| /* |
| * linux/kernel/ptrace.c |
| * |
| * (C) Copyright 1999 Linus Torvalds |
| * |
| * Common interfaces for "ptrace()" which we do not want |
| * to continually duplicate across every architecture. |
| */ |
| |
| #include <linux/capability.h> |
| #include <linux/export.h> |
| #include <linux/sched.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/coredump.h> |
| #include <linux/sched/task.h> |
| #include <linux/errno.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/pagemap.h> |
| #include <linux/ptrace.h> |
| #include <linux/security.h> |
| #include <linux/signal.h> |
| #include <linux/uio.h> |
| #include <linux/audit.h> |
| #include <linux/pid_namespace.h> |
| #include <linux/syscalls.h> |
| #include <linux/uaccess.h> |
| #include <linux/regset.h> |
| #include <linux/hw_breakpoint.h> |
| #include <linux/cn_proc.h> |
| #include <linux/compat.h> |
| #include <linux/sched/signal.h> |
| #include <linux/task_integrity.h> |
| |
| /* |
| * Access another process' address space via ptrace. |
| * Source/target buffer must be kernel space, |
| * Do not walk the page table directly, use get_user_pages |
| */ |
| int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, |
| void *buf, int len, unsigned int gup_flags) |
| { |
| struct mm_struct *mm; |
| int ret; |
| |
| mm = get_task_mm(tsk); |
| if (!mm) |
| return 0; |
| |
| if (!tsk->ptrace || |
| (current != tsk->parent) || |
| ((get_dumpable(mm) != SUID_DUMP_USER) && |
| !ptracer_capable(tsk, mm->user_ns))) { |
| mmput(mm); |
| return 0; |
| } |
| |
| ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); |
| mmput(mm); |
| |
| return ret; |
| } |
| |
| |
| void __ptrace_link(struct task_struct *child, struct task_struct *new_parent, |
| const struct cred *ptracer_cred) |
| { |
| BUG_ON(!list_empty(&child->ptrace_entry)); |
| list_add(&child->ptrace_entry, &new_parent->ptraced); |
| child->parent = new_parent; |
| child->ptracer_cred = get_cred(ptracer_cred); |
| } |
| |
| /* |
| * ptrace a task: make the debugger its new parent and |
| * move it to the ptrace list. |
| * |
| * Must be called with the tasklist lock write-held. |
| */ |
| static void ptrace_link(struct task_struct *child, struct task_struct *new_parent) |
| { |
| __ptrace_link(child, new_parent, current_cred()); |
| } |
| |
| /** |
| * __ptrace_unlink - unlink ptracee and restore its execution state |
| * @child: ptracee to be unlinked |
| * |
| * Remove @child from the ptrace list, move it back to the original parent, |
| * and restore the execution state so that it conforms to the group stop |
| * state. |
| * |
| * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer |
| * exiting. For PTRACE_DETACH, unless the ptracee has been killed between |
| * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED. |
| * If the ptracer is exiting, the ptracee can be in any state. |
| * |
| * After detach, the ptracee should be in a state which conforms to the |
| * group stop. If the group is stopped or in the process of stopping, the |
| * ptracee should be put into TASK_STOPPED; otherwise, it should be woken |
| * up from TASK_TRACED. |
| * |
| * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED, |
| * it goes through TRACED -> RUNNING -> STOPPED transition which is similar |
| * to but in the opposite direction of what happens while attaching to a |
| * stopped task. However, in this direction, the intermediate RUNNING |
| * state is not hidden even from the current ptracer and if it immediately |
| * re-attaches and performs a WNOHANG wait(2), it may fail. |
| * |
| * CONTEXT: |
| * write_lock_irq(tasklist_lock) |
| */ |
| void __ptrace_unlink(struct task_struct *child) |
| { |
| const struct cred *old_cred; |
| BUG_ON(!child->ptrace); |
| |
| clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| |
| child->parent = child->real_parent; |
| list_del_init(&child->ptrace_entry); |
| old_cred = child->ptracer_cred; |
| child->ptracer_cred = NULL; |
| put_cred(old_cred); |
| |
| spin_lock(&child->sighand->siglock); |
| child->ptrace = 0; |
| /* |
| * Clear all pending traps and TRAPPING. TRAPPING should be |
| * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly. |
| */ |
| task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK); |
| task_clear_jobctl_trapping(child); |
| |
| /* |
| * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and |
| * @child isn't dead. |
| */ |
| if (!(child->flags & PF_EXITING) && |
| (child->signal->flags & SIGNAL_STOP_STOPPED || |
| child->signal->group_stop_count)) { |
