| /* |
| * Procedures for interfacing to Open Firmware. |
| * |
| * Paul Mackerras August 1996. |
| * Copyright (C) 1996-2005 Paul Mackerras. |
| * |
| * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. |
| * {engebret|bergner}@us.ibm.com |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #undef DEBUG_PROM |
| |
| #include <stdarg.h> |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/threads.h> |
| #include <linux/spinlock.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/proc_fs.h> |
| #include <linux/stringify.h> |
| #include <linux/delay.h> |
| #include <linux/initrd.h> |
| #include <linux/bitops.h> |
| #include <asm/prom.h> |
| #include <asm/rtas.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/smp.h> |
| #include <asm/system.h> |
| #include <asm/mmu.h> |
| #include <asm/pgtable.h> |
| #include <asm/pci.h> |
| #include <asm/iommu.h> |
| #include <asm/bootinfo.h> |
| #include <asm/btext.h> |
| #include <asm/sections.h> |
| #include <asm/machdep.h> |
| |
| #ifdef CONFIG_LOGO_LINUX_CLUT224 |
| #include <linux/linux_logo.h> |
| extern const struct linux_logo logo_linux_clut224; |
| #endif |
| |
| /* |
| * Properties whose value is longer than this get excluded from our |
| * copy of the device tree. This value does need to be big enough to |
| * ensure that we don't lose things like the interrupt-map property |
| * on a PCI-PCI bridge. |
| */ |
| #define MAX_PROPERTY_LENGTH (1UL * 1024 * 1024) |
| |
| /* |
| * Eventually bump that one up |
| */ |
| #define DEVTREE_CHUNK_SIZE 0x100000 |
| |
| /* |
| * This is the size of the local memory reserve map that gets copied |
| * into the boot params passed to the kernel. That size is totally |
| * flexible as the kernel just reads the list until it encounters an |
| * entry with size 0, so it can be changed without breaking binary |
| * compatibility |
| */ |
| #define MEM_RESERVE_MAP_SIZE 8 |
| |
| /* |
| * prom_init() is called very early on, before the kernel text |
| * and data have been mapped to KERNELBASE. At this point the code |
| * is running at whatever address it has been loaded at. |
| * On ppc32 we compile with -mrelocatable, which means that references |
| * to extern and static variables get relocated automatically. |
| * On ppc64 we have to relocate the references explicitly with |
| * RELOC. (Note that strings count as static variables.) |
| * |
| * Because OF may have mapped I/O devices into the area starting at |
| * KERNELBASE, particularly on CHRP machines, we can't safely call |
| * OF once the kernel has been mapped to KERNELBASE. Therefore all |
| * OF calls must be done within prom_init(). |
| * |
| * ADDR is used in calls to call_prom. The 4th and following |
| * arguments to call_prom should be 32-bit values. |
| * On ppc64, 64 bit values are truncated to 32 bits (and |
| * fortunately don't get interpreted as two arguments). |
| */ |
| #ifdef CONFIG_PPC64 |
| #define RELOC(x) (*PTRRELOC(&(x))) |
| #define ADDR(x) (u32) add_reloc_offset((unsigned long)(x)) |
| #else |
| #define RELOC(x) (x) |
| #define ADDR(x) (u32) (x) |
| #endif |
| |
| #define PROM_BUG() do { \ |
| prom_printf("kernel BUG at %s line 0x%x!\n", \ |
| RELOC(__FILE__), __LINE__); \ |
| __asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \ |
| } while (0) |
| |
| #ifdef DEBUG_PROM |
| #define prom_debug(x...) prom_printf(x) |
| #else |
| #define prom_debug(x...) |
| #endif |
| |
| #ifdef CONFIG_PPC32 |
| #define PLATFORM_POWERMAC _MACH_Pmac |
| #define PLATFORM_CHRP _MACH_chrp |
| #endif |
| |
| |
| typedef u32 prom_arg_t; |
| |
| struct prom_args { |
| u32 service; |
| u32 nargs; |
| u32 nret; |
| prom_arg_t args[10]; |
| }; |
| |
| struct prom_t { |
| ihandle root; |
| ihandle chosen; |
| int cpu; |
| ihandle stdout; |
| }; |
| |
| struct mem_map_entry { |
| unsigned long base; |
| unsigned long size; |
| }; |
| |
| typedef u32 cell_t; |
| |
| extern void __start(unsigned long r3, unsigned long r4, unsigned long r5); |
| |
| #ifdef CONFIG_PPC64 |
| extern void enter_prom(struct prom_args *args, unsigned long entry); |
| #else |
| static inline void enter_prom(struct prom_args *args, unsigned long entry) |
| { |
| ((void (*)(struct prom_args *))entry)(args); |
| } |
| #endif |
| |
| extern void copy_and_flush(unsigned long dest, unsigned long src, |
| unsigned long size, unsigned long offset); |
| |
| /* prom structure */ |
| static struct prom_t __initdata prom; |
| |
| static unsigned long prom_entry __initdata; |
| |
| #define PROM_SCRATCH_SIZE 256 |
| |
| static char __initdata of_stdout_device[256]; |
| static char __initdata prom_scratch[PROM_SCRATCH_SIZE]; |
| |
| static unsigned long __initdata dt_header_start; |
| static unsigned long __initdata dt_struct_start, dt_struct_end; |
| static unsigned long __initdata dt_string_start, dt_string_end; |
| |
| static unsigned long __initdata prom_initrd_start, prom_initrd_end; |
| |
| #ifdef CONFIG_PPC64 |
| static int __initdata iommu_force_on; |
| static int __initdata ppc64_iommu_off; |
| static unsigned long __initdata prom_tce_alloc_start; |
| static unsigned long __initdata prom_tce_alloc_end; |
| #endif |
| |
| static int __initdata of_platform; |
| |
| static char __initdata prom_cmd_line[COMMAND_LINE_SIZE]; |
| |
| static unsigned long __initdata prom_memory_limit; |
| |
| static unsigned long __initdata alloc_top; |
| static unsigned long __initdata alloc_top_high; |
| static unsigned long __initdata alloc_bottom; |
| static unsigned long __initdata rmo_top; |
| static unsigned long __initdata ram_top; |
| |
| static struct mem_map_entry __initdata mem_reserve_map[MEM_RESERVE_MAP_SIZE]; |
| static int __initdata mem_reserve_cnt; |
| |
| static cell_t __initdata regbuf[1024]; |
| |
| |
| #define MAX_CPU_THREADS 2 |
| |
| /* TO GO */ |
| #ifdef CONFIG_HMT |
| struct { |
| unsigned int pir; |
| unsigned int threadid; |
| } hmt_thread_data[NR_CPUS]; |
| #endif /* CONFIG_HMT */ |
| |
| /* |
| * Error results ... some OF calls will return "-1" on error, some |
| * will return 0, some will return either. To simplify, here are |
| * macros to use with any ihandle or phandle return value to check if |
| * it is valid |
| */ |
| |
| #define PROM_ERROR (-1u) |
| #define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR) |
| #define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR) |
| |
| |
| /* This is the one and *ONLY* place where we actually call open |
| * firmware. |
| */ |
| |
| static int __init call_prom(const char *service, int nargs, int nret, ...) |
| { |
| int i; |
| struct prom_args args; |
| va_list list; |
| |
| args.service = ADDR(service); |
| args.nargs = nargs; |
| args.nret = nret; |
| |
| va_start(list, nret); |
| for (i = 0; i < nargs; i++) |
| args.args[i] = va_arg(list, prom_arg_t); |
| va_end(list); |
| |
| for (i = 0; i < nret; i++) |
| args.args[nargs+i] = 0; |
| |
| enter_prom(&args, RELOC(prom_entry)); |
| |
| return (nret > 0) ? args.args[nargs] : 0; |
| } |
| |
| static int __init call_prom_ret(const char *service, int nargs, int nret, |
| prom_arg_t *rets, ...) |
| { |
| int i; |
| struct prom_args args; |
| va_list list; |
| |
| args.service = ADDR(service); |
| args.nargs = nargs; |
| args.nret = nret; |
| |
| va_start(list, rets); |
| for (i = 0; i < nargs; i++) |
| args.args[i] = va_arg(list, prom_arg_t); |
| va_end(list); |
| |
| for (i = 0; i < nret; i++) |
| rets[nargs+i] = 0; |
| |
| enter_prom(&args, RELOC(prom_entry)); |
| |
| if (rets != NULL) |
| for (i = 1; i < nret; ++i) |
| rets[i] = args.args[nargs+i]; |
| |
| return (nret > 0) ? args.args[nargs] : 0; |
| } |
| |
| |
| static unsigned int __init prom_claim(unsigned long virt, unsigned long size, |
| unsigned long align) |
| { |
