blob: 8896f4ec625440e92bffa21e98a8c73dcb992c39 [file] [log] [blame]
/*
* CPUFreq governor based on scheduler-provided CPU utilization data.
*
* Copyright (C) 2016, Intel Corporation
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpufreq.h>
#include <linux/kthread.h>
#include <uapi/linux/sched/types.h>
#include <linux/slab.h>
#include <linux/cpu_pm.h>
#include <linux/ems.h>
#include <trace/events/power.h>
#include "sched.h"
#include "tune.h"
#include "ems/ems.h"
#ifdef CONFIG_SCHED_KAIR_GLUE
#include <linux/kair.h>
/**
* 2nd argument of kair_obj_creator() experimentally decided by KAIR client
* itself, which represents how much variant the random variable registered to
* the KAIR instance can behave at most, in terms of referencing d2u_decl_cmtpdf
* table(maximum index of d2u_decl_cmtpdf table).
**/
#define UTILAVG_KAIR_VARIANCE 16
DECLARE_KAIRISTICS(cpufreq, 32, 25, 24, 25);
#endif
unsigned long boosted_cpu_util(int cpu);
#define SUGOV_KTHREAD_PRIORITY 50
struct sugov_tunables {
struct gov_attr_set attr_set;
unsigned int up_rate_limit_us;
unsigned int down_rate_limit_us;
#ifdef CONFIG_SCHED_KAIR_GLUE
bool fb_legacy;
#endif
};
struct sugov_policy {
struct cpufreq_policy *policy;
struct sugov_tunables *tunables;
struct list_head tunables_hook;
raw_spinlock_t update_lock; /* For shared policies */
u64 last_freq_update_time;
s64 min_rate_limit_ns;
s64 up_rate_delay_ns;
s64 down_rate_delay_ns;
unsigned int next_freq;
unsigned int cached_raw_freq;
/* The next fields are only needed if fast switch cannot be used. */
struct irq_work irq_work;
struct kthread_work work;
struct mutex work_lock;
struct kthread_worker worker;
struct task_struct *thread;
bool work_in_progress;
bool need_freq_update;
#ifdef CONFIG_SCHED_KAIR_GLUE
bool be_stochastic;
#endif
};
struct sugov_cpu {
struct update_util_data update_util;
struct sugov_policy *sg_policy;
unsigned int cpu;
bool iowait_boost_pending;
unsigned int iowait_boost;
unsigned int iowait_boost_max;
u64 last_update;
#ifdef CONFIG_SCHED_KAIR_GLUE
/**
* KAIR instance which should be referenced in percpu manner,
* and data accordingly to handle the target job intensity.
**/
struct kair_class *util_vessel;
unsigned long cached_util;
#endif
/* The fields below are only needed when sharing a policy. */
unsigned long util;
unsigned long max;
unsigned int flags;
/* The field below is for single-CPU policies only. */
#ifdef CONFIG_NO_HZ_COMMON
unsigned long saved_idle_calls;
#endif
};
static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
/******************* exynos specific function *******************/
#define DEFAULT_EXPIRED_TIME 70
struct sugov_exynos {
/* for slack timer */
unsigned long min;
int enabled;
bool started;
int expired_time;
struct timer_list timer;
/* pm_qos_class */
int qos_min_class;
};
static DEFINE_PER_CPU(struct sugov_exynos, sugov_exynos);
static void sugov_stop_slack(int cpu);
static void sugov_start_slack(int cpu);
static void sugov_update_min(struct cpufreq_policy *policy);
/************************ Governor internals ***********************/
struct sugov_policy_list {
struct list_head list;
struct sugov_policy *sg_policy;
struct cpumask cpus;
};
static LIST_HEAD(sugov_policy_list);
static inline struct sugov_policy_list
*find_sg_pol_list(struct cpufreq_policy *policy)
{
struct sugov_policy_list *sg_pol_list;
list_for_each_entry(sg_pol_list, &sugov_policy_list, list)
if (cpumask_test_cpu(policy->cpu, &sg_pol_list->cpus))
return sg_pol_list;
return NULL;
}
static struct sugov_policy
*sugov_restore_policy(struct cpufreq_policy *policy)
{
struct sugov_policy_list *sg_pol_list =
sg_pol_list = find_sg_pol_list(policy);
if (!sg_pol_list)
return NULL;
pr_info("Restore sg_policy(%d) from policy_list\(%x)n",
policy->cpu,
*(unsigned int *)cpumask_bits(&sg_pol_list->cpus));
return sg_pol_list->sg_policy;
}
static int sugov_save_policy(struct sugov_policy *sg_policy)
{
struct sugov_policy_list *sg_pol_list;
struct cpufreq_policy *policy = sg_policy->policy;
if (unlikely(!sg_policy))
return 0;
sg_pol_list = find_sg_pol_list(policy);
if (sg_pol_list) {
pr_info("Already saved sg_policy(%d) to policy_list\(%x)n",
policy->cpu,
*(unsigned int *)cpumask_bits(&sg_pol_list->cpus));
return 1;
}
/* Back up sugov_policy to list */
sg_pol_list = kzalloc(sizeof(struct sugov_policy_list), GFP_KERNEL);
if (!sg_pol_list)
return 0;
cpumask_copy(&sg_pol_list->cpus, policy->related_cpus);
sg_pol_list->sg_policy = sg_policy;
list_add(&sg_pol_list->list, &sugov_policy_list);
pr_info("Save sg_policy(%d) to policy_list(%x)\n",
policy->cpu,
*(unsigned int *)cpumask_bits(&sg_pol_list->cpus));
return 1;
}
static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
{
s64 delta_ns;
/*
* Since cpufreq_update_util() is called with rq->lock held for
* the @target_cpu, our per-cpu data is fully serialized.