| child->jobctl |= JOBCTL_STOP_PENDING; |
| |
| /* |
| * This is only possible if this thread was cloned by the |
| * traced task running in the stopped group, set the signal |
| * for the future reports. |
| * FIXME: we should change ptrace_init_task() to handle this |
| * case. |
| */ |
| if (!(child->jobctl & JOBCTL_STOP_SIGMASK)) |
| child->jobctl |= SIGSTOP; |
| } |
| |
| /* |
| * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick |
| * @child in the butt. Note that @resume should be used iff @child |
| * is in TASK_TRACED; otherwise, we might unduly disrupt |
| * TASK_KILLABLE sleeps. |
| */ |
| if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child)) |
| ptrace_signal_wake_up(child, true); |
| |
| spin_unlock(&child->sighand->siglock); |
| } |
| |
| static bool looks_like_a_spurious_pid(struct task_struct *task) |
| { |
| if (task->exit_code != ((PTRACE_EVENT_EXEC << 8) | SIGTRAP)) |
| return false; |
| |
| if (task_pid_vnr(task) == task->ptrace_message) |
| return false; |
| /* |
| * The tracee changed its pid but the PTRACE_EVENT_EXEC event |
| * was not wait()'ed, most probably debugger targets the old |
| * leader which was destroyed in de_thread(). |
| */ |
| return true; |
| } |
| |
| /* Ensure that nothing can wake it up, even SIGKILL */ |
| static bool ptrace_freeze_traced(struct task_struct *task) |
| { |
| bool ret = false; |
| |
| /* Lockless, nobody but us can set this flag */ |
| if (task->jobctl & JOBCTL_LISTENING) |
| return ret; |
| |
| spin_lock_irq(&task->sighand->siglock); |
| if (task_is_traced(task) && !looks_like_a_spurious_pid(task) && |
| !__fatal_signal_pending(task)) { |
| task->state = __TASK_TRACED; |
| ret = true; |
| } |
| spin_unlock_irq(&task->sighand->siglock); |
| |
| return ret; |
| } |
| |
| static void ptrace_unfreeze_traced(struct task_struct *task) |
| { |
| if (task->state != __TASK_TRACED) |
| return; |
| |
| WARN_ON(!task->ptrace || task->parent != current); |
| |
| /* |
| * PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely. |
| * Recheck state under the lock to close this race. |
| */ |
| spin_lock_irq(&task->sighand->siglock); |
| if (task->state == __TASK_TRACED) { |
| if (__fatal_signal_pending(task)) |
| wake_up_state(task, __TASK_TRACED); |
| else |
| task->state = TASK_TRACED; |
| } |
| spin_unlock_irq(&task->sighand->siglock); |
| } |
| |
| /** |
| * ptrace_check_attach - check whether ptracee is ready for ptrace operation |
| * @child: ptracee to check for |
| * @ignore_state: don't check whether @child is currently %TASK_TRACED |
| * |
| * Check whether @child is being ptraced by %current and ready for further |
| * ptrace operations. If @ignore_state is %false, @child also should be in |
| * %TASK_TRACED state and on return the child is guaranteed to be traced |
| * and not executing. If @ignore_state is %true, @child can be in any |
| * state. |
| * |
| * CONTEXT: |
| * Grabs and releases tasklist_lock and @child->sighand->siglock. |
| * |
| * RETURNS: |
| * 0 on success, -ESRCH if %child is not ready. |
| */ |
| static int ptrace_check_attach(struct task_struct *child, bool ignore_state) |
| { |
| int ret = -ESRCH; |
| |
| /* |
| * We take the read lock around doing both checks to close a |
| * possible race where someone else was tracing our child and |
| * detached between these two checks. After this locked check, |
| * we are sure that this is our traced child and that can only |
| * be changed by us so it's not changing right after this. |
| */ |
| read_lock(&tasklist_lock); |
| if (child->ptrace && child->parent == current) { |
| WARN_ON(child->state == __TASK_TRACED); |
| /* |
| * child->sighand can't be NULL, release_task() |
| * does ptrace_unlink() before __exit_signal(). |
| */ |
| if (ignore_state || ptrace_freeze_traced(child)) |
| ret = 0; |
| } |
| read_unlock(&tasklist_lock); |
| |
| if (!ret && !ignore_state) { |
| if (!wait_task_inactive(child, __TASK_TRACED)) { |
| /* |
| * This can only happen if may_ptrace_stop() fails and |
| * ptrace_stop() changes ->state back to TASK_RUNNING, |
| * so we should not worry about leaking __TASK_TRACED. |
| */ |
| WARN_ON(child->state == __TASK_TRACED); |
| ret = -ESRCH; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static bool ptrace_has_cap(const struct cred *cred, struct user_namespace *ns, |
| unsigned int mode) |
| { |
| int ret; |
| |
| if (mode & PTRACE_MODE_NOAUDIT) |
| ret = security_capable(cred, ns, CAP_SYS_PTRACE); |
| else |
| ret = security_capable(cred, ns, CAP_SYS_PTRACE); |
