blob: 891984d0bbd4d82ad0f6db3262d2c449f8070c09 [file] [log] [blame]
/* MPTCP Scheduler module selector. Highly inspired by tcp_cong.c */
#include <linux/module.h>
#include <net/mptcp.h>
static DEFINE_SPINLOCK(mptcp_sched_list_lock);
static LIST_HEAD(mptcp_sched_list);
struct defsched_priv {
u32 last_rbuf_opti;
};
static struct defsched_priv *defsched_get_priv(const struct tcp_sock *tp)
{
return (struct defsched_priv *)&tp->mptcp->mptcp_sched[0];
}
bool mptcp_is_def_unavailable(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
/* Set of states for which we are allowed to send data */
if (!mptcp_sk_can_send(sk))
return true;
/* We do not send data on this subflow unless it is
* fully established, i.e. the 4th ack has been received.
*/
if (tp->mptcp->pre_established)
return true;
if (tp->pf)
return true;
return false;
}
EXPORT_SYMBOL_GPL(mptcp_is_def_unavailable);
static bool mptcp_is_temp_unavailable(struct sock *sk,
const struct sk_buff *skb,
bool zero_wnd_test)
{
const struct tcp_sock *tp = tcp_sk(sk);
unsigned int mss_now, space, in_flight;
if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) {
/* If SACK is disabled, and we got a loss, TCP does not exit
* the loss-state until something above high_seq has been
* acked. (see tcp_try_undo_recovery)
*
* high_seq is the snd_nxt at the moment of the RTO. As soon
* as we have an RTO, we won't push data on the subflow.
* Thus, snd_una can never go beyond high_seq.
*/
if (!tcp_is_reno(tp))
return true;
else if (tp->snd_una != tp->high_seq)
return true;
}
if (!tp->mptcp->fully_established) {
/* Make sure that we send in-order data */
if (skb && tp->mptcp->second_packet &&
tp->mptcp->last_end_data_seq != TCP_SKB_CB(skb)->seq)
return true;
}
in_flight = tcp_packets_in_flight(tp);
/* Not even a single spot in the cwnd */
if (in_flight >= tp->snd_cwnd)
return true;
/* Now, check if what is queued in the subflow's send-queue
* already fills the cwnd.
*/
space = (tp->snd_cwnd - in_flight) * tp->mss_cache;
if (tp->write_seq - tp->snd_nxt > space)
return true;
if (zero_wnd_test && !before(tp->write_seq, tcp_wnd_end(tp)))
return true;
mss_now = tcp_current_mss(sk);
/* Don't send on this subflow if we bypass the allowed send-window at
* the per-subflow level. Similar to tcp_snd_wnd_test, but manually
* calculated end_seq (because here at this point end_seq is still at
* the meta-level).
*/
if (skb && !zero_wnd_test &&
after(tp->write_seq + min(skb->len, mss_now), tcp_wnd_end(tp)))
return true;
return false;
}
/* Is the sub-socket sk available to send the skb? */
bool mptcp_is_available(struct sock *sk, const struct sk_buff *skb,
bool zero_wnd_test)
{
return !mptcp_is_def_unavailable(sk) &&
!mptcp_is_temp_unavailable(sk, skb, zero_wnd_test);
}
EXPORT_SYMBOL_GPL(mptcp_is_available);
/* Are we not allowed to reinject this skb on tp? */
static int mptcp_dont_reinject_skb(const struct tcp_sock *tp, const struct sk_buff *skb)
{
/* If the skb has already been enqueued in this sk, try to find
* another one.