*
* However, drivers cannot in general deal with cross-cpu
* requests, so while get_next_freq() will work, our
* sugov_update_commit() call may not for the fast switching platforms.
*
* Hence stop here for remote requests if they aren't supported
* by the hardware, as calculating the frequency is pointless if
* we cannot in fact act on it.
*
* For the slow switching platforms, the kthread is always scheduled on
* the right set of CPUs and any CPU can find the next frequency and
* schedule the kthread.
*/
if (sg_policy->policy->fast_switch_enabled &&
!cpufreq_can_do_remote_dvfs(sg_policy->policy))
return false;
if (sg_policy->work_in_progress)
return false;
if (unlikely(sg_policy->need_freq_update)) {
sg_policy->need_freq_update = false;
/*
* This happens when limits change, so forget the previous
* next_freq value and force an update.
*/
sg_policy->next_freq = UINT_MAX;
return true;
}
/* No need to recalculate next freq for min_rate_limit_us
* at least. However we might still decide to further rate
* limit once frequency change direction is decided, according
* to the separate rate limits.
*/
delta_ns = time - sg_policy->last_freq_update_time;
return delta_ns >= sg_policy->min_rate_limit_ns;
}
static bool sugov_up_down_rate_limit(struct sugov_policy *sg_policy, u64 time,
unsigned int next_freq)
{
s64 delta_ns;
delta_ns = time - sg_policy->last_freq_update_time;
if (next_freq > sg_policy->next_freq &&
delta_ns < sg_policy->up_rate_delay_ns)
return true;
if (next_freq < sg_policy->next_freq &&
delta_ns < sg_policy->down_rate_delay_ns)
return true;
return false;
}
static int sugov_select_scaling_cpu(void)
{
int cpu, candidate = -1;
unsigned long rt, util, min = INT_MAX;
cpumask_t mask;
cpumask_clear(&mask);
cpumask_and(&mask, cpu_coregroup_mask(0), cpu_active_mask);
/* Idle core of the boot cluster is selected to scaling cpu */
for_each_cpu(cpu, &mask) {
rt = sched_get_rt_rq_util(cpu);
#ifdef CONFIG_SCHED_EMS
util = ml_boosted_cpu_util(cpu) + rt;
#else
util = boosted_cpu_util(cpu, rt);
#endif
if (util < min) {
min = util;
candidate = cpu;
}
}
return candidate;
}
static void sugov_update_commit(struct sugov_policy *sg_policy, u64 time,
unsigned int next_freq)
{
struct cpufreq_policy *policy = sg_policy->policy;
int cpu;
if (sg_policy->next_freq == next_freq)
return;
if (sugov_up_down_rate_limit(sg_policy, time, next_freq))
return;
sg_policy->next_freq = next_freq;
sg_policy->last_freq_update_time = time;
if (policy->fast_switch_enabled) {
next_freq = cpufreq_driver_fast_switch(policy, next_freq);
if (!next_freq)
return;
policy->cur = next_freq;
trace_cpu_frequency(next_freq, smp_processor_id());
} else {
cpu = sugov_select_scaling_cpu();
if (cpu < 0)
return;
sg_policy->work_in_progress = true;
irq_work_queue_on(&sg_policy->irq_work, cpu);
}
}
#ifdef CONFIG_FREQVAR_TUNE
unsigned long freqvar_boost_vector(int cpu, unsigned long util);
#else
static inline unsigned long freqvar_boost_vector(int cpu, unsigned long util)
{
return util;
}
#endif
/**
* get_next_freq - Compute a new frequency for a given cpufreq policy.
* @sg_policy: schedutil policy object to compute the new frequency for.
* @util: Current CPU utilization.
* @max: CPU capacity.
*
* If the utilization is frequency-invariant, choose the new frequency to be
* proportional to it, that is
*
* next_freq = C * max_freq * util / max
*
* Otherwise, approximate the would-be frequency-invariant utilization by
* util_raw * (curr_freq / max_freq) which leads to
*
* next_freq = C * curr_freq * util_raw / max
*
* Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
*
* The lowest driver-supported frequency which is equal or greater than the raw
* next_freq (as calculated above) is returned, subject to policy min/max and
* cpufreq driver limitations.