| return (unsigned int)call_prom("claim", 3, 1, |
| (prom_arg_t)virt, (prom_arg_t)size, |
| (prom_arg_t)align); |
| } |
| |
| static void __init prom_print(const char *msg) |
| { |
| const char *p, *q; |
| struct prom_t *_prom = &RELOC(prom); |
| |
| if (_prom->stdout == 0) |
| return; |
| |
| for (p = msg; *p != 0; p = q) { |
| for (q = p; *q != 0 && *q != '\n'; ++q) |
| ; |
| if (q > p) |
| call_prom("write", 3, 1, _prom->stdout, p, q - p); |
| if (*q == 0) |
| break; |
| ++q; |
| call_prom("write", 3, 1, _prom->stdout, ADDR("\r\n"), 2); |
| } |
| } |
| |
| |
| static void __init prom_print_hex(unsigned long val) |
| { |
| int i, nibbles = sizeof(val)*2; |
| char buf[sizeof(val)*2+1]; |
| struct prom_t *_prom = &RELOC(prom); |
| |
| for (i = nibbles-1; i >= 0; i--) { |
| buf[i] = (val & 0xf) + '0'; |
| if (buf[i] > '9') |
| buf[i] += ('a'-'0'-10); |
| val >>= 4; |
| } |
| buf[nibbles] = '\0'; |
| call_prom("write", 3, 1, _prom->stdout, buf, nibbles); |
| } |
| |
| |
| static void __init prom_printf(const char *format, ...) |
| { |
| const char *p, *q, *s; |
| va_list args; |
| unsigned long v; |
| struct prom_t *_prom = &RELOC(prom); |
| |
| va_start(args, format); |
| #ifdef CONFIG_PPC64 |
| format = PTRRELOC(format); |
| #endif |
| for (p = format; *p != 0; p = q) { |
| for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q) |
| ; |
| if (q > p) |
| call_prom("write", 3, 1, _prom->stdout, p, q - p); |
| if (*q == 0) |
| break; |
| if (*q == '\n') { |
| ++q; |
| call_prom("write", 3, 1, _prom->stdout, |
| ADDR("\r\n"), 2); |
| continue; |
| } |
| ++q; |
| if (*q == 0) |
| break; |
| switch (*q) { |
| case 's': |
| ++q; |
| s = va_arg(args, const char *); |
| prom_print(s); |
| break; |
| case 'x': |
| ++q; |
| v = va_arg(args, unsigned long); |
| prom_print_hex(v); |
| break; |
| } |
| } |
| } |
| |
| |
| static void __init __attribute__((noreturn)) prom_panic(const char *reason) |
| { |
| #ifdef CONFIG_PPC64 |
| reason = PTRRELOC(reason); |
| #endif |
| prom_print(reason); |
| /* ToDo: should put up an SRC here on p/iSeries */ |
| call_prom("exit", 0, 0); |
| |
| for (;;) /* should never get here */ |
| ; |
| } |
| |
| |
| static int __init prom_next_node(phandle *nodep) |
| { |
| phandle node; |
| |
| if ((node = *nodep) != 0 |
| && (*nodep = call_prom("child", 1, 1, node)) != 0) |
| return 1; |
| if ((*nodep = call_prom("peer", 1, 1, node)) != 0) |
| return 1; |
| for (;;) { |
| if ((node = call_prom("parent", 1, 1, node)) == 0) |
| return 0; |
| if ((*nodep = call_prom("peer", 1, 1, node)) != 0) |
| return 1; |
| } |
| } |
| |
| static int __init prom_getprop(phandle node, const char *pname, |
| void *value, size_t valuelen) |
| { |
| return call_prom("getprop", 4, 1, node, ADDR(pname), |
| (u32)(unsigned long) value, (u32) valuelen); |
| } |
| |
| static int __init prom_getproplen(phandle node, const char *pname) |
| { |
| return call_prom("getproplen", 2, 1, node, ADDR(pname)); |
| } |
| |
| static int __init prom_setprop(phandle node, const char *pname, |
| void *value, size_t valuelen) |
| { |
| return call_prom("setprop", 4, 1, node, ADDR(pname), |
| (u32)(unsigned long) value, (u32) valuelen); |
| } |
| |
| /* We can't use the standard versions because of RELOC headaches. */ |
| #define isxdigit(c) (('0' <= (c) && (c) <= '9') \ |
| || ('a' <= (c) && (c) <= 'f') \ |
| || ('A' <= (c) && (c) <= 'F')) |
| |
| #define isdigit(c) ('0' <= (c) && (c) <= '9') |
| #define islower(c) ('a' <= (c) && (c) <= 'z') |
| #define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c)) |
| |
| unsigned long prom_strtoul(const char *cp, const char **endp) |
| { |
| unsigned long result = 0, base = 10, value; |
| |
| if (*cp == '0') { |
| base = 8; |
| cp++; |
| if (toupper(*cp) == 'X') { |
| cp++; |
| base = 16; |
| } |
| } |
| |
| while (isxdigit(*cp) && |
| (value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) { |
| result = result * base + value; |
| cp++; |
| } |
| |
| if (endp) |
| *endp = cp; |
| |
| return result; |
| } |
| |
| unsigned long prom_memparse(const char *ptr, const char **retptr) |
| { |
| unsigned long ret = prom_strtoul(ptr, retptr); |
| int shift = 0; |
| |
| /* |
| * We can't use a switch here because GCC *may* generate a |
| * jump table which won't work, because we're not running at |
| * the address we're linked at. |
| */ |
| if ('G' == **retptr || 'g' == **retptr) |
| shift = 30; |
| |
| if ('M' == **retptr || 'm' == **retptr) |
| shift = 20; |
| |
| if ('K' == **retptr || 'k' == **retptr) |
| shift = 10; |
| |
| if (shift) { |
| ret <<= shift; |
| (*retptr)++; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Early parsing of the command line passed to the kernel, used for |
| * "mem=x" and the options that affect the iommu |
| */ |
| static void __init early_cmdline_parse(void) |
| { |
| struct prom_t *_prom = &RELOC(prom); |
| char *opt, *p; |
| int l = 0; |
| |
| RELOC(prom_cmd_line[0]) = 0; |
| p = RELOC(prom_cmd_line); |
| if ((long)_prom->chosen > 0) |
| l = prom_getprop(_prom->chosen, "bootargs", p, COMMAND_LINE_SIZE-1); |
| #ifdef CONFIG_CMDLINE |
| if (l == 0) /* dbl check */ |
| strlcpy(RELOC(prom_cmd_line), |
| RELOC(CONFIG_CMDLINE), sizeof(prom_cmd_line)); |
| #endif /* CONFIG_CMDLINE */ |
| prom_printf("command line: %s\n", RELOC(prom_cmd_line)); |
| |
| #ifdef CONFIG_PPC64 |
| opt = strstr(RELOC(prom_cmd_line), RELOC("iommu=")); |
| if (opt) { |
| prom_printf("iommu opt is: %s\n", opt); |
| opt += 6; |
| while (*opt && *opt == ' ') |
| opt++; |
| if (!strncmp(opt, RELOC("off"), 3)) |
| RELOC(ppc64_iommu_off) = 1; |
| else if (!strncmp(opt, RELOC("force"), 5)) |
| RELOC(iommu_force_on) = 1; |
| } |
| #endif |
| |
| opt = strstr(RELOC(prom_cmd_line), RELOC("mem=")); |
| if (opt) { |
| opt += 4; |
| RELOC(prom_memory_limit) = prom_memparse(opt, (const char **)&opt); |
| #ifdef CONFIG_PPC64 |
| /* Align to 16 MB == size of ppc64 large page */ |
| RELOC(prom_memory_limit) = ALIGN(RELOC(prom_memory_limit), 0x1000000); |
| #endif |
| } |
| } |
| |
| #ifdef CONFIG_PPC_PSERIES |
| /* |
| * To tell the firmware what our capabilities are, we have to pass |
| * it a fake 32-bit ELF header containing a couple of PT_NOTE sections |
| * that contain structures that contain the actual values. |
| */ |
| static struct fake_elf { |
| Elf32_Ehdr elfhdr; |
| Elf32_Phdr phdr[2]; |
| struct chrpnote { |
| u32 namesz; |
| u32 descsz; |
| u32 type; |
| char name[8]; /* "PowerPC" */ |
| struct chrpdesc { |
| u32 real_mode; |
| u32 real_base; |
| u32 real_size; |
| u32 virt_base; |
| u32 virt_size; |
| u32 load_base; |
| } chrpdesc; |
| } chrpnote; |
| struct rpanote { |
| u32 namesz; |
| u32 descsz; |
| u32 type; |
| char name[24]; /* "IBM,RPA-Client-Config" */ |
| struct rpadesc { |
| u32 lpar_affinity; |
| u32 min_rmo_size; |
| u32 min_rmo_percent; |
| u32 max_pft_size; |
| u32 splpar; |
| u32 min_load; |
| u32 new_mem_def; |
| u32 ignore_me; |
| } rpadesc; |
| } rpanote; |
| } fake_elf = { |
| .elfhdr = { |
| .e_ident = { 0x7f, 'E', 'L', 'F', |
| ELFCLASS32, ELFDATA2MSB, EV_CURRENT }, |
| .e_type = ET_EXEC, /* yeah right */ |
| .e_machine = EM_PPC, |
| .e_version = EV_CURRENT, |
| .e_phoff = offsetof(struct fake_elf, phdr), |
| .e_phentsize = sizeof(Elf32_Phdr), |
| .e_phnum = 2 |
| }, |
| .phdr = { |
| [0] = { |
| .p_type = PT_NOTE, |
| .p_offset = offsetof(struct fake_elf, chrpnote), |
| .p_filesz = sizeof(struct chrpnote) |
| }, [1] = { |
| .p_type = PT_NOTE, |
| .p_offset = offsetof(struct fake_elf, rpanote), |
| .p_filesz = sizeof(struct rpanote) |
| } |
| }, |
| .chrpnote = { |
| .namesz = sizeof("PowerPC"), |
| .descsz = sizeof(struct chrpdesc), |
| .type = 0x1275, |
| .name = "PowerPC", |
| .chrpdesc = { |
| .real_mode = ~0U, /* ~0 means "don't care" */ |