*/
return skb &&
/* Has the skb already been enqueued into this subsocket? */
mptcp_pi_to_flag(tp->mptcp->path_index) & TCP_SKB_CB(skb)->path_mask;
}
bool subflow_is_backup(const struct tcp_sock *tp)
{
return tp->mptcp->rcv_low_prio || tp->mptcp->low_prio;
}
EXPORT_SYMBOL_GPL(subflow_is_backup);
bool subflow_is_active(const struct tcp_sock *tp)
{
return !tp->mptcp->rcv_low_prio && !tp->mptcp->low_prio;
}
EXPORT_SYMBOL_GPL(subflow_is_active);
/* Generic function to iterate over used and unused subflows and to select the
* best one
*/
static struct sock
*get_subflow_from_selectors(struct mptcp_cb *mpcb, struct sk_buff *skb,
bool (*selector)(const struct tcp_sock *),
bool zero_wnd_test, bool *force)
{
struct sock *bestsk = NULL;
u32 min_srtt = 0xffffffff;
bool found_unused = false;
bool found_unused_una = false;
struct sock *sk;
mptcp_for_each_sk(mpcb, sk) {
struct tcp_sock *tp = tcp_sk(sk);
bool unused = false;
/* First, we choose only the wanted sks */
if (!(*selector)(tp))
continue;
if (!mptcp_dont_reinject_skb(tp, skb))
unused = true;
else if (found_unused)
/* If a unused sk was found previously, we continue -
* no need to check used sks anymore.
*/
continue;
if (mptcp_is_def_unavailable(sk))
continue;
if (mptcp_is_temp_unavailable(sk, skb, zero_wnd_test)) {
if (unused)
found_unused_una = true;
continue;
}
if (unused) {
if (!found_unused) {
/* It's the first time we encounter an unused
* sk - thus we reset the bestsk (which might
* have been set to a used sk).
*/
min_srtt = 0xffffffff;
bestsk = NULL;
}
found_unused = true;
}
if (tp->srtt_us < min_srtt) {
min_srtt = tp->srtt_us;
bestsk = sk;
}
}
if (bestsk) {
/* The force variable is used to mark the returned sk as
* previously used or not-used.
*/
if (found_unused)
*force = true;
else
*force = false;
} else {
/* The force variable is used to mark if there are temporally
* unavailable not-used sks.
*/
if (found_unused_una)
*force = true;
else
*force = false;
}
return bestsk;
}
/* This is the scheduler. This function decides on which flow to send
* a given MSS. If all subflows are found to be busy, NULL is returned
* The flow is selected based on the shortest RTT.
* If all paths have full cong windows, we simply return NULL.
*
* Additionally, this function is aware of the backup-subflows.
*/
struct sock *get_available_subflow(struct sock *meta_sk, struct sk_buff *skb,
bool zero_wnd_test)
{
struct mptcp_cb *mpcb = tcp_sk(meta_sk)->mpcb;
struct sock *sk;
bool looping = false, force;
/* if there is only one subflow, bypass the scheduling function */
if (mpcb->cnt_subflows == 1) {
sk = (struct sock *)mpcb->connection_list;
if (!mptcp_is_available(sk, skb, zero_wnd_test))
sk = NULL;
return sk;
}
/* Answer data_fin on same subflow!!! */
if (meta_sk->sk_shutdown & RCV_SHUTDOWN &&
skb && mptcp_is_data_fin(skb)) {
mptcp_for_each_sk(mpcb, sk) {
if (tcp_sk(sk)->mptcp->path_index == mpcb->dfin_path_index &&
mptcp_is_available(sk, skb, zero_wnd_test))
return sk;
}
}
/* Find the best subflow */
restart:
sk = get_subflow_from_selectors(mpcb, skb, &subflow_is_active,
zero_wnd_test, &force);
if (force)
/* one unused active sk or one NULL sk when there is at least
* one temporally unavailable unused active sk
*/
return sk;
sk = get_subflow_from_selectors(mpcb, skb, &subflow_is_backup,
zero_wnd_test, &force);
if (!force && skb) {
/* one used backup sk or one NULL sk where there is no one
* temporally unavailable unused backup sk
*
* the skb passed through all the available active and backups
* sks, so clean the path mask
*/
TCP_SKB_CB(skb)->path_mask = 0;
if (!looping) {
looping = true;
goto restart;
}
}
return sk;
}
EXPORT_SYMBOL_GPL(get_available_subflow);
static struct sk_buff *mptcp_rcv_buf_optimization(struct sock *sk, int penal)
{
struct sock *meta_sk;
const struct tcp_sock *tp = tcp_sk(sk);
struct tcp_sock *tp_it;
struct sk_buff *skb_head;
struct defsched_priv *dsp = defsched_get_priv(tp);
if (tp->mpcb->cnt_subflows == 1)
return NULL;
meta_sk = mptcp_meta_sk(sk);
skb_head = tcp_write_queue_head(meta_sk);
if (!skb_head || skb_head == tcp_send_head(meta_sk))
return NULL;
/* If penalization is optional (coming from mptcp_next_segment() and
* We are not send-buffer-limited we do not penalize. The retransmission
* is just an optimization to fix the idle-time due to the delay before
* we wake up the application.
