAN_ENABLE; |
| enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; |
| |
| hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), |
| &enable_cp); |
| |
| return 0; |
| } |
| |
| static int interleaved_discov(struct hci_request *req, unsigned long opt) |
| { |
| int err; |
| |
| BT_DBG("%s", req->hdev->name); |
| |
| err = active_scan(req, opt); |
| if (err) |
| return err; |
| |
| return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN); |
| } |
| |
| static void start_discovery(struct hci_dev *hdev, u8 *status) |
| { |
| unsigned long timeout; |
| |
| BT_DBG("%s type %u", hdev->name, hdev->discovery.type); |
| |
| switch (hdev->discovery.type) { |
| case DISCOV_TYPE_BREDR: |
| if (!hci_dev_test_flag(hdev, HCI_INQUIRY)) |
| hci_req_sync(hdev, bredr_inquiry, |
| DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT, |
| status); |
| return; |
| case DISCOV_TYPE_INTERLEAVED: |
| /* When running simultaneous discovery, the LE scanning time |
| * should occupy the whole discovery time sine BR/EDR inquiry |
| * and LE scanning are scheduled by the controller. |
| * |
| * For interleaving discovery in comparison, BR/EDR inquiry |
| * and LE scanning are done sequentially with separate |
| * timeouts. |
| */ |
| if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, |
| &hdev->quirks)) { |
| timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); |
| /* During simultaneous discovery, we double LE scan |
| * interval. We must leave some time for the controller |
| * to do BR/EDR inquiry. |
| */ |
| hci_req_sync(hdev, interleaved_discov, |
| DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT, |
| status); |
| break; |
| } |
| |
| timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); |
| hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT, |
| HCI_CMD_TIMEOUT, status); |
| break; |
| case DISCOV_TYPE_LE: |
| timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); |
| hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT, |
| HCI_CMD_TIMEOUT, status); |
| break; |
| default: |
| *status = HCI_ERROR_UNSPECIFIED; |
| return; |
| } |
| |
| if (*status) |
| return; |
| |
| BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout)); |
| |
| /* When service discovery is used and the controller has a |
| * strict duplicate filter, it is important to remember the |
| * start and duration of the scan. This is required for |
| * restarting scanning during the discovery phase. |
| */ |
| if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && |
| hdev->discovery.result_filtering) { |
| hdev->discovery.scan_start = jiffies; |
| hdev->discovery.scan_duration = timeout; |
| } |
| |
| queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, |
| timeout); |
| } |
| |
| bool hci_req_stop_discovery(struct hci_request *req) |
| { |
| struct hci_dev *hdev = req->hdev; |
| struct discovery_state *d = &hdev->discovery; |
| struct hci_cp_remote_name_req_cancel cp; |
| struct inquiry_entry *e; |
| bool ret = false; |
| |
| BT_DBG("%s state %u", hdev->name, hdev->discovery.state); |
| |
| if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { |
| if (test_bit(HCI_INQUIRY, &hdev->flags)) |
| hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL); |
| |
| if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { |
| cancel_delayed_work(&hdev->le_scan_disable); |
| hci_req_add_le_scan_disable(req); |
| } |
| |
| ret = true; |
| } else { |
| /* Passive scanning */ |
| if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { |
| hci_req_add_le_scan_disable(req); |
| ret = true; |
| } |
| } |
| |
| /* No further actions needed for LE-only discovery */ |
| if (d->type == DISCOV_TYPE_LE) |
| return ret; |
| |
| if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { |
| e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, |
| NAME_PENDING); |
| if (!e) |
| return ret; |
| |
| bacpy(&cp.bdaddr, &e->data.bdaddr); |
| hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp), |
| &cp); |
| ret = true; |
| } |
| |
| return ret; |
| } |
| |
| static int stop_discovery(struct hci_request *req, unsigned long opt) |
| { |
| hci_dev_lock(req->hdev); |
| hci_req_stop_discovery(req); |
| hci_dev_unlock(req->hdev); |
| |
| return 0; |
| } |
| |
| static void discov_update(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| discov_update); |
| u8 status = 0; |
| |
| switch (hdev->discovery.state) { |
| case DISCOVERY_STARTING: |
| start_discovery(hdev, &status); |
| mgmt_start_discovery_complete(hdev, status); |
| if (status) |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| else |
| hci_discovery_set_state(hdev, DISCOVERY_FINDING); |
| break; |
| case DISCOVERY_STOPPING: |
| hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status); |
| mgmt_stop_discovery_complete(hdev, status); |
| if (!status) |
| hci_discovery_set_state(hdev, DISCOVERY_STOPPED); |
| break; |
| case DISCOVERY_STOPPED: |