| |
| return ret == 0; |
| } |
| |
| /* Returns 0 on success, -errno on denial. */ |
| static int __ptrace_may_access(struct task_struct *task, unsigned int mode) |
| { |
| const struct cred *cred = current_cred(), *tcred; |
| struct mm_struct *mm; |
| kuid_t caller_uid; |
| kgid_t caller_gid; |
| |
| if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) { |
| WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n"); |
| return -EPERM; |
| } |
| |
| /* May we inspect the given task? |
| * This check is used both for attaching with ptrace |
| * and for allowing access to sensitive information in /proc. |
| * |
| * ptrace_attach denies several cases that /proc allows |
| * because setting up the necessary parent/child relationship |
| * or halting the specified task is impossible. |
| */ |
| |
| /* Don't let security modules deny introspection */ |
| if (same_thread_group(task, current)) |
| return 0; |
| rcu_read_lock(); |
| if (mode & PTRACE_MODE_FSCREDS) { |
| caller_uid = cred->fsuid; |
| caller_gid = cred->fsgid; |
| } else { |
| /* |
| * Using the euid would make more sense here, but something |
| * in userland might rely on the old behavior, and this |
| * shouldn't be a security problem since |
| * PTRACE_MODE_REALCREDS implies that the caller explicitly |
| * used a syscall that requests access to another process |
| * (and not a filesystem syscall to procfs). |
| */ |
| caller_uid = cred->uid; |
| caller_gid = cred->gid; |
| } |
| tcred = __task_cred(task); |
| if (uid_eq(caller_uid, tcred->euid) && |
| uid_eq(caller_uid, tcred->suid) && |
| uid_eq(caller_uid, tcred->uid) && |
| gid_eq(caller_gid, tcred->egid) && |
| gid_eq(caller_gid, tcred->sgid) && |
| gid_eq(caller_gid, tcred->gid)) |
| goto ok; |
| if (ptrace_has_cap(cred, tcred->user_ns, mode)) |
| goto ok; |
| rcu_read_unlock(); |
| return -EPERM; |
| ok: |
| rcu_read_unlock(); |
| /* |
| * If a task drops privileges and becomes nondumpable (through a syscall |
| * like setresuid()) while we are trying to access it, we must ensure |
| * that the dumpability is read after the credentials; otherwise, |
| * we may be able to attach to a task that we shouldn't be able to |
| * attach to (as if the task had dropped privileges without becoming |
| * nondumpable). |
| * Pairs with a write barrier in commit_creds(). |
| */ |
| smp_rmb(); |
| mm = task->mm; |
| if (mm && |
| ((get_dumpable(mm) != SUID_DUMP_USER) && |
| !ptrace_has_cap(cred, mm->user_ns, mode))) |
| return -EPERM; |
| |
| return security_ptrace_access_check(task, mode); |
| } |
| |
| bool ptrace_may_access(struct task_struct *task, unsigned int mode) |
| { |
| int err; |
| task_lock(task); |
| err = __ptrace_may_access(task, mode); |
| task_unlock(task); |
| return !err; |
| } |
| |
| static int check_ptrace_options(unsigned long data) |
| { |
| if (data & ~(unsigned long)PTRACE_O_MASK) |
| return -EINVAL; |
| |
| if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) { |
| if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) || |
| !IS_ENABLED(CONFIG_SECCOMP)) |
| return -EINVAL; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (seccomp_mode(¤t->seccomp) != SECCOMP_MODE_DISABLED || |
| current->ptrace & PT_SUSPEND_SECCOMP) |
| return -EPERM; |
| } |
| return 0; |
| } |
| |
| static int ptrace_attach(struct task_struct *task, long request, |
| unsigned long addr, |
| unsigned long flags) |
| { |
| bool seize = (request == PTRACE_SEIZE); |
| int retval; |
| |
| retval = -EIO; |
| if (seize) { |
| if (addr != 0) |
| goto out; |
| /* |
| * This duplicates the check in check_ptrace_options() because |
| * ptrace_attach() and ptrace_setoptions() have historically |
| * used different error codes for unknown ptrace options. |
| */ |
| if (flags & ~(unsigned long)PTRACE_O_MASK) |
| goto out; |
| retval = check_ptrace_options(flags); |
| if (retval) |
| return retval; |
| flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT); |
| } else { |
| flags = PT_PTRACED; |
| } |
| |
| audit_ptrace(task); |
| |
| retval = -EPERM; |
| if (unlikely(task->flags & PF_KTHREAD)) |
| goto out; |
| if (same_thread_group(task, current)) |
| goto out; |
| |
| /* |
| * Protect exec's credential calculations against our interference; |
| * SUID, SGID and LSM creds get determined differently |
| * under ptrace. |
| */ |
| retval = -ERESTARTNOINTR; |
| if (mutex_lock_interruptible(&task->signal->cred_guard_mutex)) |
| goto out; |
| |
| task_lock(task); |
| retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS); |