*/
if (!penal && sk_stream_memory_free(meta_sk))
goto retrans;
/* Only penalize again after an RTT has elapsed */
if (tcp_jiffies32 - dsp->last_rbuf_opti < usecs_to_jiffies(tp->srtt_us >> 3))
goto retrans;
/* Half the cwnd of the slow flow */
mptcp_for_each_tp(tp->mpcb, tp_it) {
if (tp_it != tp &&
TCP_SKB_CB(skb_head)->path_mask & mptcp_pi_to_flag(tp_it->mptcp->path_index)) {
if (tp->srtt_us < tp_it->srtt_us && inet_csk((struct sock *)tp_it)->icsk_ca_state == TCP_CA_Open) {
u32 prior_cwnd = tp_it->snd_cwnd;
tp_it->snd_cwnd = max(tp_it->snd_cwnd >> 1U, 1U);
/* If in slow start, do not reduce the ssthresh */
if (prior_cwnd >= tp_it->snd_ssthresh)
tp_it->snd_ssthresh = max(tp_it->snd_ssthresh >> 1U, 2U);
dsp->last_rbuf_opti = tcp_jiffies32;
}
break;
}
}
retrans:
/* Segment not yet injected into this path? Take it!!! */
if (!(TCP_SKB_CB(skb_head)->path_mask & mptcp_pi_to_flag(tp->mptcp->path_index))) {
bool do_retrans = false;
mptcp_for_each_tp(tp->mpcb, tp_it) {
if (tp_it != tp &&
TCP_SKB_CB(skb_head)->path_mask & mptcp_pi_to_flag(tp_it->mptcp->path_index)) {
if (tp_it->snd_cwnd <= 4) {
do_retrans = true;
break;
}
if (4 * tp->srtt_us >= tp_it->srtt_us) {
do_retrans = false;
break;
} else {
do_retrans = true;
}
}
}
if (do_retrans && mptcp_is_available(sk, skb_head, false))
return skb_head;
}
return NULL;
}
/* Returns the next segment to be sent from the mptcp meta-queue.
* (chooses the reinject queue if any segment is waiting in it, otherwise,
* chooses the normal write queue).
* Sets *@reinject to 1 if the returned segment comes from the
* reinject queue. Sets it to 0 if it is the regular send-head of the meta-sk,
* and sets it to -1 if it is a meta-level retransmission to optimize the
* receive-buffer.