*/
static unsigned int get_next_freq(struct sugov_policy *sg_policy,
unsigned long util, unsigned long max)
{
struct cpufreq_policy *policy = sg_policy->policy;
unsigned int freq = arch_scale_freq_invariant() ?
policy->max : policy->cur;
#ifdef CONFIG_SCHED_KAIR_GLUE
struct sugov_cpu *sg_cpu;
struct kair_class *vessel;
unsigned int delta_max, delta_min;
int util_delta;
unsigned int legacy_freq;
#ifdef KAIR_CLUSTER_TRAVERSING
unsigned int each;
unsigned int sigma_cpu = policy->cpu;
randomness most_rand = 0;
#endif
int cur_rand = KAIR_DIVERGING;
RV_DECLARE(rv);
#endif
freq = (freq + (freq >> 2)) * util / max;
#ifdef CONFIG_SCHED_KAIR_GLUE
legacy_freq = freq;
if (sg_policy->tunables->fb_legacy)
goto skip_betting;
#ifndef KAIR_CLUSTER_TRAVERSING
sg_cpu = &per_cpu(sugov_cpu, policy->cpu);
vessel = sg_cpu->util_vessel;
if (!vessel)
goto skip_betting;
cur_rand = vessel->job_inferer(vessel);
if (cur_rand == KAIR_DIVERGING)
goto skip_betting;
#else
for_each_cpu(each, policy->cpus) {
sg_cpu = &per_cpu(sugov_cpu, each);
vessel = sg_cpu->util_vessel;
if (vessel) {
cur_rand = vessel->job_inferer(vessel);
if (cur_rand == KAIR_DIVERGING)
goto skip_betting;
else {
if (cur_rand > (int)most_rand) {
most_rand = (randomness)cur_rand;
sigma_cpu = each;
}
}
} else
goto skip_betting;
}
sg_cpu = &per_cpu(sugov_cpu, sigma_cpu);
vessel = sg_cpu->util_vessel;
#endif
util_delta = sg_cpu->util - sg_cpu->cached_util;
delta_max = sg_cpu->max - sg_cpu->cached_util;
delta_min = sg_cpu->cached_util;
RV_SET(rv, util_delta, delta_max, delta_min);
freq = vessel->cap_bettor(vessel, &rv, freq);
skip_betting:
trace_sugov_kair_freq(policy->cpu, util, max, cur_rand, legacy_freq, freq);
#endif
if (freq == sg_policy->cached_raw_freq && sg_policy->next_freq != UINT_MAX)
return sg_policy->next_freq;
sg_policy->cached_raw_freq = freq;
freq = cpufreq_driver_resolve_freq(policy, freq);
trace_cpu_frequency_sugov(freq, util, policy->cpu);
return freq;
}
static void sugov_get_util(unsigned long *util, unsigned long *max, int cpu)
{
unsigned long max_cap;
max_cap = arch_scale_cpu_capacity(NULL, cpu);
#ifdef CONFIG_SCHED_EMS
*util = ml_boosted_cpu_util(cpu);
#else
*util = boosted_cpu_util(cpu);
#endif
*util = min(*util, max_cap);
*max = max_cap;
#ifdef CONFIG_SCHED_EMS
part_cpu_active_ratio(util, max, cpu);
#endif
}
#ifdef CONFIG_SCHED_KAIR_GLUE
static inline void sugov_util_collapse(struct sugov_cpu *sg_cpu)
{
struct kair_class *vessel = sg_cpu->util_vessel;
int util_delta = min(sg_cpu->max, sg_cpu->util) - sg_cpu->cached_util;
unsigned int delta_max = sg_cpu->max - sg_cpu->cached_util;
unsigned int delta_min = sg_cpu->cached_util;
RV_DECLARE(job);
if (vessel) {
RV_SET(job, util_delta, delta_max, delta_min);
vessel->job_learner(vessel, &job);
}
}
#endif
static void sugov_set_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
unsigned int flags)
{
if (flags & SCHED_CPUFREQ_IOWAIT) {
if (sg_cpu->iowait_boost_pending)
return;
sg_cpu->iowait_boost_pending = true;
if (sg_cpu->iowait_boost) {
sg_cpu->iowait_boost <<= 1;
if (sg_cpu->iowait_boost > sg_cpu->iowait_boost_max)
sg_cpu->iowait_boost = sg_cpu->iowait_boost_max;
} else {
sg_cpu->iowait_boost = sg_cpu->sg_policy->policy->min;
}
} else if (sg_cpu->iowait_boost) {
s64 delta_ns = time - sg_cpu->last_update;
/* Clear iowait_boost if the CPU apprears to have been idle. */
if (delta_ns > TICK_NSEC) {
sg_cpu->iowait_boost = 0;
sg_cpu->iowait_boost_pending = false;
}
}
}
static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, unsigned long *util,
unsigned long *max)
{
unsigned int boost_util, boost_max;
if (!sg_cpu->iowait_boost)
return;
if (sg_cpu->iowait_boost_pending) {
sg_cpu->iowait_boost_pending = false;
} else {
sg_cpu->iowait_boost >>= 1;
if (sg_cpu->iowait_boost < sg_cpu->sg_policy->policy->min) {
sg_cpu->iowait_boost = 0;
return;
}
}
boost_util = sg_cpu->iowait_boost;
boost_max = sg_cpu->iowait_boost_max;
if (*util * boost_max < *max * boost_util) {
*util = boost_util;
*max = boost_max;
}
}
static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
{
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
struct cpufreq_policy *policy = sg_policy->policy;
unsigned long util = 0, max = 1;
unsigned int j;
for_each_cpu_and(j, policy->related_cpus, cpu_online_mask) {
struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
unsigned long j_util, j_max;
s64 delta_ns;
/*
* If the CPU utilization was last updated before the previous
* frequency update and the time elapsed between the last update
* of the CPU utilization and the last frequency update is long
* enough, don't take the CPU into account as it probably is
* idle now (and clear iowait_boost for it).