| task_unlock(task); |
| if (retval) |
| goto unlock_creds; |
| |
| write_lock_irq(&tasklist_lock); |
| retval = -EPERM; |
| if (unlikely(task->exit_state)) |
| goto unlock_tasklist; |
| if (task->ptrace) |
| goto unlock_tasklist; |
| |
| if (seize) |
| flags |= PT_SEIZED; |
| task->ptrace = flags; |
| |
| ptrace_link(task, current); |
| |
| /* SEIZE doesn't trap tracee on attach */ |
| if (!seize) |
| send_sig_info(SIGSTOP, SEND_SIG_FORCED, task); |
| |
| spin_lock(&task->sighand->siglock); |
| |
| /* |
| * If the task is already STOPPED, set JOBCTL_TRAP_STOP and |
| * TRAPPING, and kick it so that it transits to TRACED. TRAPPING |
| * will be cleared if the child completes the transition or any |
| * event which clears the group stop states happens. We'll wait |
| * for the transition to complete before returning from this |
| * function. |
| * |
| * This hides STOPPED -> RUNNING -> TRACED transition from the |
| * attaching thread but a different thread in the same group can |
| * still observe the transient RUNNING state. IOW, if another |
| * thread's WNOHANG wait(2) on the stopped tracee races against |
| * ATTACH, the wait(2) may fail due to the transient RUNNING. |
| * |
| * The following task_is_stopped() test is safe as both transitions |
| * in and out of STOPPED are protected by siglock. |
| */ |
| if (task_is_stopped(task) && |
| task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING)) |
| signal_wake_up_state(task, __TASK_STOPPED); |
| |
| spin_unlock(&task->sighand->siglock); |
| |
| retval = 0; |
| unlock_tasklist: |
| write_unlock_irq(&tasklist_lock); |
| unlock_creds: |
| mutex_unlock(&task->signal->cred_guard_mutex); |
| out: |
| if (!retval) { |
| /* |
| * We do not bother to change retval or clear JOBCTL_TRAPPING |
| * if wait_on_bit() was interrupted by SIGKILL. The tracer will |
| * not return to user-mode, it will exit and clear this bit in |
| * __ptrace_unlink() if it wasn't already cleared by the tracee; |
| * and until then nobody can ptrace this task. |
| */ |
| wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE); |
| proc_ptrace_connector(task, PTRACE_ATTACH); |
| } |
| |
| return retval; |
| } |
| |
| /** |
| * ptrace_traceme -- helper for PTRACE_TRACEME |
| * |
| * Performs checks and sets PT_PTRACED. |
| * Should be used by all ptrace implementations for PTRACE_TRACEME. |
| */ |
| static int ptrace_traceme(void) |
| { |
| int ret = -EPERM; |
| |
| write_lock_irq(&tasklist_lock); |
| /* Are we already being traced? */ |
| if (!current->ptrace) { |
| ret = security_ptrace_traceme(current->parent); |
| /* |
| * Check PF_EXITING to ensure ->real_parent has not passed |
| * exit_ptrace(). Otherwise we don't report the error but |
| * pretend ->real_parent untraces us right after return. |
| */ |
| if (!ret && !(current->real_parent->flags & PF_EXITING)) { |
| current->ptrace = PT_PTRACED; |
| ptrace_link(current, current->real_parent); |
| } |
| } |
| write_unlock_irq(&tasklist_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Called with irqs disabled, returns true if childs should reap themselves. |
| */ |
| static int ignoring_children(struct sighand_struct *sigh) |
| { |
| int ret; |
| spin_lock(&sigh->siglock); |
| ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) || |
| (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT); |
| spin_unlock(&sigh->siglock); |
| return ret; |
| } |
| |
| /* |
| * Called with tasklist_lock held for writing. |
| * Unlink a traced task, and clean it up if it was a traced zombie. |
| * Return true if it needs to be reaped with release_task(). |
| * (We can't call release_task() here because we already hold tasklist_lock.) |
| * |
| * If it's a zombie, our attachedness prevented normal parent notification |
| * or self-reaping. Do notification now if it would have happened earlier. |
| * If it should reap itself, return true. |
| * |
| * If it's our own child, there is no notification to do. But if our normal |
| * children self-reap, then this child was prevented by ptrace and we must |
| * reap it now, in that case we must also wake up sub-threads sleeping in |
| * do_wait(). |
| */ |
| static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) |
| { |
| bool dead; |
| |
| __ptrace_unlink(p); |
| |
| if (p->exit_state != EXIT_ZOMBIE) |
| return false; |
| |
| dead = !thread_group_leader(p); |
| |
| if (!dead && thread_group_empty(p)) { |
| if (!same_thread_group(p->real_parent, tracer)) |
| dead = do_notify_parent(p, p->exit_signal); |