*/
static struct sk_buff *__mptcp_next_segment(struct sock *meta_sk, int *reinject)
{
const struct mptcp_cb *mpcb = tcp_sk(meta_sk)->mpcb;
struct sk_buff *skb = NULL;
*reinject = 0;
/* If we are in fallback-mode, just take from the meta-send-queue */
if (mpcb->infinite_mapping_snd || mpcb->send_infinite_mapping)
return tcp_send_head(meta_sk);
skb = skb_peek(&mpcb->reinject_queue);
if (skb) {
*reinject = 1;
} else {
skb = tcp_send_head(meta_sk);
if (!skb && meta_sk->sk_socket &&
test_bit(SOCK_NOSPACE, &meta_sk->sk_socket->flags) &&
sk_stream_wspace(meta_sk) < sk_stream_min_wspace(meta_sk)) {
struct sock *subsk = get_available_subflow(meta_sk, NULL,
false);
if (!subsk)
return NULL;
skb = mptcp_rcv_buf_optimization(subsk, 0);
if (skb)
*reinject = -1;
}
}
return skb;
}
static struct sk_buff *mptcp_next_segment(struct sock *meta_sk,
int *reinject,
struct sock **subsk,
unsigned int *limit)
{
struct sk_buff *skb = __mptcp_next_segment(meta_sk, reinject);
unsigned int mss_now;
struct tcp_sock *subtp;
u16 gso_max_segs;
u32 max_len, max_segs, window, needed;
/* As we set it, we have to reset it as well. */
*limit = 0;
if (!skb)
return NULL;
*subsk = get_available_subflow(meta_sk, skb, false);
if (!*subsk)
return NULL;
subtp = tcp_sk(*subsk);
mss_now = tcp_current_mss(*subsk);
if (!*reinject && unlikely(!tcp_snd_wnd_test(tcp_sk(meta_sk), skb, mss_now))) {
skb = mptcp_rcv_buf_optimization(*subsk, 1);
if (skb)
*reinject = -1;
else
return NULL;
}
/* No splitting required, as we will only send one single segment */
if (skb->len <= mss_now)
return skb;
/* The following is similar to tcp_mss_split_point, but
* we do not care about nagle, because we will anyways
* use TCP_NAGLE_PUSH, which overrides this.
*
* So, we first limit according to the cwnd/gso-size and then according
* to the subflow's window.
*/
gso_max_segs = (*subsk)->sk_gso_max_segs;
if (!gso_max_segs) /* No gso supported on the subflow's NIC */
gso_max_segs = 1;
max_segs = min_t(unsigned int, tcp_cwnd_test(subtp, skb), gso_max_segs);
if (!max_segs)
return NULL;
max_len = mss_now * max_segs;
window = tcp_wnd_end(subtp) - subtp->write_seq;
needed = min(skb->len, window);
if (max_len <= skb->len)
/* Take max_win, which is actually the cwnd/gso-size */
*limit = max_len;
else
/* Or, take the window */
*limit = needed;
return skb;
}
static void defsched_init(struct sock *sk)
{
struct defsched_priv *dsp = defsched_get_priv(tcp_sk(sk));
dsp->last_rbuf_opti = tcp_jiffies32;
}
struct mptcp_sched_ops mptcp_sched_default = {
.get_subflow = get_available_subflow,
.next_segment = mptcp_next_segment,
.init = defsched_init,
.name = "default",
.owner = THIS_MODULE,
};
static struct mptcp_sched_ops *mptcp_sched_find(const char *name)
{
struct mptcp_sched_ops *e;
list_for_each_entry_rcu(e, &mptcp_sched_list, list) {
if (strcmp(e->name, name) == 0)
return e;
}
return NULL;
}
int mptcp_register_scheduler(struct mptcp_sched_ops *sched)
{
int ret = 0;
if (!sched->get_subflow || !sched->next_segment)
return -EINVAL;
spin_lock(&mptcp_sched_list_lock);
if (mptcp_sched_find(sched->name)) {
pr_notice("%s already registered\n", sched->name);
ret = -EEXIST;
} else {
list_add_tail_rcu(&sched->list, &mptcp_sched_list);
pr_info("%s registered\n", sched->name);
}
spin_unlock(&mptcp_sched_list_lock);
return ret;
}
EXPORT_SYMBOL_GPL(mptcp_register_scheduler);
void mptcp_unregister_scheduler(struct mptcp_sched_ops *sched)
{
spin_lock(&mptcp_sched_list_lock);
list_del_rcu(&sched->list);
spin_unlock(&mptcp_sched_list_lock);
/* Wait for outstanding readers to complete before the
* module gets removed entirely.