*/
delta_ns = time - j_sg_cpu->last_update;
if (delta_ns > TICK_NSEC && idle_cpu(j)) {
j_sg_cpu->iowait_boost = 0;
j_sg_cpu->iowait_boost_pending = false;
continue;
}
if (j_sg_cpu->flags & SCHED_CPUFREQ_DL)
return policy->cpuinfo.max_freq;
j_util = j_sg_cpu->util;
j_max = j_sg_cpu->max;
if (j_util * max > j_max * util) {
util = j_util;
max = j_max;
}
sugov_iowait_boost(j_sg_cpu, &util, &max);
}
return get_next_freq(sg_policy, util, max);
}
static void sugov_update_shared(struct update_util_data *hook, u64 time,
unsigned int flags)
{
struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
unsigned long util, max;
unsigned int next_f;
sugov_get_util(&util, &max, sg_cpu->cpu);
raw_spin_lock(&sg_policy->update_lock);
#ifdef CONFIG_SCHED_KAIR_GLUE
sg_cpu->cached_util = min(max, sg_cpu->max ?
mult_frac(sg_cpu->util, max, sg_cpu->max) : sg_cpu->util);
#endif
sg_cpu->util = util;
sg_cpu->max = max;
sg_cpu->flags = flags;
#ifdef CONFIG_SCHED_KAIR_GLUE
sugov_util_collapse(sg_cpu);
#endif
sugov_set_iowait_boost(sg_cpu, time, flags);
sg_cpu->last_update = time;
if (sugov_should_update_freq(sg_policy, time)) {
if (flags & SCHED_CPUFREQ_DL)
next_f = sg_policy->policy->cpuinfo.max_freq;
else
next_f = sugov_next_freq_shared(sg_cpu, time);
sugov_update_commit(sg_policy, time, next_f);
}
raw_spin_unlock(&sg_policy->update_lock);
}
static void sugov_work(struct kthread_work *work)
{
struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
down_write(&sg_policy->policy->rwsem);
mutex_lock(&sg_policy->work_lock);
__cpufreq_driver_target(sg_policy->policy, sg_policy->next_freq,
CPUFREQ_RELATION_L);
mutex_unlock(&sg_policy->work_lock);
up_write(&sg_policy->policy->rwsem);
sg_policy->work_in_progress = false;
}
static void sugov_irq_work(struct irq_work *irq_work)
{
struct sugov_policy *sg_policy;
sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
/*
* For RT and deadline tasks, the schedutil governor shoots the
* frequency to maximum. Special care must be taken to ensure that this
* kthread doesn't result in the same behavior.
*
* This is (mostly) guaranteed by the work_in_progress flag. The flag is
* updated only at the end of the sugov_work() function and before that
* the schedutil governor rejects all other frequency scaling requests.
*
* There is a very rare case though, where the RT thread yields right
* after the work_in_progress flag is cleared. The effects of that are
* neglected for now.