| else if (ignoring_children(tracer->sighand)) { |
| __wake_up_parent(p, tracer); |
| dead = true; |
| } |
| } |
| /* Mark it as in the process of being reaped. */ |
| if (dead) |
| p->exit_state = EXIT_DEAD; |
| return dead; |
| } |
| |
| static int ptrace_detach(struct task_struct *child, unsigned int data) |
| { |
| if (!valid_signal(data)) |
| return -EIO; |
| |
| /* Architecture-specific hardware disable .. */ |
| ptrace_disable(child); |
| |
| write_lock_irq(&tasklist_lock); |
| /* |
| * We rely on ptrace_freeze_traced(). It can't be killed and |
| * untraced by another thread, it can't be a zombie. |
| */ |
| WARN_ON(!child->ptrace || child->exit_state); |
| /* |
| * tasklist_lock avoids the race with wait_task_stopped(), see |
| * the comment in ptrace_resume(). |
| */ |
| child->exit_code = data; |
| __ptrace_detach(current, child); |
| write_unlock_irq(&tasklist_lock); |
| |
| proc_ptrace_connector(child, PTRACE_DETACH); |
| |
| return 0; |
| } |
| |
| /* |
| * Detach all tasks we were using ptrace on. Called with tasklist held |
| * for writing. |
| */ |
| void exit_ptrace(struct task_struct *tracer, struct list_head *dead) |
| { |
| struct task_struct *p, *n; |
| |
| list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) { |
| if (unlikely(p->ptrace & PT_EXITKILL)) |
| send_sig_info(SIGKILL, SEND_SIG_FORCED, p); |
| |
| if (__ptrace_detach(tracer, p)) |
| list_add(&p->ptrace_entry, dead); |
| } |
| } |
| |
| int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len) |
| { |
| int copied = 0; |
| |
| while (len > 0) { |
| char buf[128]; |
| int this_len, retval; |
| |
| this_len = (len > sizeof(buf)) ? sizeof(buf) : len; |
| retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE); |
| |
| if (!retval) { |
| if (copied) |
| break; |
| return -EIO; |
| } |
| if (copy_to_user(dst, buf, retval)) |
| return -EFAULT; |
| copied += retval; |
| src += retval; |
| dst += retval; |
| len -= retval; |
| } |
| return copied; |
| } |
| |
| int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len) |
| { |
| int copied = 0; |
| |
| while (len > 0) { |
| char buf[128]; |
| int this_len, retval; |
| |
| this_len = (len > sizeof(buf)) ? sizeof(buf) : len; |
| if (copy_from_user(buf, src, this_len)) |
| return -EFAULT; |
| retval = ptrace_access_vm(tsk, dst, buf, this_len, |
| FOLL_FORCE | FOLL_WRITE); |
| if (!retval) { |
| if (copied) |
| break; |
| return -EIO; |
| } |
| copied += retval; |
| src += retval; |
| dst += retval; |
| len -= retval; |
| } |
| return copied; |
| } |
| |
| static int ptrace_setoptions(struct task_struct *child, unsigned long data) |
| { |
| unsigned flags; |
| int ret; |
| |
| ret = check_ptrace_options(data); |
| if (ret) |
| return ret; |
| |
| /* Avoid intermediate state when all opts are cleared */ |
| flags = child->ptrace; |
| flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT); |
| flags |= (data << PT_OPT_FLAG_SHIFT); |
| child->ptrace = flags; |
| |
| return 0; |
| } |
| |
| static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info) |
| { |
| unsigned long flags; |
| int error = -ESRCH; |
| |
| if (lock_task_sighand(child, &flags)) { |
| error = -EINVAL; |
| if (likely(child->last_siginfo != NULL)) { |
| *info = *child->last_siginfo; |
| error = 0; |
| } |
| unlock_task_sighand(child, &flags); |
| } |
| return error; |
| } |
| |
| static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info) |
| { |
| unsigned long flags; |
| int error = -ESRCH; |
| |
| if (lock_task_sighand(child, &flags)) { |
| error = -EINVAL; |
| if (likely(child->last_siginfo != NULL)) { |
| *child->last_siginfo = *info; |
| error = 0; |
| } |
| unlock_task_sighand(child, &flags); |
| } |
| return error; |
| } |
| |
| static int ptrace_peek_siginfo(struct task_struct *child, |
| unsigned long addr, |
| unsigned long data) |
| { |
| struct ptrace_peeksiginfo_args arg; |
| struct sigpending *pending; |
| struct sigqueue *q; |
| int ret, i; |
| |
| ret = copy_from_user(&arg, (void __user *) addr, |
| sizeof(struct ptrace_peeksiginfo_args)); |
| if (ret) |
| return -EFAULT; |
| |
| if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED) |
| return -EINVAL; /* unknown flags */ |
| |
| if (arg.nr < 0) |
| return -EINVAL; |
| |
| /* Ensure arg.off fits in an unsigned long */ |
| if (arg.off > ULONG_MAX) |
| return 0; |
| |
| if (arg.flags & PTRACE_PEEKSIGINFO_SHARED) |
| pending = &child->signal->shared_pending; |
| else |
| pending = &child->pending; |
| |
| for (i = 0; i < arg.nr; ) { |
| siginfo_t info; |