| default: |
| return; |
| } |
| } |
| |
| static void discov_off(struct work_struct *work) |
| { |
| struct hci_dev *hdev = container_of(work, struct hci_dev, |
| discov_off.work); |
| |
| BT_DBG("%s", hdev->name); |
| |
| hci_dev_lock(hdev); |
| |
| /* When discoverable timeout triggers, then just make sure |
| * the limited discoverable flag is cleared. Even in the case |
| * of a timeout triggered from general discoverable, it is |
| * safe to unconditionally clear the flag. |
| */ |
| hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); |
| hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); |
| hdev->discov_timeout = 0; |
| |
| hci_dev_unlock(hdev); |
| |
| hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL); |
| mgmt_new_settings(hdev); |
| } |
| |
| static int powered_update_hci(struct hci_request *req, unsigned long opt) |
| { |
| struct hci_dev *hdev = req->hdev; |
| u8 link_sec; |
| |
| hci_dev_lock(hdev); |
| |
| if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && |
| !lmp_host_ssp_capable(hdev)) { |
| u8 mode = 0x01; |
| |
| hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode); |
| |
| if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) { |
| u8 support = 0x01; |
| |
| hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, |
| sizeof(support), &support); |
| } |
| } |
| |
| if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) && |
| lmp_bredr_capable(hdev)) { |
| struct hci_cp_write_le_host_supported cp; |
| |
| cp.le = 0x01; |
| cp.simul = 0x00; |
| |
| /* Check first if we already have the right |
| * host state (host features set) |
| */ |
| if (cp.le != lmp_host_le_capable(hdev) || |
| cp.simul != lmp_host_le_br_capable(hdev)) |
| hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, |
| sizeof(cp), &cp); |
| } |
| |
| if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { |
| /* Make sure the controller has a good default for |
| * advertising data. This also applies to the case |
| * where BR/EDR was toggled during the AUTO_OFF phase. |
| */ |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || |
| list_empty(&hdev->adv_instances)) { |
| __hci_req_update_adv_data(req, 0x00); |
| __hci_req_update_scan_rsp_data(req, 0x00); |
| |
| if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) |
| __hci_req_enable_advertising(req); |
| } else if (!list_empty(&hdev->adv_instances)) { |
| struct adv_info *adv_instance; |
| |
| adv_instance = list_first_entry(&hdev->adv_instances, |
| struct adv_info, list); |
| __hci_req_schedule_adv_instance(req, |
| adv_instance->instance, |
| true); |
| } |
| } |
| |
| link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); |
| if (link_sec != test_bit(HCI_AUTH, &hdev->flags)) |
| hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, |
| sizeof(link_sec), &link_sec); |
| |
| if (lmp_bredr_capable(hdev)) { |
| if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) |
| __hci_req_write_fast_connectable(req, true); |
| else |
| __hci_req_write_fast_connectable(req, false); |
| __hci_req_update_scan(req); |
| __hci_req_update_class(req); |
| __hci_req_update_name(req); |
| __hci_req_update_eir(req); |
| } |
| |
| hci_dev_unlock(hdev); |
| return 0; |
| } |
| |
| int __hci_req_hci_power_on(struct hci_dev *hdev) |
| { |
| /* Register the available SMP channels (BR/EDR and LE) only when |
| * successfully powering on the controller. This late |
| * registration is required so that LE SMP can clearly decide if |
| * the public address or static address is used. |
| */ |
| smp_register(hdev); |
| |
| return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT, |
| NULL); |
| } |
| |
| void hci_request_setup(struct hci_dev *hdev) |
| { |
| INIT_WORK(&hdev->discov_update, discov_update); |
| INIT_WORK(&hdev->bg_scan_update, bg_scan_update); |
| INIT_WORK(&hdev->scan_update, scan_update_work); |
| INIT_WORK(&hdev->connectable_update, connectable_update_work); |
| INIT_WORK(&hdev->discoverable_update, discoverable_update_work); |
| INIT_DELAYED_WORK(&hdev->discov_off, discov_off); |
| INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); |
| INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work); |
| INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); |
| } |
| |
| void hci_request_cancel_all(struct hci_dev *hdev) |
| { |
| hci_req_sync_cancel(hdev, ENODEV); |
| |
| cancel_work_sync(&hdev->discov_update); |
| cancel_work_sync(&hdev->bg_scan_update); |
| cancel_work_sync(&hdev->scan_update); |
| cancel_work_sync(&hdev->connectable_update); |
| cancel_work_sync(&hdev->discoverable_update); |
| cancel_delayed_work_sync(&hdev->discov_off); |
| cancel_delayed_work_sync(&hdev->le_scan_disable); |
| cancel_delayed_work_sync(&hdev->le_scan_restart); |
| |
| if (hdev->adv_instance_timeout) { |
| cancel_delayed_work_sync(&hdev->adv_instance_expire); |
| hdev->adv_instance_timeout = 0; |
| } |
| } |