| .real_base = ~0U, |
| .real_size = ~0U, |
| .virt_base = ~0U, |
| .virt_size = ~0U, |
| .load_base = ~0U |
| }, |
| }, |
| .rpanote = { |
| .namesz = sizeof("IBM,RPA-Client-Config"), |
| .descsz = sizeof(struct rpadesc), |
| .type = 0x12759999, |
| .name = "IBM,RPA-Client-Config", |
| .rpadesc = { |
| .lpar_affinity = 0, |
| .min_rmo_size = 64, /* in megabytes */ |
| .min_rmo_percent = 0, |
| .max_pft_size = 48, /* 2^48 bytes max PFT size */ |
| .splpar = 1, |
| .min_load = ~0U, |
| .new_mem_def = 0 |
| } |
| } |
| }; |
| |
| static void __init prom_send_capabilities(void) |
| { |
| ihandle elfloader; |
| |
| elfloader = call_prom("open", 1, 1, ADDR("/packages/elf-loader")); |
| if (elfloader == 0) { |
| prom_printf("couldn't open /packages/elf-loader\n"); |
| return; |
| } |
| call_prom("call-method", 3, 1, ADDR("process-elf-header"), |
| elfloader, ADDR(&fake_elf)); |
| call_prom("close", 1, 0, elfloader); |
| } |
| #endif |
| |
| /* |
| * Memory allocation strategy... our layout is normally: |
| * |
| * at 14Mb or more we have vmlinux, then a gap and initrd. In some |
| * rare cases, initrd might end up being before the kernel though. |
| * We assume this won't override the final kernel at 0, we have no |
| * provision to handle that in this version, but it should hopefully |
| * never happen. |
| * |
| * alloc_top is set to the top of RMO, eventually shrink down if the |
| * TCEs overlap |
| * |
| * alloc_bottom is set to the top of kernel/initrd |
| * |
| * from there, allocations are done this way : rtas is allocated |
| * topmost, and the device-tree is allocated from the bottom. We try |
| * to grow the device-tree allocation as we progress. If we can't, |
| * then we fail, we don't currently have a facility to restart |
| * elsewhere, but that shouldn't be necessary. |
| * |
| * Note that calls to reserve_mem have to be done explicitly, memory |
| * allocated with either alloc_up or alloc_down isn't automatically |
| * reserved. |
| */ |
| |
| |
| /* |
| * Allocates memory in the RMO upward from the kernel/initrd |
| * |
| * When align is 0, this is a special case, it means to allocate in place |
| * at the current location of alloc_bottom or fail (that is basically |
| * extending the previous allocation). Used for the device-tree flattening |
| */ |
| static unsigned long __init alloc_up(unsigned long size, unsigned long align) |
| { |
| unsigned long base = _ALIGN_UP(RELOC(alloc_bottom), align); |
| unsigned long addr = 0; |
| |
| prom_debug("alloc_up(%x, %x)\n", size, align); |
| if (RELOC(ram_top) == 0) |
| prom_panic("alloc_up() called with mem not initialized\n"); |
| |
| if (align) |
| base = _ALIGN_UP(RELOC(alloc_bottom), align); |
| else |
| base = RELOC(alloc_bottom); |
| |
| for(; (base + size) <= RELOC(alloc_top); |
| base = _ALIGN_UP(base + 0x100000, align)) { |
| prom_debug(" trying: 0x%x\n\r", base); |
| addr = (unsigned long)prom_claim(base, size, 0); |
| if (addr != PROM_ERROR) |
| break; |
| addr = 0; |
| if (align == 0) |
| break; |
| } |
| if (addr == 0) |
| return 0; |
| RELOC(alloc_bottom) = addr; |
| |
| prom_debug(" -> %x\n", addr); |
| prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom)); |
| prom_debug(" alloc_top : %x\n", RELOC(alloc_top)); |
| prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high)); |
| prom_debug(" rmo_top : %x\n", RELOC(rmo_top)); |
| prom_debug(" ram_top : %x\n", RELOC(ram_top)); |
| |
| return addr; |
| } |
| |
| /* |
| * Allocates memory downward, either from top of RMO, or if highmem |
| * is set, from the top of RAM. Note that this one doesn't handle |
| * failures. It does claim memory if highmem is not set. |
| */ |
| static unsigned long __init alloc_down(unsigned long size, unsigned long align, |
| int highmem) |
| { |
| unsigned long base, addr = 0; |
| |
| prom_debug("alloc_down(%x, %x, %s)\n", size, align, |
| highmem ? RELOC("(high)") : RELOC("(low)")); |
| if (RELOC(ram_top) == 0) |
| prom_panic("alloc_down() called with mem not initialized\n"); |
| |
| if (highmem) { |
| /* Carve out storage for the TCE table. */ |
| addr = _ALIGN_DOWN(RELOC(alloc_top_high) - size, align); |
| if (addr <= RELOC(alloc_bottom)) |
| return 0; |
| /* Will we bump into the RMO ? If yes, check out that we |
| * didn't overlap existing allocations there, if we did, |
| * we are dead, we must be the first in town ! |
| */ |
| if (addr < RELOC(rmo_top)) { |
| /* Good, we are first */ |
| if (RELOC(alloc_top) == RELOC(rmo_top)) |
| RELOC(alloc_top) = RELOC(rmo_top) = addr; |
| else |
| return 0; |
| } |
| RELOC(alloc_top_high) = addr; |
| goto bail; |
| } |
| |
| base = _ALIGN_DOWN(RELOC(alloc_top) - size, align); |
| for (; base > RELOC(alloc_bottom); |
| base = _ALIGN_DOWN(base - 0x100000, align)) { |
| prom_debug(" trying: 0x%x\n\r", base); |
| addr = (unsigned long)prom_claim(base, size, 0); |
| if (addr != PROM_ERROR) |
| break; |
| addr = 0; |
| } |
| if (addr == 0) |
| return 0; |
| RELOC(alloc_top) = addr; |
| |
| bail: |
| prom_debug(" -> %x\n", addr); |
| prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom)); |
| prom_debug(" alloc_top : %x\n", RELOC(alloc_top)); |
| prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high)); |
| prom_debug(" rmo_top : %x\n", RELOC(rmo_top)); |
| prom_debug(" ram_top : %x\n", RELOC(ram_top)); |
| |
| return addr; |
| } |
| |
| /* |
| * Parse a "reg" cell |
| */ |
| static unsigned long __init prom_next_cell(int s, cell_t **cellp) |
| { |
| cell_t *p = *cellp; |
| unsigned long r = 0; |
| |
| /* Ignore more than 2 cells */ |
| while (s > sizeof(unsigned long) / 4) { |
| p++; |
| s--; |
| } |
| r = *p++; |
| #ifdef CONFIG_PPC64 |
| if (s) { |
| r <<= 32; |
| r |= *(p++); |
| } |
| #endif |
| *cellp = p; |
| return r; |
| } |
| |
| /* |
| * Very dumb function for adding to the memory reserve list, but |
| * we don't need anything smarter at this point |
| * |
| * XXX Eventually check for collisions. They should NEVER happen. |
| * If problems seem to show up, it would be a good start to track |
| * them down. |
| */ |
| static void reserve_mem(unsigned long base, unsigned long size) |
| { |
| unsigned long top = base + size; |
| unsigned long cnt = RELOC(mem_reserve_cnt); |
| |
| if (size == 0) |
| return; |
| |
| /* We need to always keep one empty entry so that we |
| * have our terminator with "size" set to 0 since we are |
| * dumb and just copy this entire array to the boot params |
| */ |
| base = _ALIGN_DOWN(base, PAGE_SIZE); |
| top = _ALIGN_UP(top, PAGE_SIZE); |
| size = top - base; |
| |
| if (cnt >= (MEM_RESERVE_MAP_SIZE - 1)) |
| prom_panic("Memory reserve map exhausted !\n"); |
| RELOC(mem_reserve_map)[cnt].base = base; |
| RELOC(mem_reserve_map)[cnt].size = size; |
| RELOC(mem_reserve_cnt) = cnt + 1; |
| } |
| |
| /* |
| * Initialize memory allocation mecanism, parse "memory" nodes and |
| * obtain that way the top of memory and RMO to setup out local allocator |
| */ |
| static void __init prom_init_mem(void) |
| { |
| phandle node; |
| char *path, type[64]; |
| unsigned int plen; |
| cell_t *p, *endp; |
| struct prom_t *_prom = &RELOC(prom); |
| u32 rac, rsc; |
| |
| /* |
| * We iterate the memory nodes to find |
| * 1) top of RMO (first node) |
| * 2) top of memory |
| */ |
| rac = 2; |
| prom_getprop(_prom->root, "#address-cells", &rac, sizeof(rac)); |
| rsc = 1; |
| prom_getprop(_prom->root, "#size-cells", &rsc, sizeof(rsc)); |
| prom_debug("root_addr_cells: %x\n", (unsigned long) rac); |
| prom_debug("root_size_cells: %x\n", (unsigned long) rsc); |
| |
| prom_debug("scanning memory:\n"); |
| path = RELOC(prom_scratch); |
| |
| for (node = 0; prom_next_node(&node); ) { |
| type[0] = 0; |
| prom_getprop(node, "device_type", type, sizeof(type)); |