| unsigned long off = arg.off + i; |
| bool found = false; |
| |
| spin_lock_irq(&child->sighand->siglock); |
| list_for_each_entry(q, &pending->list, list) { |
| if (!off--) { |
| found = true; |
| copy_siginfo(&info, &q->info); |
| break; |
| } |
| } |
| spin_unlock_irq(&child->sighand->siglock); |
| |
| if (!found) /* beyond the end of the list */ |
| break; |
| |
| #ifdef CONFIG_COMPAT |
| if (unlikely(in_compat_syscall())) { |
| compat_siginfo_t __user *uinfo = compat_ptr(data); |
| |
| if (copy_siginfo_to_user32(uinfo, &info)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| } else |
| #endif |
| { |
| siginfo_t __user *uinfo = (siginfo_t __user *) data; |
| |
| if (copy_siginfo_to_user(uinfo, &info)) { |
| ret = -EFAULT; |
| break; |
| } |
| } |
| |
| data += sizeof(siginfo_t); |
| i++; |
| |
| if (signal_pending(current)) |
| break; |
| |
| cond_resched(); |
| } |
| |
| if (i > 0) |
| return i; |
| |
| return ret; |
| } |
| |
| #ifdef PTRACE_SINGLESTEP |
| #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP) |
| #else |
| #define is_singlestep(request) 0 |
| #endif |
| |
| #ifdef PTRACE_SINGLEBLOCK |
| #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK) |
| #else |
| #define is_singleblock(request) 0 |
| #endif |
| |
| #ifdef PTRACE_SYSEMU |
| #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP) |
| #else |
| #define is_sysemu_singlestep(request) 0 |
| #endif |
| |
| static int ptrace_resume(struct task_struct *child, long request, |
| unsigned long data) |
| { |
| bool need_siglock; |
| |
| if (!valid_signal(data)) |
| return -EIO; |
| |
| if (request == PTRACE_SYSCALL) |
| set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| else |
| clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| |
| #ifdef TIF_SYSCALL_EMU |
| if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP) |
| set_tsk_thread_flag(child, TIF_SYSCALL_EMU); |
| else |
| clear_tsk_thread_flag(child, TIF_SYSCALL_EMU); |
| #endif |
| |
| if (is_singleblock(request)) { |
| if (unlikely(!arch_has_block_step())) |
| return -EIO; |
| user_enable_block_step(child); |
| } else if (is_singlestep(request) || is_sysemu_singlestep(request)) { |
| if (unlikely(!arch_has_single_step())) |
| return -EIO; |
| user_enable_single_step(child); |
| } else { |
| user_disable_single_step(child); |
| } |
| |
| /* |
| * Change ->exit_code and ->state under siglock to avoid the race |
| * with wait_task_stopped() in between; a non-zero ->exit_code will |
| * wrongly look like another report from tracee. |
| * |
| * Note that we need siglock even if ->exit_code == data and/or this |
| * status was not reported yet, the new status must not be cleared by |
| * wait_task_stopped() after resume. |
| * |
| * If data == 0 we do not care if wait_task_stopped() reports the old |
| * status and clears the code too; this can't race with the tracee, it |
| * takes siglock after resume. |
| */ |
| need_siglock = data && !thread_group_empty(current); |
| if (need_siglock) |
| spin_lock_irq(&child->sighand->siglock); |
| child->exit_code = data; |
| wake_up_state(child, __TASK_TRACED); |
| if (need_siglock) |
| spin_unlock_irq(&child->sighand->siglock); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_HAVE_ARCH_TRACEHOOK |
| |
| static const struct user_regset * |
| find_regset(const struct user_regset_view *view, unsigned int type) |
| { |
| const struct user_regset *regset; |
| int n; |
| |
| for (n = 0; n < view->n; ++n) { |
| regset = view->regsets + n; |
| if (regset->core_note_type == type) |
| return regset; |
| } |
| |
| return NULL; |
| } |
| |
| static int ptrace_regset(struct task_struct *task, int req, unsigned int type, |
| struct iovec *kiov) |
| { |
| const struct user_regset_view *view = task_user_regset_view(task); |
| const struct user_regset *regset = find_regset(view, type); |
| int regset_no; |
| |
| if (!regset || (kiov->iov_len % regset->size) != 0) |
| return -EINVAL; |
| |
| regset_no = regset - view->regsets; |
| kiov->iov_len = min(kiov->iov_len, |
| (__kernel_size_t) (regset->n * regset->size)); |
| |
| if (req == PTRACE_GETREGSET) |
| return copy_regset_to_user(task, view, regset_no, 0, |
| kiov->iov_len, kiov->iov_base); |
| else |
| return copy_regset_from_user(task, view, regset_no, 0, |
| kiov->iov_len, kiov->iov_base); |
| } |
| |
| /* |
| * This is declared in linux/regset.h and defined in machine-dependent |
| * code. We put the export here, near the primary machine-neutral use, |
| * to ensure no machine forgets it. |