*/
kthread_queue_work(&sg_policy->worker, &sg_policy->work);
}
/************************ Governor externals ***********************/
static void update_min_rate_limit_ns(struct sugov_policy *sg_policy);
void sugov_update_rate_limit_us(struct cpufreq_policy *policy,
int up_rate_limit_ms, int down_rate_limit_ms)
{
struct sugov_policy *sg_policy;
struct sugov_tunables *tunables;
sg_policy = policy->governor_data;
if (!sg_policy)
return;
tunables = sg_policy->tunables;
if (!tunables)
return;
tunables->up_rate_limit_us = (unsigned int)(up_rate_limit_ms * USEC_PER_MSEC);
tunables->down_rate_limit_us = (unsigned int)(down_rate_limit_ms * USEC_PER_MSEC);
sg_policy->up_rate_delay_ns = up_rate_limit_ms * NSEC_PER_MSEC;
sg_policy->down_rate_delay_ns = down_rate_limit_ms * NSEC_PER_MSEC;
update_min_rate_limit_ns(sg_policy);
}
int sugov_sysfs_add_attr(struct cpufreq_policy *policy, const struct attribute *attr)
{
struct sugov_policy *sg_policy;
struct sugov_tunables *tunables;
sg_policy = policy->governor_data;
if (!sg_policy)
return -ENODEV;
tunables = sg_policy->tunables;
if (!tunables)
return -ENODEV;
return sysfs_create_file(&tunables->attr_set.kobj, attr);
}
struct cpufreq_policy *sugov_get_attr_policy(struct gov_attr_set *attr_set)
{
struct sugov_policy *sg_policy = list_first_entry(&attr_set->policy_list,
typeof(*sg_policy), tunables_hook);
return sg_policy->policy;
}
/************************** sysfs interface ************************/
static struct sugov_tunables *global_tunables;
static DEFINE_MUTEX(global_tunables_lock);
static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
{
return container_of(attr_set, struct sugov_tunables, attr_set);
}
static DEFINE_MUTEX(min_rate_lock);
static void update_min_rate_limit_ns(struct sugov_policy *sg_policy)
{
mutex_lock(&min_rate_lock);
sg_policy->min_rate_limit_ns = min(sg_policy->up_rate_delay_ns,
sg_policy->down_rate_delay_ns);
mutex_unlock(&min_rate_lock);
}
static ssize_t up_rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return sprintf(buf, "%u\n", tunables->up_rate_limit_us);
}
static ssize_t down_rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return sprintf(buf, "%u\n", tunables->down_rate_limit_us);
}
static ssize_t up_rate_limit_us_store(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
struct sugov_policy *sg_policy;
unsigned int rate_limit_us;
if (kstrtouint(buf, 10, &rate_limit_us))
return -EINVAL;
tunables->up_rate_limit_us = rate_limit_us;
list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) {
sg_policy->up_rate_delay_ns = rate_limit_us * NSEC_PER_USEC;
update_min_rate_limit_ns(sg_policy);
}
return count;
}
static ssize_t down_rate_limit_us_store(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
struct sugov_policy *sg_policy;
unsigned int rate_limit_us;
if (kstrtouint(buf, 10, &rate_limit_us))
return -EINVAL;
tunables->down_rate_limit_us = rate_limit_us;
list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) {
sg_policy->down_rate_delay_ns = rate_limit_us * NSEC_PER_USEC;
update_min_rate_limit_ns(sg_policy);
}
return count;
}
#ifdef CONFIG_SCHED_KAIR_GLUE
static ssize_t fb_legacy_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return scnprintf(buf, PAGE_SIZE, "%u\n", tunables->fb_legacy);
}
static ssize_t fb_legacy_store(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
if (kstrtobool(buf, &tunables->fb_legacy))
return -EINVAL;
return count;
}
#endif
static struct governor_attr up_rate_limit_us = __ATTR_RW(up_rate_limit_us);
static struct governor_attr down_rate_limit_us = __ATTR_RW(down_rate_limit_us);
#ifdef CONFIG_SCHED_KAIR_GLUE
static struct governor_attr fb_legacy = __ATTR_RW(fb_legacy);
#endif
static struct attribute *sugov_attributes[] = {
&up_rate_limit_us.attr,
&down_rate_limit_us.attr,
#ifdef CONFIG_SCHED_KAIR_GLUE
&fb_legacy.attr,
#endif
NULL
};
static void sugov_tunables_free(struct kobject *kobj)
{
struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
kfree(to_sugov_tunables(attr_set));
}
static struct kobj_type sugov_tunables_ktype = {
.default_attrs = sugov_attributes,
.sysfs_ops = &governor_sysfs_ops,
.release = &sugov_tunables_free,
};
/********************** cpufreq governor interface *********************/
static struct cpufreq_governor schedutil_gov;