| |
| if (strcmp(type, RELOC("memory"))) |
| continue; |
| |
| plen = prom_getprop(node, "reg", RELOC(regbuf), sizeof(regbuf)); |
| if (plen > sizeof(regbuf)) { |
| prom_printf("memory node too large for buffer !\n"); |
| plen = sizeof(regbuf); |
| } |
| p = RELOC(regbuf); |
| endp = p + (plen / sizeof(cell_t)); |
| |
| #ifdef DEBUG_PROM |
| memset(path, 0, PROM_SCRATCH_SIZE); |
| call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1); |
| prom_debug(" node %s :\n", path); |
| #endif /* DEBUG_PROM */ |
| |
| while ((endp - p) >= (rac + rsc)) { |
| unsigned long base, size; |
| |
| base = prom_next_cell(rac, &p); |
| size = prom_next_cell(rsc, &p); |
| |
| if (size == 0) |
| continue; |
| prom_debug(" %x %x\n", base, size); |
| if (base == 0) |
| RELOC(rmo_top) = size; |
| if ((base + size) > RELOC(ram_top)) |
| RELOC(ram_top) = base + size; |
| } |
| } |
| |
| RELOC(alloc_bottom) = PAGE_ALIGN((unsigned long)&RELOC(_end) + 0x4000); |
| |
| /* Check if we have an initrd after the kernel, if we do move our bottom |
| * point to after it |
| */ |
| if (RELOC(prom_initrd_start)) { |
| if (RELOC(prom_initrd_end) > RELOC(alloc_bottom)) |
| RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(prom_initrd_end)); |
| } |
| |
| /* |
| * If prom_memory_limit is set we reduce the upper limits *except* for |
| * alloc_top_high. This must be the real top of RAM so we can put |
| * TCE's up there. |
| */ |
| |
| RELOC(alloc_top_high) = RELOC(ram_top); |
| |
| if (RELOC(prom_memory_limit)) { |
| if (RELOC(prom_memory_limit) <= RELOC(alloc_bottom)) { |
| prom_printf("Ignoring mem=%x <= alloc_bottom.\n", |
| RELOC(prom_memory_limit)); |
| RELOC(prom_memory_limit) = 0; |
| } else if (RELOC(prom_memory_limit) >= RELOC(ram_top)) { |
| prom_printf("Ignoring mem=%x >= ram_top.\n", |
| RELOC(prom_memory_limit)); |
| RELOC(prom_memory_limit) = 0; |
| } else { |
| RELOC(ram_top) = RELOC(prom_memory_limit); |
| RELOC(rmo_top) = min(RELOC(rmo_top), RELOC(prom_memory_limit)); |
| } |
| } |
| |
| /* |
| * Setup our top alloc point, that is top of RMO or top of |
| * segment 0 when running non-LPAR. |
| * Some RS64 machines have buggy firmware where claims up at |
| * 1GB fail. Cap at 768MB as a workaround. |
| * Since 768MB is plenty of room, and we need to cap to something |
| * reasonable on 32-bit, cap at 768MB on all machines. |
| */ |
| if (!RELOC(rmo_top)) |
| RELOC(rmo_top) = RELOC(ram_top); |
| RELOC(rmo_top) = min(0x30000000ul, RELOC(rmo_top)); |
| RELOC(alloc_top) = RELOC(rmo_top); |
| |
| prom_printf("memory layout at init:\n"); |
| prom_printf(" memory_limit : %x (16 MB aligned)\n", RELOC(prom_memory_limit)); |
| prom_printf(" alloc_bottom : %x\n", RELOC(alloc_bottom)); |
| prom_printf(" alloc_top : %x\n", RELOC(alloc_top)); |
| prom_printf(" alloc_top_hi : %x\n", RELOC(alloc_top_high)); |
| prom_printf(" rmo_top : %x\n", RELOC(rmo_top)); |
| prom_printf(" ram_top : %x\n", RELOC(ram_top)); |
| } |
| |
| |
| /* |
| * Allocate room for and instantiate RTAS |
| */ |
| static void __init prom_instantiate_rtas(void) |
| { |
| phandle rtas_node; |
| ihandle rtas_inst; |
| u32 base, entry = 0; |
| u32 size = 0; |
| |
| prom_debug("prom_instantiate_rtas: start...\n"); |
| |
| rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas")); |
| prom_debug("rtas_node: %x\n", rtas_node); |
| if (!PHANDLE_VALID(rtas_node)) |
| return; |
| |
| prom_getprop(rtas_node, "rtas-size", &size, sizeof(size)); |
| if (size == 0) |
| return; |
| |
| base = alloc_down(size, PAGE_SIZE, 0); |
| if (base == 0) { |
| prom_printf("RTAS allocation failed !\n"); |
| return; |
| } |
| |
| rtas_inst = call_prom("open", 1, 1, ADDR("/rtas")); |
| if (!IHANDLE_VALID(rtas_inst)) { |
| prom_printf("opening rtas package failed"); |
| return; |
| } |
| |
| prom_printf("instantiating rtas at 0x%x ...", base); |
| |
| if (call_prom_ret("call-method", 3, 2, &entry, |
| ADDR("instantiate-rtas"), |
| rtas_inst, base) == PROM_ERROR |
| || entry == 0) { |
| prom_printf(" failed\n"); |
| return; |
| } |
| prom_printf(" done\n"); |
| |
| reserve_mem(base, size); |
| |
| prom_setprop(rtas_node, "linux,rtas-base", &base, sizeof(base)); |
| prom_setprop(rtas_node, "linux,rtas-entry", &entry, sizeof(entry)); |
| |
| prom_debug("rtas base = 0x%x\n", base); |
| prom_debug("rtas entry = 0x%x\n", entry); |
| prom_debug("rtas size = 0x%x\n", (long)size); |
| |
| prom_debug("prom_instantiate_rtas: end...\n"); |
| } |
| |
| #ifdef CONFIG_PPC64 |
| /* |
| * Allocate room for and initialize TCE tables |
| */ |
| static void __init prom_initialize_tce_table(void) |
| { |
| phandle node; |
| ihandle phb_node; |
| char compatible[64], type[64], model[64]; |
| char *path = RELOC(prom_scratch); |
| u64 base, align; |
| u32 minalign, minsize; |
| u64 tce_entry, *tce_entryp; |
| u64 local_alloc_top, local_alloc_bottom; |
| u64 i; |
| |
| if (RELOC(ppc64_iommu_off)) |
| return; |
| |
| prom_debug("starting prom_initialize_tce_table\n"); |
| |
| /* Cache current top of allocs so we reserve a single block */ |
| local_alloc_top = RELOC(alloc_top_high); |
| local_alloc_bottom = local_alloc_top; |
| |
| /* Search all nodes looking for PHBs. */ |
| for (node = 0; prom_next_node(&node); ) { |
| compatible[0] = 0; |
| type[0] = 0; |
| model[0] = 0; |
| prom_getprop(node, "compatible", |
| compatible, sizeof(compatible)); |
| prom_getprop(node, "device_type", type, sizeof(type)); |
| prom_getprop(node, "model", model, sizeof(model)); |
| |
| if ((type[0] == 0) || (strstr(type, RELOC("pci")) == NULL)) |
| continue; |
| |
| /* Keep the old logic in tack to avoid regression. */ |
| if (compatible[0] != 0) { |
| if ((strstr(compatible, RELOC("python")) == NULL) && |
| (strstr(compatible, RELOC("Speedwagon")) == NULL) && |
| (strstr(compatible, RELOC("Winnipeg")) == NULL)) |
| continue; |
| } else if (model[0] != 0) { |
| if ((strstr(model, RELOC("ython")) == NULL) && |
| (strstr(model, RELOC("peedwagon")) == NULL) && |
| (strstr(model, RELOC("innipeg")) == NULL)) |
| continue; |
| } |
| |
| if (prom_getprop(node, "tce-table-minalign", &minalign, |
| sizeof(minalign)) == PROM_ERROR) |
| minalign = 0; |
| if (prom_getprop(node, "tce-table-minsize", &minsize, |
| sizeof(minsize)) == PROM_ERROR) |
| minsize = 4UL << 20; |
| |
| /* |
| * Even though we read what OF wants, we just set the table |
| * size to 4 MB. This is enough to map 2GB of PCI DMA space. |
| * By doing this, we avoid the pitfalls of trying to DMA to |
| * MMIO space and the DMA alias hole. |
| * |
| * On POWER4, firmware sets the TCE region by assuming |
| * each TCE table is 8MB. Using this memory for anything |
| * else will impact performance, so we always allocate 8MB. |
| * Anton |
| */ |
| if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p)) |
| minsize = 8UL << 20; |
| else |
| minsize = 4UL << 20; |
| |
| /* Align to the greater of the align or size */ |
| align = max(minalign, minsize); |
| base = alloc_down(minsize, align, 1); |
| if (base == 0) |
| prom_panic("ERROR, cannot find space for TCE table.\n"); |
| if (base < local_alloc_bottom) |
| local_alloc_bottom = base; |
| |
| /* Save away the TCE table attributes for later use. */ |
| prom_setprop(node, "linux,tce-base", &base, sizeof(base)); |
| prom_setprop(node, "linux,tce-size", &minsize, sizeof(minsize)); |
| |
| /* It seems OF doesn't null-terminate the path :-( */ |
| memset(path, 0, sizeof(path)); |
| /* Call OF to setup the TCE hardware */ |
| if (call_prom("package-to-path", 3, 1, node, |
| path, PROM_SCRATCH_SIZE-1) == PROM_ERROR) { |
| prom_printf("package-to-path failed\n"); |
| } |
| |
| prom_debug("TCE table: %s\n", path); |
| prom_debug("\tnode = 0x%x\n", node); |
| prom_debug("\tbase = 0x%x\n", base); |