| */ |
| EXPORT_SYMBOL_GPL(task_user_regset_view); |
| #endif |
| |
| int ptrace_request(struct task_struct *child, long request, |
| unsigned long addr, unsigned long data) |
| { |
| bool seized = child->ptrace & PT_SEIZED; |
| int ret = -EIO; |
| siginfo_t siginfo, *si; |
| void __user *datavp = (void __user *) data; |
| unsigned long __user *datalp = datavp; |
| unsigned long flags; |
| |
| switch (request) { |
| case PTRACE_PEEKTEXT: |
| case PTRACE_PEEKDATA: |
| return generic_ptrace_peekdata(child, addr, data); |
| case PTRACE_POKETEXT: |
| case PTRACE_POKEDATA: |
| return generic_ptrace_pokedata(child, addr, data); |
| |
| #ifdef PTRACE_OLDSETOPTIONS |
| case PTRACE_OLDSETOPTIONS: |
| #endif |
| case PTRACE_SETOPTIONS: |
| ret = ptrace_setoptions(child, data); |
| break; |
| case PTRACE_GETEVENTMSG: |
| ret = put_user(child->ptrace_message, datalp); |
| break; |
| |
| case PTRACE_PEEKSIGINFO: |
| ret = ptrace_peek_siginfo(child, addr, data); |
| break; |
| |
| case PTRACE_GETSIGINFO: |
| ret = ptrace_getsiginfo(child, &siginfo); |
| if (!ret) |
| ret = copy_siginfo_to_user(datavp, &siginfo); |
| break; |
| |
| case PTRACE_SETSIGINFO: |
| if (copy_from_user(&siginfo, datavp, sizeof siginfo)) |
| ret = -EFAULT; |
| else |
| ret = ptrace_setsiginfo(child, &siginfo); |
| break; |
| |
| case PTRACE_GETSIGMASK: { |
| sigset_t *mask; |
| |
| if (addr != sizeof(sigset_t)) { |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (test_tsk_restore_sigmask(child)) |
| mask = &child->saved_sigmask; |
| else |
| mask = &child->blocked; |
| |
| if (copy_to_user(datavp, mask, sizeof(sigset_t))) |
| ret = -EFAULT; |
| else |
| ret = 0; |
| |
| break; |
| } |
| |
| case PTRACE_SETSIGMASK: { |
| sigset_t new_set; |
| |
| if (addr != sizeof(sigset_t)) { |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| |
| /* |
| * Every thread does recalc_sigpending() after resume, so |
| * retarget_shared_pending() and recalc_sigpending() are not |
| * called here. |
| */ |
| spin_lock_irq(&child->sighand->siglock); |
| child->blocked = new_set; |
| spin_unlock_irq(&child->sighand->siglock); |
| |
| clear_tsk_restore_sigmask(child); |
| |
| ret = 0; |
| break; |
| } |
| |
| case PTRACE_INTERRUPT: |
| /* |
| * Stop tracee without any side-effect on signal or job |
| * control. At least one trap is guaranteed to happen |
| * after this request. If @child is already trapped, the |
| * current trap is not disturbed and another trap will |
| * happen after the current trap is ended with PTRACE_CONT. |
| * |
| * The actual trap might not be PTRACE_EVENT_STOP trap but |
| * the pending condition is cleared regardless. |
| */ |
| if (unlikely(!seized || !lock_task_sighand(child, &flags))) |
| break; |
| |
| /* |
| * INTERRUPT doesn't disturb existing trap sans one |
| * exception. If ptracer issued LISTEN for the current |
| * STOP, this INTERRUPT should clear LISTEN and re-trap |
| * tracee into STOP. |
| */ |
| if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP))) |
| ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING); |
| |
| unlock_task_sighand(child, &flags); |
| ret = 0; |
| break; |
| |
| case PTRACE_LISTEN: |
| /* |
| * Listen for events. Tracee must be in STOP. It's not |
| * resumed per-se but is not considered to be in TRACED by |
| * wait(2) or ptrace(2). If an async event (e.g. group |
| * stop state change) happens, tracee will enter STOP trap |
| * again. Alternatively, ptracer can issue INTERRUPT to |
| * finish listening and re-trap tracee into STOP. |
| */ |
| if (unlikely(!seized || !lock_task_sighand(child, &flags))) |
| break; |
| |
| si = child->last_siginfo; |
| if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) { |
| child->jobctl |= JOBCTL_LISTENING; |
| /* |
| * If NOTIFY is set, it means event happened between |
| * start of this trap and now. Trigger re-trap. |
| */ |
| if (child->jobctl & JOBCTL_TRAP_NOTIFY) |
| ptrace_signal_wake_up(child, true); |
| ret = 0; |
| } |
| unlock_task_sighand(child, &flags); |
| break; |
| |
| case PTRACE_DETACH: /* detach a process that was attached. */ |
| ret = ptrace_detach(child, data); |
| break; |
| |
| #ifdef CONFIG_BINFMT_ELF_FDPIC |
| case PTRACE_GETFDPIC: { |
| struct mm_struct *mm = get_task_mm(child); |
| unsigned long tmp = 0; |
| |
| ret = -ESRCH; |
| if (!mm) |
| break; |
| |
| switch (addr) { |
| case PTRACE_GETFDPIC_EXEC: |
| tmp = mm->context.exec_fdpic_loadmap; |
| break; |
| case PTRACE_GETFDPIC_INTERP: |
| tmp = mm->context.interp_fdpic_loadmap; |
| break; |