*
* A try_module_get() should fail by now as our module is
* in "going" state since no refs are held anymore and
* module_exit() handler being called.
*/
synchronize_rcu();
}
EXPORT_SYMBOL_GPL(mptcp_unregister_scheduler);
void mptcp_get_default_scheduler(char *name)
{
struct mptcp_sched_ops *sched;
BUG_ON(list_empty(&mptcp_sched_list));
rcu_read_lock();
sched = list_entry(mptcp_sched_list.next, struct mptcp_sched_ops, list);
strncpy(name, sched->name, MPTCP_SCHED_NAME_MAX);
rcu_read_unlock();
}
int mptcp_set_default_scheduler(const char *name)
{
struct mptcp_sched_ops *sched;
int ret = -ENOENT;
spin_lock(&mptcp_sched_list_lock);
sched = mptcp_sched_find(name);
#ifdef CONFIG_MODULES
if (!sched && capable(CAP_NET_ADMIN)) {
spin_unlock(&mptcp_sched_list_lock);
request_module("mptcp_%s", name);
spin_lock(&mptcp_sched_list_lock);
sched = mptcp_sched_find(name);
}
#endif
if (sched) {
list_move(&sched->list, &mptcp_sched_list);
ret = 0;
} else {
pr_info("%s is not available\n", name);
}
spin_unlock(&mptcp_sched_list_lock);
return ret;
}
/* Must be called with rcu lock held */
static struct mptcp_sched_ops *__mptcp_sched_find_autoload(const char *name)
{
struct mptcp_sched_ops *sched = mptcp_sched_find(name);
#ifdef CONFIG_MODULES
if (!sched && capable(CAP_NET_ADMIN)) {
rcu_read_unlock();
request_module("mptcp_%s", name);
rcu_read_lock();
sched = mptcp_sched_find(name);
}
#endif
return sched;
}
void mptcp_init_scheduler(struct mptcp_cb *mpcb)
{
struct mptcp_sched_ops *sched;
struct sock *meta_sk = mpcb->meta_sk;
struct tcp_sock *meta_tp = tcp_sk(meta_sk);
rcu_read_lock();
/* if scheduler was set using socket option */
if (meta_tp->mptcp_sched_setsockopt) {
sched = __mptcp_sched_find_autoload(meta_tp->mptcp_sched_name);
if (sched && try_module_get(sched->owner)) {
mpcb->sched_ops = sched;
goto out;
}
}
list_for_each_entry_rcu(sched, &mptcp_sched_list, list) {
if (try_module_get(sched->owner)) {
mpcb->sched_ops = sched;
break;
}
}
out:
rcu_read_unlock();
}
/* Change scheduler for socket */
int mptcp_set_scheduler(struct sock *sk, const char *name)
{
struct mptcp_sched_ops *sched;
int err = 0;
rcu_read_lock();
sched = __mptcp_sched_find_autoload(name);
if (!sched) {
err = -ENOENT;
} else if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
err = -EPERM;
} else {
strcpy(tcp_sk(sk)->mptcp_sched_name, name);
tcp_sk(sk)->mptcp_sched_setsockopt = 1;
}
rcu_read_unlock();
return err;
}
/* Manage refcounts on socket close. */
void mptcp_cleanup_scheduler(struct mptcp_cb *mpcb)
{
module_put(mpcb->sched_ops->owner);
}
/* Set default value from kernel configuration at bootup */
static int __init mptcp_scheduler_default(void)
{
BUILD_BUG_ON(sizeof(struct defsched_priv) > MPTCP_SCHED_SIZE);
return mptcp_set_default_scheduler(CONFIG_DEFAULT_MPTCP_SCHED);
}
late_initcall(mptcp_scheduler_default);