| prom_debug("\tsize = 0x%x\n", minsize); |
| |
| /* Initialize the table to have a one-to-one mapping |
| * over the allocated size. |
| */ |
| tce_entryp = (unsigned long *)base; |
| for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) { |
| tce_entry = (i << PAGE_SHIFT); |
| tce_entry |= 0x3; |
| *tce_entryp = tce_entry; |
| } |
| |
| prom_printf("opening PHB %s", path); |
| phb_node = call_prom("open", 1, 1, path); |
| if (phb_node == 0) |
| prom_printf("... failed\n"); |
| else |
| prom_printf("... done\n"); |
| |
| call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"), |
| phb_node, -1, minsize, |
| (u32) base, (u32) (base >> 32)); |
| call_prom("close", 1, 0, phb_node); |
| } |
| |
| reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom); |
| |
| if (RELOC(prom_memory_limit)) { |
| /* |
| * We align the start to a 16MB boundary so we can map |
| * the TCE area using large pages if possible. |
| * The end should be the top of RAM so no need to align it. |
| */ |
| RELOC(prom_tce_alloc_start) = _ALIGN_DOWN(local_alloc_bottom, |
| 0x1000000); |
| RELOC(prom_tce_alloc_end) = local_alloc_top; |
| } |
| |
| /* Flag the first invalid entry */ |
| prom_debug("ending prom_initialize_tce_table\n"); |
| } |
| #endif |
| |
| /* |
| * With CHRP SMP we need to use the OF to start the other processors. |
| * We can't wait until smp_boot_cpus (the OF is trashed by then) |
| * so we have to put the processors into a holding pattern controlled |
| * by the kernel (not OF) before we destroy the OF. |
| * |
| * This uses a chunk of low memory, puts some holding pattern |
| * code there and sends the other processors off to there until |
| * smp_boot_cpus tells them to do something. The holding pattern |
| * checks that address until its cpu # is there, when it is that |
| * cpu jumps to __secondary_start(). smp_boot_cpus() takes care |
| * of setting those values. |
| * |
| * We also use physical address 0x4 here to tell when a cpu |
| * is in its holding pattern code. |
| * |
| * -- Cort |
| */ |
| static void __init prom_hold_cpus(void) |
| { |
| #ifdef CONFIG_PPC64 |
| unsigned long i; |
| unsigned int reg; |
| phandle node; |
| char type[64]; |
| int cpuid = 0; |
| unsigned int interrupt_server[MAX_CPU_THREADS]; |
| unsigned int cpu_threads, hw_cpu_num; |
| int propsize; |
| extern void __secondary_hold(void); |
| extern unsigned long __secondary_hold_spinloop; |
| extern unsigned long __secondary_hold_acknowledge; |
| unsigned long *spinloop |
| = (void *) __pa(&__secondary_hold_spinloop); |
| unsigned long *acknowledge |
| = (void *) __pa(&__secondary_hold_acknowledge); |
| #ifdef CONFIG_PPC64 |
| unsigned long secondary_hold |
| = __pa(*PTRRELOC((unsigned long *)__secondary_hold)); |
| #else |
| unsigned long secondary_hold = __pa(&__secondary_hold); |
| #endif |
| struct prom_t *_prom = &RELOC(prom); |
| |
| prom_debug("prom_hold_cpus: start...\n"); |
| prom_debug(" 1) spinloop = 0x%x\n", (unsigned long)spinloop); |
| prom_debug(" 1) *spinloop = 0x%x\n", *spinloop); |
| prom_debug(" 1) acknowledge = 0x%x\n", |
| (unsigned long)acknowledge); |
| prom_debug(" 1) *acknowledge = 0x%x\n", *acknowledge); |
| prom_debug(" 1) secondary_hold = 0x%x\n", secondary_hold); |
| |
| /* Set the common spinloop variable, so all of the secondary cpus |
| * will block when they are awakened from their OF spinloop. |
| * This must occur for both SMP and non SMP kernels, since OF will |
| * be trashed when we move the kernel. |
| */ |
| *spinloop = 0; |
| |
| #ifdef CONFIG_HMT |
| for (i = 0; i < NR_CPUS; i++) { |
| RELOC(hmt_thread_data)[i].pir = 0xdeadbeef; |
| } |
| #endif |
| /* look for cpus */ |
| for (node = 0; prom_next_node(&node); ) { |
| type[0] = 0; |
| prom_getprop(node, "device_type", type, sizeof(type)); |
| if (strcmp(type, RELOC("cpu")) != 0) |
| continue; |
| |
| /* Skip non-configured cpus. */ |
| if (prom_getprop(node, "status", type, sizeof(type)) > 0) |
| if (strcmp(type, RELOC("okay")) != 0) |
| continue; |
| |
| reg = -1; |
| prom_getprop(node, "reg", ®, sizeof(reg)); |
| |
| prom_debug("\ncpuid = 0x%x\n", cpuid); |
| prom_debug("cpu hw idx = 0x%x\n", reg); |
| |
| /* Init the acknowledge var which will be reset by |
| * the secondary cpu when it awakens from its OF |
| * spinloop. |
| */ |
| *acknowledge = (unsigned long)-1; |
| |
| propsize = prom_getprop(node, "ibm,ppc-interrupt-server#s", |
| &interrupt_server, |
| sizeof(interrupt_server)); |
| if (propsize < 0) { |
| /* no property. old hardware has no SMT */ |
| cpu_threads = 1; |
| interrupt_server[0] = reg; /* fake it with phys id */ |
| } else { |
| /* We have a threaded processor */ |
| cpu_threads = propsize / sizeof(u32); |
| if (cpu_threads > MAX_CPU_THREADS) { |
| prom_printf("SMT: too many threads!\n" |
| "SMT: found %x, max is %x\n", |
| cpu_threads, MAX_CPU_THREADS); |
| cpu_threads = 1; /* ToDo: panic? */ |
| } |
| } |
| |
| hw_cpu_num = interrupt_server[0]; |
| if (hw_cpu_num != _prom->cpu) { |
| /* Primary Thread of non-boot cpu */ |
| prom_printf("%x : starting cpu hw idx %x... ", cpuid, reg); |
| call_prom("start-cpu", 3, 0, node, |
| secondary_hold, reg); |
| |
| for ( i = 0 ; (i < 100000000) && |
| (*acknowledge == ((unsigned long)-1)); i++ ) |
| mb(); |
| |
| if (*acknowledge == reg) { |
| prom_printf("done\n"); |
| /* We have to get every CPU out of OF, |
| * even if we never start it. */ |
| if (cpuid >= NR_CPUS) |
| goto next; |
| } else { |
| prom_printf("failed: %x\n", *acknowledge); |
| } |
| } |
| #ifdef CONFIG_SMP |
| else |
| prom_printf("%x : boot cpu %x\n", cpuid, reg); |
| #endif |
| next: |
| #ifdef CONFIG_SMP |
| /* Init paca for secondary threads. They start later. */ |
| for (i=1; i < cpu_threads; i++) { |
| cpuid++; |
| if (cpuid >= NR_CPUS) |
| continue; |
| } |
| #endif /* CONFIG_SMP */ |
| cpuid++; |
| } |
| #ifdef CONFIG_HMT |
| /* Only enable HMT on processors that provide support. */ |
| if (__is_processor(PV_PULSAR) || |
| __is_processor(PV_ICESTAR) || |
| __is_processor(PV_SSTAR)) { |
| prom_printf(" starting secondary threads\n"); |
| |
| for (i = 0; i < NR_CPUS; i += 2) { |
| if (!cpu_online(i)) |
| continue; |
| |
| if (i == 0) { |
| unsigned long pir = mfspr(SPRN_PIR); |
| if (__is_processor(PV_PULSAR)) { |
| RELOC(hmt_thread_data)[i].pir = |
| pir & 0x1f; |
| } else { |
| RELOC(hmt_thread_data)[i].pir = |
| pir & 0x3ff; |
| } |
| } |
| } |
| } else { |
| prom_printf("Processor is not HMT capable\n"); |
| } |
| #endif |
| |
| if (cpuid > NR_CPUS) |
| prom_printf("WARNING: maximum CPUs (" __stringify(NR_CPUS) |
| ") exceeded: ignoring extras\n"); |
| |
| prom_debug("prom_hold_cpus: end...\n"); |
| #endif |
| } |
| |
| |
| static void __init prom_init_client_services(unsigned long pp) |
| { |
| struct prom_t *_prom = &RELOC(prom); |
| |
| /* Get a handle to the prom entry point before anything else */ |
| RELOC(prom_entry) = pp; |
| |
| /* get a handle for the stdout device */ |
| _prom->chosen = call_prom("finddevice", 1, 1, ADDR("/chosen")); |
| if (!PHANDLE_VALID(_prom->chosen)) |
| prom_panic("cannot find chosen"); /* msg won't be printed :( */ |
| |
| /* get device tree root */ |
| _prom->root = call_prom("finddevice", 1, 1, ADDR("/")); |
| if (!PHANDLE_VALID(_prom->root)) |
| prom_panic("cannot find device tree root"); /* msg won't be printed :( */ |
| } |
| |
| static void __init prom_init_stdout(void) |
| { |
| struct prom_t *_prom = &RELOC(prom); |
| char *path = RELOC(of_stdout_device); |
| char type[16]; |
| u32 val; |
| |
| if (prom_getprop(_prom->chosen, "stdout", &val, sizeof(val)) <= 0) |
| prom_panic("cannot find stdout"); |
| |
| _prom->stdout = val; |
| |
| /* Get the full OF pathname of the stdout device */ |
| memset(path, 0, 256); |