static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy;
sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
if (!sg_policy)
return NULL;
sg_policy->policy = policy;
raw_spin_lock_init(&sg_policy->update_lock);
return sg_policy;
}
static void sugov_policy_free(struct sugov_policy *sg_policy)
{
kfree(sg_policy);
}
static int sugov_kthread_create(struct sugov_policy *sg_policy)
{
struct task_struct *thread;
struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO / 2 };
struct cpufreq_policy *policy = sg_policy->policy;
int ret;
/* kthread only required for slow path */
if (policy->fast_switch_enabled)
return 0;
kthread_init_work(&sg_policy->work, sugov_work);
kthread_init_worker(&sg_policy->worker);
thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
"sugov:%d",
cpumask_first(policy->related_cpus));
if (IS_ERR(thread)) {
pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
return PTR_ERR(thread);
}
ret = sched_setscheduler_nocheck(thread, SCHED_FIFO, &param);
if (ret) {
kthread_stop(thread);
pr_warn("%s: failed to set SCHED_FIFO\n", __func__);
return ret;
}
sg_policy->thread = thread;
/* Kthread is bound to all CPUs by default */
if (!policy->dvfs_possible_from_any_cpu)
kthread_bind_mask(thread, cpu_coregroup_mask(0));
init_irq_work(&sg_policy->irq_work, sugov_irq_work);
mutex_init(&sg_policy->work_lock);
wake_up_process(thread);
return 0;
}
static void sugov_kthread_stop(struct sugov_policy *sg_policy)
{
/* kthread only required for slow path */
if (sg_policy->policy->fast_switch_enabled)
return;
kthread_flush_worker(&sg_policy->worker);
kthread_stop(sg_policy->thread);
mutex_destroy(&sg_policy->work_lock);
}
static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
{
struct sugov_tunables *tunables;
tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
if (tunables) {
gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
if (!have_governor_per_policy())
global_tunables = tunables;
}
return tunables;
}
static void sugov_clear_global_tunables(void)
{
if (!have_governor_per_policy())
global_tunables = NULL;
}
static int sugov_init(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy;
struct sugov_tunables *tunables;
int ret = 0;
/* State should be equivalent to EXIT */
if (policy->governor_data)
return -EBUSY;
cpufreq_enable_fast_switch(policy);
/* restore saved sg_policy */
sg_policy = sugov_restore_policy(policy);
if (sg_policy)
goto tunables_init;
sg_policy = sugov_policy_alloc(policy);
if (!sg_policy) {
ret = -ENOMEM;
goto disable_fast_switch;
}
ret = sugov_kthread_create(sg_policy);
if (ret)
goto free_sg_policy;
tunables_init:
mutex_lock(&global_tunables_lock);
if (global_tunables) {
if (WARN_ON(have_governor_per_policy())) {
ret = -EINVAL;
goto stop_kthread;
}
policy->governor_data = sg_policy;
sg_policy->tunables = global_tunables;
gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
goto out;
}
tunables = sugov_tunables_alloc(sg_policy);
if (!tunables) {
ret = -ENOMEM;
goto stop_kthread;
}
tunables->up_rate_limit_us = cpufreq_policy_transition_delay_us(policy);
tunables->down_rate_limit_us = cpufreq_policy_transition_delay_us(policy);
#ifdef CONFIG_SCHED_KAIR_GLUE
tunables->fb_legacy = true;
sg_policy->be_stochastic = false;
#endif
policy->governor_data = sg_policy;
sg_policy->tunables = tunables;
ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
get_governor_parent_kobj(policy), "%s",
schedutil_gov.name);
if (ret)
goto fail;
out:
mutex_unlock(&global_tunables_lock);
return 0;
fail:
kobject_put(&tunables->attr_set.kobj);
policy->governor_data = NULL;
sugov_clear_global_tunables();
stop_kthread:
sugov_kthread_stop(sg_policy);
mutex_unlock(&global_tunables_lock);
free_sg_policy:
sugov_policy_free(sg_policy);
disable_fast_switch:
cpufreq_disable_fast_switch(policy);
pr_err("initialization failed (error %d)\n", ret);
return ret;
}
static void sugov_exit(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
struct sugov_tunables *tunables = sg_policy->tunables;
unsigned int count;
#ifdef CONFIG_SCHED_KAIR_GLUE
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, policy->cpu);
#endif
mutex_lock(&global_tunables_lock);
count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
policy->governor_data = NULL;