| call_prom("instance-to-path", 3, 1, _prom->stdout, path, 255); |
| val = call_prom("instance-to-package", 1, 1, _prom->stdout); |
| prom_setprop(_prom->chosen, "linux,stdout-package", &val, sizeof(val)); |
| prom_printf("OF stdout device is: %s\n", RELOC(of_stdout_device)); |
| prom_setprop(_prom->chosen, "linux,stdout-path", |
| RELOC(of_stdout_device), strlen(RELOC(of_stdout_device))+1); |
| |
| /* If it's a display, note it */ |
| memset(type, 0, sizeof(type)); |
| prom_getprop(val, "device_type", type, sizeof(type)); |
| if (strcmp(type, RELOC("display")) == 0) |
| prom_setprop(val, "linux,boot-display", NULL, 0); |
| } |
| |
| static void __init prom_close_stdin(void) |
| { |
| struct prom_t *_prom = &RELOC(prom); |
| ihandle val; |
| |
| if (prom_getprop(_prom->chosen, "stdin", &val, sizeof(val)) > 0) |
| call_prom("close", 1, 0, val); |
| } |
| |
| static int __init prom_find_machine_type(void) |
| { |
| struct prom_t *_prom = &RELOC(prom); |
| char compat[256]; |
| int len, i = 0; |
| phandle rtas; |
| |
| len = prom_getprop(_prom->root, "compatible", |
| compat, sizeof(compat)-1); |
| if (len > 0) { |
| compat[len] = 0; |
| while (i < len) { |
| char *p = &compat[i]; |
| int sl = strlen(p); |
| if (sl == 0) |
| break; |
| if (strstr(p, RELOC("Power Macintosh")) || |
| strstr(p, RELOC("MacRISC4"))) |
| return PLATFORM_POWERMAC; |
| #ifdef CONFIG_PPC64 |
| if (strstr(p, RELOC("Momentum,Maple"))) |
| return PLATFORM_MAPLE; |
| #endif |
| i += sl + 1; |
| } |
| } |
| #ifdef CONFIG_PPC64 |
| /* Default to pSeries. We need to know if we are running LPAR */ |
| rtas = call_prom("finddevice", 1, 1, ADDR("/rtas")); |
| if (PHANDLE_VALID(rtas)) { |
| int x = prom_getproplen(rtas, "ibm,hypertas-functions"); |
| if (x != PROM_ERROR) { |
| prom_printf("Hypertas detected, assuming LPAR !\n"); |
| return PLATFORM_PSERIES_LPAR; |
| } |
| } |
| return PLATFORM_PSERIES; |
| #else |
| return PLATFORM_CHRP; |
| #endif |
| } |
| |
| static int __init setup_disp(phandle dp) |
| { |
| #if defined(CONFIG_BOOTX_TEXT) && defined(CONFIG_PPC32) |
| int width = 640, height = 480, depth = 8, pitch; |
| unsigned address; |
| u32 addrs[8][5]; |
| int i, naddrs; |
| char name[32]; |
| char *getprop = "getprop"; |
| |
| prom_printf("Initializing screen: "); |
| |
| memset(name, 0, sizeof(name)); |
| call_prom(getprop, 4, 1, dp, "name", name, sizeof(name)); |
| name[sizeof(name)-1] = 0; |
| prom_print(name); |
| prom_print("\n"); |
| call_prom(getprop, 4, 1, dp, "width", &width, sizeof(width)); |
| call_prom(getprop, 4, 1, dp, "height", &height, sizeof(height)); |
| call_prom(getprop, 4, 1, dp, "depth", &depth, sizeof(depth)); |
| pitch = width * ((depth + 7) / 8); |
| call_prom(getprop, 4, 1, dp, "linebytes", |
| &pitch, sizeof(pitch)); |
| if (pitch == 1) |
| pitch = 0x1000; /* for strange IBM display */ |
| address = 0; |
| call_prom(getprop, 4, 1, dp, "address", &address, sizeof(address)); |
| if (address == 0) { |
| /* look for an assigned address with a size of >= 1MB */ |
| naddrs = call_prom(getprop, 4, 1, dp, "assigned-addresses", |
| addrs, sizeof(addrs)); |
| naddrs /= 20; |
| for (i = 0; i < naddrs; ++i) { |
| if (addrs[i][4] >= (1 << 20)) { |
| address = addrs[i][2]; |
| /* use the BE aperture if possible */ |
| if (addrs[i][4] >= (16 << 20)) |
| address += (8 << 20); |
| break; |
| } |
| } |
| if (address == 0) { |
| prom_print("Failed to get address\n"); |
| return 0; |
| } |
| } |
| /* kludge for valkyrie */ |
| if (strcmp(name, "valkyrie") == 0) |
| address += 0x1000; |
| |
| prom_printf("\n\n\n\naddress = %x\n", address); |
| btext_setup_display(width, height, depth, pitch, address); |
| #endif /* CONFIG_BOOTX_TEXT && CONFIG_PPC32 */ |
| return 1; |
| } |
| |
| static int __init prom_set_color(ihandle ih, int i, int r, int g, int b) |
| { |
| return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r); |
| } |
| |
| /* |
| * If we have a display that we don't know how to drive, |
| * we will want to try to execute OF's open method for it |
| * later. However, OF will probably fall over if we do that |
| * we've taken over the MMU. |
| * So we check whether we will need to open the display, |
| * and if so, open it now. |
| */ |
| static void __init prom_check_displays(void) |
| { |
| char type[16], *path; |
| phandle node; |
| ihandle ih; |
| int i; |
| int got_display = 0; |
| |
| static unsigned char default_colors[] = { |
| 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0xaa, |
| 0x00, 0xaa, 0x00, |
| 0x00, 0xaa, 0xaa, |
| 0xaa, 0x00, 0x00, |
| 0xaa, 0x00, 0xaa, |
| 0xaa, 0xaa, 0x00, |
| 0xaa, 0xaa, 0xaa, |
| 0x55, 0x55, 0x55, |
| 0x55, 0x55, 0xff, |
| 0x55, 0xff, 0x55, |
| 0x55, 0xff, 0xff, |
| 0xff, 0x55, 0x55, |
| 0xff, 0x55, 0xff, |
| 0xff, 0xff, 0x55, |
| 0xff, 0xff, 0xff |
| }; |
| const unsigned char *clut; |
| |
| prom_printf("Looking for displays\n"); |
| for (node = 0; prom_next_node(&node); ) { |
| memset(type, 0, sizeof(type)); |
| prom_getprop(node, "device_type", type, sizeof(type)); |
| if (strcmp(type, RELOC("display")) != 0) |
| continue; |
| |
| /* It seems OF doesn't null-terminate the path :-( */ |
| path = RELOC(prom_scratch); |
| memset(path, 0, PROM_SCRATCH_SIZE); |
| |
| /* |
| * leave some room at the end of the path for appending extra |
| * arguments |
| */ |
| if (call_prom("package-to-path", 3, 1, node, path, |
| PROM_SCRATCH_SIZE-10) == PROM_ERROR) |
| continue; |
| prom_printf("found display : %s, opening ... ", path); |
| |
| ih = call_prom("open", 1, 1, path); |
| if (ih == 0) { |
| prom_printf("failed\n"); |
| continue; |
| } |
| |
| /* Success */ |
| prom_printf("done\n"); |
| prom_setprop(node, "linux,opened", NULL, 0); |
| |
| /* Setup a usable color table when the appropriate |
| * method is available. Should update this to set-colors */ |
| clut = RELOC(default_colors); |
| for (i = 0; i < 32; i++, clut += 3) |
| if (prom_set_color(ih, i, clut[0], clut[1], |
| clut[2]) != 0) |
| break; |
| |
| #ifdef CONFIG_LOGO_LINUX_CLUT224 |
| clut = PTRRELOC(RELOC(logo_linux_clut224.clut)); |
| for (i = 0; i < RELOC(logo_linux_clut224.clutsize); i++, clut += 3) |
| if (prom_set_color(ih, i + 32, clut[0], clut[1], |
| clut[2]) != 0) |
| break; |
| #endif /* CONFIG_LOGO_LINUX_CLUT224 */ |
| if (!got_display) |
| got_display = setup_disp(node); |
| } |
| } |
| |
| |
| /* Return (relocated) pointer to this much memory: moves initrd if reqd. */ |
| static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end, |
| unsigned long needed, unsigned long align) |
| { |
| void *ret; |
| |
| *mem_start = _ALIGN(*mem_start, align); |
| while ((*mem_start + needed) > *mem_end) { |
| unsigned long room, chunk; |
| |
| prom_debug("Chunk exhausted, claiming more at %x...\n", |
| RELOC(alloc_bottom)); |
| room = RELOC(alloc_top) - RELOC(alloc_bottom); |
| if (room > DEVTREE_CHUNK_SIZE) |
| room = DEVTREE_CHUNK_SIZE; |
| if (room < PAGE_SIZE) |
| prom_panic("No memory for flatten_device_tree (no room)"); |
| chunk = alloc_up(room, 0); |
| if (chunk == 0) |
| prom_panic("No memory for flatten_device_tree (claim failed)"); |
| *mem_end = RELOC(alloc_top); |
| } |
| |
| ret = (void *)*mem_start; |
| *mem_start += needed; |
| |
| return ret; |
| } |
| |
| #define dt_push_token(token, mem_start, mem_end) \ |
| do { *((u32 *)make_room(mem_start, mem_end, 4, 4)) = token; } while(0) |
| |
| static unsigned long __init dt_find_string(char *str) |
| { |
| char *s, *os; |
| |
| s = os = (char *)RELOC(dt_string_start); |
| s += 4; |
| while (s < (char *)RELOC(dt_string_end)) { |
| if (strcmp(s, str) == 0) |
| return s - os; |
| s += strlen(s) + 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * The Open Firmware 1275 specification states properties must be 31 bytes or |
| * less, however not all firmwares obey this. Make it 64 bytes to be safe. |
| */ |
| #define MAX_PROPERTY_NAME 64 |
| |
| static void __init scan_dt_build_strings(phandle node, |
| unsigned long *mem_start, |
| unsigned long *mem_end) |
| { |
| char *prev_name, *namep, *sstart; |
| unsigned long soff; |
| phandle child; |
| |
| sstart = (char *)RELOC(dt_string_start); |
| |
| /* get and store all property names */ |
| prev_name = RELOC(""); |
| for (;;) { |
| /* 64 is max len of name including nul. */ |
| namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, 1); |
| if (call_prom("nextprop", 3, 1, node, prev_name, namep) != 1) { |
| /* No more nodes: unwind alloc */ |
| *mem_start = (unsigned long)namep; |
| break; |
| } |
| |
| /* skip "name" */ |
| if (strcmp(namep, RELOC("name")) == 0) { |
| *mem_start = (unsigned long)namep; |
| prev_name = RELOC("name"); |
| continue; |
| } |
| /* get/create string entry */ |
| soff = dt_find_string(namep); |
| if (soff != 0) { |
| *mem_start = (unsigned long)namep; |
| namep = sstart + soff; |
| } else { |
| /* Trim off some if we can */ |
| *mem_start = (unsigned long)namep + strlen(namep) + 1; |
| RELOC(dt_string_end) = *mem_start; |
| } |
| prev_name = namep; |
| } |
| |
| /* do all our children */ |
| child = call_prom("child", 1, 1, node); |
| while (child != 0) { |
| scan_dt_build_strings(child, mem_start, mem_end); |
| child = call_prom("peer", 1, 1, child); |
| } |
| } |
| |
| static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start, |
| unsigned long *mem_end) |
| { |
| phandle child; |
| char *namep, *prev_name, *sstart, *p, *ep, *lp, *path; |
| unsigned long soff; |
| unsigned char *valp; |
| static char pname[MAX_PROPERTY_NAME]; |
| int l; |
| |
| dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end); |
| |
| /* get the node's full name */ |
| namep = (char *)*mem_start; |
| l = call_prom("package-to-path", 3, 1, node, |
| namep, *mem_end - *mem_start); |
| if (l >= 0) { |
| /* Didn't fit? Get more room. */ |
| if ((l+1) > (*mem_end - *mem_start)) { |
| namep = make_room(mem_start, mem_end, l+1, 1); |
| call_prom("package-to-path", 3, 1, node, namep, l); |
| } |
| namep[l] = '\0'; |
| |
| /* Fixup an Apple bug where they have bogus \0 chars in the |
| * middle of the path in some properties |
| */ |
| for (p = namep, ep = namep + l; p < ep; p++) |
| if (*p == '\0') { |
| memmove(p, p+1, ep - p); |
| ep--; l--; p--; |
| } |
| |
| /* now try to extract the unit name in that mess */ |
| for (p = namep, lp = NULL; *p; p++) |
| if (*p == '/') |
| lp = p + 1; |
| if (lp != NULL) |
| memmove(namep, lp, strlen(lp) + 1); |
| *mem_start = _ALIGN(((unsigned long) namep) + |
| strlen(namep) + 1, 4); |
| } |
| |
| /* get it again for debugging */ |
| path = RELOC(prom_scratch); |
| memset(path, 0, PROM_SCRATCH_SIZE); |
| call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1); |
| |
| /* get and store all properties */ |
| prev_name = RELOC(""); |
| sstart = (char *)RELOC(dt_string_start); |
| for (;;) { |
| if (call_prom("nextprop", 3, 1, node, prev_name, |
| RELOC(pname)) != 1) |
| break; |
| |
| /* skip "name" */ |
| if (strcmp(RELOC(pname), RELOC("name")) == 0) { |
| prev_name = RELOC("name"); |
| continue; |
| } |
| |
| /* find string offset */ |
| soff = dt_find_string(RELOC(pname)); |
| if (soff == 0) { |
| prom_printf("WARNING: Can't find string index for" |
| " <%s>, node %s\n", RELOC(pname), path); |
| break; |
| } |
| prev_name = sstart + soff; |
| |
| /* get length */ |
| l = call_prom("getproplen", 2, 1, node, RELOC(pname)); |
| |
| /* sanity checks */ |
| if (l == PROM_ERROR) |
| continue; |
| if (l > MAX_PROPERTY_LENGTH) { |
| prom_printf("WARNING: ignoring large property "); |
| /* It seems OF doesn't null-terminate the path :-( */ |
| prom_printf("[%s] ", path); |
| prom_printf("%s length 0x%x\n", RELOC(pname), l); |
| continue; |
| } |
| |
| /* push property head */ |
| dt_push_token(OF_DT_PROP, mem_start, mem_end); |
| dt_push_token(l, mem_start, mem_end); |
| dt_push_token(soff, mem_start, mem_end); |
| |
| /* push property content */ |
| valp = make_room(mem_start, mem_end, l, 4); |
| call_prom("getprop", 4, 1, node, RELOC(pname), valp, l); |
| *mem_start = _ALIGN(*mem_start, 4); |
| } |
| |
| /* Add a "linux,phandle" property. */ |
| soff = dt_find_string(RELOC("linux,phandle")); |
| if (soff == 0) |
| prom_printf("WARNING: Can't find string index for" |
| " <linux-phandle> node %s\n", path); |
| else { |
| dt_push_token(OF_DT_PROP, mem_start, mem_end); |
| dt_push_token(4, mem_start, mem_end); |
| dt_push_token(soff, mem_start, mem_end); |
| valp = make_room(mem_start, mem_end, 4, 4); |
| *(u32 *)valp = node; |
| } |
| |
| /* do all our children */ |
| child = call_prom("child", 1, 1, node); |
| while (child != 0) { |
| scan_dt_build_struct(child, mem_start, mem_end); |
| child = call_prom("peer", 1, 1, child); |
| } |
| |
| dt_push_token(OF_DT_END_NODE, mem_start, mem_end); |
| } |
| |
| static void __init flatten_device_tree(void) |
| { |
| phandle root; |
| unsigned long mem_start, mem_end, room; |
| struct boot_param_header *hdr; |
| struct prom_t *_prom = &RELOC(prom); |
| char *namep; |
| u64 *rsvmap; |
| |
| /* |
| * Check how much room we have between alloc top & bottom (+/- a |
| * few pages), crop to 4Mb, as this is our "chuck" size |
| */ |
| room = RELOC(alloc_top) - RELOC(alloc_bottom) - 0x4000; |
| if (room > DEVTREE_CHUNK_SIZE) |
| room = DEVTREE_CHUNK_SIZE; |
| prom_debug("starting device tree allocs at %x\n", RELOC(alloc_bottom)); |
| |
| /* Now try to claim that */ |
| mem_start = (unsigned long)alloc_up(room, PAGE_SIZE); |
| if (mem_start == 0) |
| prom_panic("Can't allocate initial device-tree chunk\n"); |
| mem_end = RELOC(alloc_top); |
| |
| /* Get root of tree */ |
| root = call_prom("peer", 1, 1, (phandle)0); |
| if (root == (phandle)0) |
| prom_panic ("couldn't get device tree root\n"); |
| |
| /* Build header and make room for mem rsv map */ |
| mem_start = _ALIGN(mem_start, 4); |
| hdr = make_room(&mem_start, &mem_end, |
| sizeof(struct boot_param_header), 4); |
| RELOC(dt_header_start) = (unsigned long)hdr; |
| rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8); |
| |
| /* Start of strings */ |
| mem_start = PAGE_ALIGN(mem_start); |
| RELOC(dt_string_start) = mem_start; |
| mem_start += 4; /* hole */ |
| |
| /* Add "linux,phandle" in there, we'll need it */ |
| namep = make_room(&mem_start, &mem_end, 16, 1); |
| strcpy(namep, RELOC("linux,phandle")); |
| mem_start = (unsigned long)namep + strlen(namep) + 1; |
| |
| /* Build string array */ |
| prom_printf("Building dt strings...\n"); |
| scan_dt_build_strings(root, &mem_start, &mem_end); |
| RELOC(dt_string_end) = mem_start; |
| |
| /* Build structure */ |
| mem_start = PAGE_ALIGN(mem_start); |
| RELOC(dt_struct_start) = mem_start; |
| prom_printf("Building dt structure...\n"); |
| scan_dt_build_struct(root, &mem_start, &mem_end); |
| dt_push_token(OF_DT_END, &mem_start, &mem_end); |
| RELOC(dt_struct_end) = PAGE_ALIGN(mem_start); |
| |
| /* Finish header */ |
| hdr->boot_cpuid_phys = _prom->cpu; |
| hdr->magic = OF_DT_HEADER; |
| hdr->totalsize = RELOC(dt_struct_end) - RELOC(dt_header_start); |
| hdr->off_dt_struct = RELOC(dt_struct_start) - RELOC(dt_header_start); |
| hdr->off_dt_strings = RELOC(dt_string_start) - RELOC(dt_header_start); |
| hdr->dt_strings_size = RELOC(dt_string_end) - RELOC(dt_string_start); |
| hdr->off_mem_rsvmap = ((unsigned long)rsvmap) - RELOC(dt_header_start); |
| hdr->version = OF_DT_VERSION; |
| /* Version 16 is not backward compatible */ |
| hdr->last_comp_version = 0x10; |
| |
| /* Reserve the whole thing and copy the reserve map in, we |