if (!count)
sugov_clear_global_tunables();
#ifdef CONFIG_SCHED_KAIR_GLUE
if (sg_cpu->util_vessel) {
sg_cpu->util_vessel->finalizer(sg_cpu->util_vessel);
kair_obj_destructor(sg_cpu->util_vessel);
sg_cpu->util_vessel = NULL;
}
sg_policy->be_stochastic = false;
#endif
if (sugov_save_policy(sg_policy))
goto out;
sugov_kthread_stop(sg_policy);
sugov_policy_free(sg_policy);
out:
mutex_unlock(&global_tunables_lock);
cpufreq_disable_fast_switch(policy);
}
static int sugov_start(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
unsigned int cpu;
#ifdef CONFIG_SCHED_KAIR_GLUE
char alias[KAIR_ALIAS_LEN];
#endif
sg_policy->up_rate_delay_ns =
sg_policy->tunables->up_rate_limit_us * NSEC_PER_USEC;
sg_policy->down_rate_delay_ns =
sg_policy->tunables->down_rate_limit_us * NSEC_PER_USEC;
update_min_rate_limit_ns(sg_policy);
sg_policy->last_freq_update_time = 0;
sg_policy->next_freq = UINT_MAX;
sg_policy->work_in_progress = false;
sg_policy->need_freq_update = false;
sg_policy->cached_raw_freq = 0;
for_each_cpu(cpu, policy->cpus) {
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
#ifdef CONFIG_SCHED_KAIR_GLUE
if (cpu != policy->cpu) {
memset(sg_cpu, 0, sizeof(*sg_cpu));
goto skip_subcpus;
}
if (!sg_policy->be_stochastic) {
memset(alias, 0, KAIR_ALIAS_LEN);
sprintf(alias, "govern%d", cpu);
memset(sg_cpu, 0, sizeof(*sg_cpu));
sg_cpu->util_vessel =
kair_obj_creator(alias,
UTILAVG_KAIR_VARIANCE,
policy->cpuinfo.max_freq,
policy->cpuinfo.min_freq,
&kairistic_cpufreq);
if (sg_cpu->util_vessel->initializer(sg_cpu->util_vessel) < 0) {
sg_cpu->util_vessel->finalizer(sg_cpu->util_vessel);
kair_obj_destructor(sg_cpu->util_vessel);
sg_cpu->util_vessel = NULL;
}
} else {
struct kair_class *vptr = sg_cpu->util_vessel;
memset(sg_cpu, 0, sizeof(*sg_cpu));
sg_cpu->util_vessel = vptr;
}
skip_subcpus:
#else
memset(sg_cpu, 0, sizeof(*sg_cpu));
#endif
sg_cpu->cpu = cpu;
sg_cpu->sg_policy = sg_policy;
sg_cpu->flags = 0;
sugov_start_slack(cpu);
sg_cpu->iowait_boost_max = policy->cpuinfo.max_freq;
}
#ifdef CONFIG_SCHED_KAIR_GLUE
sg_policy->be_stochastic = true;
#endif
for_each_cpu(cpu, policy->cpus) {
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
sugov_update_shared);
}
return 0;
}
static void sugov_stop(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
unsigned int cpu;
for_each_cpu(cpu, policy->cpus) {
sugov_stop_slack(cpu);
cpufreq_remove_update_util_hook(cpu);
}
synchronize_sched();
#ifdef CONFIG_SCHED_KAIR_GLUE
for_each_cpu(cpu, policy->cpus) {
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
if (sg_cpu->util_vessel) {
sg_cpu->util_vessel->stopper(sg_cpu->util_vessel);
}
}
#endif
if (!policy->fast_switch_enabled) {
irq_work_sync(&sg_policy->irq_work);
}
}
static void sugov_limits(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
mutex_lock(&global_tunables_lock);
if (!sg_policy) {
mutex_unlock(&global_tunables_lock);
return;
}
if (!policy->fast_switch_enabled) {
mutex_lock(&sg_policy->work_lock);
cpufreq_policy_apply_limits(policy);
mutex_unlock(&sg_policy->work_lock);
}
sugov_update_min(policy);
sg_policy->need_freq_update = true;
mutex_unlock(&global_tunables_lock);
}
static struct cpufreq_governor schedutil_gov = {
.name = "schedutil",
.owner = THIS_MODULE,
.dynamic_switching = true,
.init = sugov_init,
.exit = sugov_exit,
.start = sugov_start,
.stop = sugov_stop,
.limits = sugov_limits,
};
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
struct cpufreq_governor *cpufreq_default_governor(void)
{
return &schedutil_gov;
}
#endif
static void sugov_update_min(struct cpufreq_policy *policy)
{
int cpu, max_cap;
struct sugov_exynos *sg_exynos;
int min_cap;
max_cap = arch_scale_cpu_capacity(NULL, policy->cpu);
/* min_cap is minimum value making higher frequency than policy->min */
min_cap = max_cap * policy->min / policy->max;
min_cap = (min_cap * 4 / 5) + 1;
for_each_cpu(cpu, policy->cpus) {
sg_exynos = &per_cpu(sugov_exynos, cpu);
sg_exynos->min = min_cap;
}
}
static void sugov_nop_timer(unsigned long data)
{
/*
* The purpose of slack-timer is to wake up the CPU from IDLE, in order
* to decrease its frequency if it is not set to minimum already.
*
* This is important for platforms where CPU with higher frequencies
* consume higher power even at IDLE.