| * also bump mem_reserve_cnt to cause further reservations to |
| * fail since it's too late. |
| */ |
| reserve_mem(RELOC(dt_header_start), hdr->totalsize); |
| memcpy(rsvmap, RELOC(mem_reserve_map), sizeof(mem_reserve_map)); |
| |
| #ifdef DEBUG_PROM |
| { |
| int i; |
| prom_printf("reserved memory map:\n"); |
| for (i = 0; i < RELOC(mem_reserve_cnt); i++) |
| prom_printf(" %x - %x\n", |
| RELOC(mem_reserve_map)[i].base, |
| RELOC(mem_reserve_map)[i].size); |
| } |
| #endif |
| RELOC(mem_reserve_cnt) = MEM_RESERVE_MAP_SIZE; |
| |
| prom_printf("Device tree strings 0x%x -> 0x%x\n", |
| RELOC(dt_string_start), RELOC(dt_string_end)); |
| prom_printf("Device tree struct 0x%x -> 0x%x\n", |
| RELOC(dt_struct_start), RELOC(dt_struct_end)); |
| |
| } |
| |
| |
| static void __init fixup_device_tree(void) |
| { |
| #if defined(CONFIG_PPC64) && defined(CONFIG_PPC_PMAC) |
| phandle u3, i2c, mpic; |
| u32 u3_rev; |
| u32 interrupts[2]; |
| u32 parent; |
| |
| /* Some G5s have a missing interrupt definition, fix it up here */ |
| u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000")); |
| if (!PHANDLE_VALID(u3)) |
| return; |
| i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000")); |
| if (!PHANDLE_VALID(i2c)) |
| return; |
| mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000")); |
| if (!PHANDLE_VALID(mpic)) |
| return; |
| |
| /* check if proper rev of u3 */ |
| if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev)) |
| == PROM_ERROR) |
| return; |
| if (u3_rev != 0x35 && u3_rev != 0x37) |
| return; |
| /* does it need fixup ? */ |
| if (prom_getproplen(i2c, "interrupts") > 0) |
| return; |
| |
| prom_printf("fixing up bogus interrupts for u3 i2c...\n"); |
| |
| /* interrupt on this revision of u3 is number 0 and level */ |
| interrupts[0] = 0; |
| interrupts[1] = 1; |
| prom_setprop(i2c, "interrupts", &interrupts, sizeof(interrupts)); |
| parent = (u32)mpic; |
| prom_setprop(i2c, "interrupt-parent", &parent, sizeof(parent)); |
| #endif |
| } |
| |
| |
| static void __init prom_find_boot_cpu(void) |
| { |
| struct prom_t *_prom = &RELOC(prom); |
| u32 getprop_rval; |
| ihandle prom_cpu; |
| phandle cpu_pkg; |
| |
| if (prom_getprop(_prom->chosen, "cpu", &prom_cpu, sizeof(prom_cpu)) <= 0) |
| prom_panic("cannot find boot cpu"); |
| |
| cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu); |
| |
| prom_getprop(cpu_pkg, "reg", &getprop_rval, sizeof(getprop_rval)); |
| _prom->cpu = getprop_rval; |
| |
| prom_debug("Booting CPU hw index = 0x%x\n", _prom->cpu); |
| } |
| |
| static void __init prom_check_initrd(unsigned long r3, unsigned long r4) |
| { |
| #ifdef CONFIG_BLK_DEV_INITRD |
| struct prom_t *_prom = &RELOC(prom); |
| |
| if (r3 && r4 && r4 != 0xdeadbeef) { |
| unsigned long val; |
| |
| RELOC(prom_initrd_start) = (r3 >= KERNELBASE) ? __pa(r3) : r3; |
| RELOC(prom_initrd_end) = RELOC(prom_initrd_start) + r4; |
| |
| val = RELOC(prom_initrd_start); |
| prom_setprop(_prom->chosen, "linux,initrd-start", &val, |
| sizeof(val)); |
| val = RELOC(prom_initrd_end); |
| prom_setprop(_prom->chosen, "linux,initrd-end", &val, |
| sizeof(val)); |
| |
| reserve_mem(RELOC(prom_initrd_start), |
| RELOC(prom_initrd_end) - RELOC(prom_initrd_start)); |
| |
| prom_debug("initrd_start=0x%x\n", RELOC(prom_initrd_start)); |
| prom_debug("initrd_end=0x%x\n", RELOC(prom_initrd_end)); |
| } |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| } |
| |
| /* |
| * We enter here early on, when the Open Firmware prom is still |
| * handling exceptions and the MMU hash table for us. |
| */ |
| |
| unsigned long __init prom_init(unsigned long r3, unsigned long r4, |
| unsigned long pp, |
| unsigned long r6, unsigned long r7) |
| { |
| struct prom_t *_prom; |
| extern char _stext[]; |
| unsigned long hdr; |
| u32 getprop_rval; |
| |
| #ifdef CONFIG_PPC32 |
| unsigned long offset = reloc_offset(); |
| reloc_got2(offset); |
| #endif |
| |
| _prom = &RELOC(prom); |
| |
| /* |
| * First zero the BSS |
| */ |
| memset(&RELOC(__bss_start), 0, __bss_stop - __bss_start); |
| |
| /* |
| * Init interface to Open Firmware, get some node references, |
| * like /chosen |
| */ |
| prom_init_client_services(pp); |
| |
| /* |
| * Init prom stdout device |
| */ |
| prom_init_stdout(); |
| |
| /* |
| * Check for an initrd |
| */ |
| prom_check_initrd(r3, r4); |
| |
| /* |
| * Get default machine type. At this point, we do not differentiate |
| * between pSeries SMP and pSeries LPAR |
| */ |
| RELOC(of_platform) = prom_find_machine_type(); |
| getprop_rval = RELOC(of_platform); |
| prom_setprop(_prom->chosen, "linux,platform", |
| &getprop_rval, sizeof(getprop_rval)); |
| |
| #ifdef CONFIG_PPC_PSERIES |
| /* |
| * On pSeries, inform the firmware about our capabilities |
| */ |
| if (RELOC(of_platform) & PLATFORM_PSERIES) |
| prom_send_capabilities(); |
| #endif |
| |
| #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_BPA) |
| /* |
| * On pSeries and BPA, copy the CPU hold code |
| */ |
| if (RELOC(of_platform) & (PLATFORM_PSERIES | PLATFORM_BPA)) |
| copy_and_flush(0, KERNELBASE - offset, 0x100, 0); |
| #endif |
| |
| /* |
| * Do early parsing of command line |
| */ |
| early_cmdline_parse(); |
| |
| /* |
| * Initialize memory management within prom_init |
| */ |
| prom_init_mem(); |
| |
| /* |
| * Determine which cpu is actually running right _now_ |
| */ |
| prom_find_boot_cpu(); |
| |
| /* |
| * Initialize display devices |
| */ |
| prom_check_displays(); |
| |
| #ifdef CONFIG_PPC64 |
| /* |
| * Initialize IOMMU (TCE tables) on pSeries. Do that before anything else |
| * that uses the allocator, we need to make sure we get the top of memory |
| * available for us here... |
| */ |
| if (RELOC(of_platform) == PLATFORM_PSERIES) |
| prom_initialize_tce_table(); |
| #endif |
| |
| /* |
| * On non-powermacs, try to instantiate RTAS and puts all CPUs |
| * in spin-loops. PowerMacs don't have a working RTAS and use |
| * a different way to spin CPUs |
| */ |
| if (RELOC(of_platform) != PLATFORM_POWERMAC) { |
| prom_instantiate_rtas(); |
| prom_hold_cpus(); |
| } |
| |
| /* |
| * Fill in some infos for use by the kernel later on |
| */ |
| if (RELOC(prom_memory_limit)) |
| prom_setprop(_prom->chosen, "linux,memory-limit", |
| &RELOC(prom_memory_limit), |
| sizeof(prom_memory_limit)); |
| #ifdef CONFIG_PPC64 |
| if (RELOC(ppc64_iommu_off)) |
| prom_setprop(_prom->chosen, "linux,iommu-off", NULL, 0); |
| |
| if (RELOC(iommu_force_on)) |
| prom_setprop(_prom->chosen, "linux,iommu-force-on", NULL, 0); |
| |
| if (RELOC(prom_tce_alloc_start)) { |
| prom_setprop(_prom->chosen, "linux,tce-alloc-start", |
| &RELOC(prom_tce_alloc_start), |
| sizeof(prom_tce_alloc_start)); |
| prom_setprop(_prom->chosen, "linux,tce-alloc-end", |
| &RELOC(prom_tce_alloc_end), |
| sizeof(prom_tce_alloc_end)); |
| } |
| #endif |
| |
| /* |
| * Fixup any known bugs in the device-tree |
| */ |
| fixup_device_tree(); |
| |
| /* |
| * Now finally create the flattened device-tree |
| */ |
| prom_printf("copying OF device tree ...\n"); |
| flatten_device_tree(); |
| |
| /* in case stdin is USB and still active on IBM machines... */ |
| prom_close_stdin(); |
| |
| /* |
| * Call OF "quiesce" method to shut down pending DMA's from |
| * devices etc... |
| */ |
| prom_printf("Calling quiesce ...\n"); |
| call_prom("quiesce", 0, 0); |
| |
| /* |
| * And finally, call the kernel passing it the flattened device |
| * tree and NULL as r5, thus triggering the new entry point which |
| * is common to us and kexec |
| */ |
| hdr = RELOC(dt_header_start); |
| prom_printf("returning from prom_init\n"); |
| prom_debug("->dt_header_start=0x%x\n", hdr); |
| |
| #ifdef CONFIG_PPC32 |
| reloc_got2(-offset); |
| #endif |
| |
| __start(hdr, 0, 0); |
| |
| return 0; |
| } |