*/
trace_sugov_slack_func(smp_processor_id());
}
static void sugov_start_slack(int cpu)
{
struct sugov_exynos *sg_exynos = &per_cpu(sugov_exynos, cpu);
if (!sg_exynos->enabled)
return;
sg_exynos->min = ULONG_MAX;
sg_exynos->started = true;
}
static void sugov_stop_slack(int cpu)
{
struct sugov_exynos *sg_exynos = &per_cpu(sugov_exynos, cpu);
sg_exynos->started = false;
if (timer_pending(&sg_exynos->timer))
del_timer_sync(&sg_exynos->timer);
}
static s64 get_next_event_time_ms(int cpu)
{
return ktime_to_us(ktime_sub(*(get_next_event_cpu(cpu)), ktime_get()));
}
static int sugov_need_slack_timer(unsigned int cpu)
{
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
struct sugov_exynos *sg_exynos = &per_cpu(sugov_exynos, cpu);
if (schedtune_cpu_boost(cpu))
return 0;
if (sg_cpu->util > sg_exynos->min &&
get_next_event_time_ms(cpu) > sg_exynos->expired_time)
return 1;
return 0;
}
static int sugov_pm_notifier(struct notifier_block *self,
unsigned long action, void *v)
{
unsigned int cpu = raw_smp_processor_id();
struct sugov_exynos *sg_exynos = &per_cpu(sugov_exynos, cpu);
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
struct timer_list *timer = &sg_exynos->timer;
if (!sg_exynos->started)
return NOTIFY_OK;
switch (action) {
case CPU_PM_ENTER_PREPARE:
if (timer_pending(timer))
del_timer_sync(timer);
if (sugov_need_slack_timer(cpu)) {
timer->expires = jiffies + msecs_to_jiffies(sg_exynos->expired_time);
add_timer_on(timer, cpu);
trace_sugov_slack(cpu, sg_cpu->util, sg_exynos->min, action, 1);
}
break;
case CPU_PM_ENTER:
if (timer_pending(timer) && !sugov_need_slack_timer(cpu)) {
del_timer_sync(timer);
trace_sugov_slack(cpu, sg_cpu->util, sg_exynos->min, action, -1);
}
break;
case CPU_PM_EXIT_POST:
if (timer_pending(timer) && (time_after(timer->expires, jiffies))) {
del_timer_sync(timer);
trace_sugov_slack(cpu, sg_cpu->util, sg_exynos->min, action, -1);
}
break;
}
return NOTIFY_OK;
}
static struct notifier_block sugov_pm_nb = {
.notifier_call = sugov_pm_notifier,
};
static int find_cpu_pm_qos_class(int pm_qos_class)
{
int cpu;
for_each_possible_cpu(cpu) {
struct sugov_exynos *sg_exynos = &per_cpu(sugov_exynos, cpu);
if ((sg_exynos->qos_min_class == pm_qos_class) &&
cpumask_test_cpu(cpu, cpu_active_mask))
return cpu;
}
pr_err("cannot find cpu of PM QoS class\n");
return -EINVAL;
}
static int sugov_pm_qos_callback(struct notifier_block *nb,
unsigned long val, void *v)
{
struct sugov_cpu *sg_cpu;
struct cpufreq_policy *policy;
int pm_qos_class = *((int *)v);
unsigned int next_freq;
int cpu;
cpu = find_cpu_pm_qos_class(pm_qos_class);
if (cpu < 0)
return NOTIFY_BAD;
sg_cpu = &per_cpu(sugov_cpu, cpu);
if (!sg_cpu || !sg_cpu->sg_policy || !sg_cpu->sg_policy->policy)
return NOTIFY_BAD;
next_freq = sg_cpu->sg_policy->next_freq;
policy = cpufreq_cpu_get(cpu);
if (!policy)
return NOTIFY_BAD;
if (val >= policy->cur) {
cpufreq_cpu_put(policy);
return NOTIFY_BAD;
}
cpufreq_driver_target(policy, next_freq, CPUFREQ_RELATION_L);
cpufreq_cpu_put(policy);
return NOTIFY_OK;
}
static struct notifier_block sugov_min_qos_notifier = {
.notifier_call = sugov_pm_qos_callback,
.priority = INT_MIN,
};
static int __init sugov_parse_dt(struct device_node *dn, int cpu)
{
struct sugov_exynos *sg_exynos = &per_cpu(sugov_exynos, cpu);
/* parsing slack info */
if (of_property_read_u32(dn, "enabled", &sg_exynos->enabled))
return -EINVAL;
if (sg_exynos->enabled)
if (of_property_read_u32(dn, "expired_time", &sg_exynos->expired_time))
sg_exynos->expired_time = DEFAULT_EXPIRED_TIME;
/* parsing pm_qos_class info */
if (of_property_read_u32(dn, "qos_min_class", &sg_exynos->qos_min_class))
return -EINVAL;
return 0;
}
static void __init sugov_exynos_init(void)
{
int cpu, ret;
struct device_node *dn = NULL;
const char *buf;
while ((dn = of_find_node_by_type(dn, "schedutil-domain"))) {
struct cpumask shared_mask;
/* Get shared cpus */
ret = of_property_read_string(dn, "shared-cpus", &buf);
if (ret)
goto exit;
cpulist_parse(buf, &shared_mask);
for_each_cpu(cpu, &shared_mask)
if (sugov_parse_dt(dn, cpu))
goto exit;
}
for_each_possible_cpu(cpu) {
struct sugov_exynos *sg_exynos = &per_cpu(sugov_exynos, cpu);
if (!sg_exynos->enabled)
continue;
/* Initialize slack-timer */
init_timer_pinned(&sg_exynos->timer);
sg_exynos->timer.function = sugov_nop_timer;
}
pm_qos_add_notifier(PM_QOS_CLUSTER0_FREQ_MIN, &sugov_min_qos_notifier);
pm_qos_add_notifier(PM_QOS_CLUSTER1_FREQ_MIN, &sugov_min_qos_notifier);
pm_qos_add_notifier(PM_QOS_CLUSTER2_FREQ_MIN, &sugov_min_qos_notifier);
cpu_pm_register_notifier(&sugov_pm_nb);
return;
exit:
pr_info("%s: failed to initialized slack_timer, pm_qos handler check\n", __func__);
}
static int __init sugov_register(void)
{
sugov_exynos_init();
return cpufreq_register_governor(&schedutil_gov);
}
fs_initcall(sugov_register);