| default: |
| break; |
| } |
| mmput(mm); |
| |
| ret = put_user(tmp, datalp); |
| break; |
| } |
| #endif |
| |
| #ifdef PTRACE_SINGLESTEP |
| case PTRACE_SINGLESTEP: |
| #endif |
| #ifdef PTRACE_SINGLEBLOCK |
| case PTRACE_SINGLEBLOCK: |
| #endif |
| #ifdef PTRACE_SYSEMU |
| case PTRACE_SYSEMU: |
| case PTRACE_SYSEMU_SINGLESTEP: |
| #endif |
| case PTRACE_SYSCALL: |
| case PTRACE_CONT: |
| return ptrace_resume(child, request, data); |
| |
| case PTRACE_KILL: |
| send_sig_info(SIGKILL, SEND_SIG_NOINFO, child); |
| return 0; |
| |
| #ifdef CONFIG_HAVE_ARCH_TRACEHOOK |
| case PTRACE_GETREGSET: |
| case PTRACE_SETREGSET: { |
| struct iovec kiov; |
| struct iovec __user *uiov = datavp; |
| |
| if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov))) |
| return -EFAULT; |
| |
| if (__get_user(kiov.iov_base, &uiov->iov_base) || |
| __get_user(kiov.iov_len, &uiov->iov_len)) |
| return -EFAULT; |
| |
| ret = ptrace_regset(child, request, addr, &kiov); |
| if (!ret) |
| ret = __put_user(kiov.iov_len, &uiov->iov_len); |
| break; |
| } |
| #endif |
| |
| case PTRACE_SECCOMP_GET_FILTER: |
| ret = seccomp_get_filter(child, addr, datavp); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static struct task_struct *ptrace_get_task_struct(pid_t pid) |
| { |
| struct task_struct *child; |
| |
| rcu_read_lock(); |
| child = find_task_by_vpid(pid); |
| if (child) |
| get_task_struct(child); |
| rcu_read_unlock(); |
| |
| if (!child) |
| return ERR_PTR(-ESRCH); |
| return child; |
| } |
| |
| #ifndef arch_ptrace_attach |
| #define arch_ptrace_attach(child) do { } while (0) |
| #endif |
| |
| SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr, |
| unsigned long, data) |
| { |
| struct task_struct *child; |
| long ret; |
| |
| if (request == PTRACE_TRACEME) { |
| five_ptrace(current, request); |
| ret = ptrace_traceme(); |
| if (!ret) |
| arch_ptrace_attach(current); |
| goto out; |
| } |
| |
| child = ptrace_get_task_struct(pid); |
| if (IS_ERR(child)) { |
| ret = PTR_ERR(child); |
| goto out; |
| } |
| |
| five_ptrace(child, request); |
| |
| if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { |
| ret = ptrace_attach(child, request, addr, data); |
| /* |
| * Some architectures need to do book-keeping after |
| * a ptrace attach. |
| */ |
| if (!ret) |
| arch_ptrace_attach(child); |
| goto out_put_task_struct; |
| } |
| |
| ret = ptrace_check_attach(child, request == PTRACE_KILL || |
| request == PTRACE_INTERRUPT); |
| if (ret < 0) |
| goto out_put_task_struct; |
| |
| ret = arch_ptrace(child, request, addr, data); |
| if (ret || request != PTRACE_DETACH) |
| ptrace_unfreeze_traced(child); |
| |
| out_put_task_struct: |
| put_task_struct(child); |
| out: |
| return ret; |
| } |
| |
| int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, |
| unsigned long data) |
| { |
| unsigned long tmp; |
| int copied; |
| |
| copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE); |
| if (copied != sizeof(tmp)) |
| return -EIO; |
| return put_user(tmp, (unsigned long __user *)data); |
| } |
| |
| int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, |
| unsigned long data) |
| { |
| int copied; |
| |
| copied = ptrace_access_vm(tsk, addr, &data, sizeof(data), |
| FOLL_FORCE | FOLL_WRITE); |
| return (copied == sizeof(data)) ? 0 : -EIO; |
| } |
| |
| #if defined CONFIG_COMPAT |
| |
| int compat_ptrace_request(struct task_struct *child, compat_long_t request, |
| compat_ulong_t addr, compat_ulong_t data) |
| { |
| compat_ulong_t __user *datap = compat_ptr(data); |
| compat_ulong_t word; |
| siginfo_t siginfo; |
| int ret; |
| |
| switch (request) { |
| case PTRACE_PEEKTEXT: |
| case PTRACE_PEEKDATA: |
| ret = ptrace_access_vm(child, addr, &word, sizeof(word), |
| FOLL_FORCE); |
| if (ret != sizeof(word)) |
| ret = -EIO; |
| else |
| ret = put_user(word, datap); |
| break; |
| |
| case PTRACE_POKETEXT: |
| case PTRACE_POKEDATA: |
| ret = ptrace_access_vm(child, addr, &data, sizeof(data), |
| FOLL_FORCE | FOLL_WRITE); |
| ret = (ret != sizeof(data) ? -EIO : 0); |
| break; |
| |
| case PTRACE_GETEVENTMSG: |
| ret = put_user((compat_ulong_t) child->ptrace_message, datap); |
| break; |
| |
| case PTRACE_GETSIGINFO: |
| ret = ptrace_getsiginfo(child, &siginfo); |
| if (!ret) |
| ret = copy_siginfo_to_user32( |
| (struct compat_siginfo __user *) datap, |
| &siginfo); |
| break; |
| |
| case PTRACE_SETSIGINFO: |
| memset(&siginfo, 0, sizeof siginfo); |
| if (copy_siginfo_from_user32( |
| &siginfo, (struct compat_siginfo __user *) datap)) |
| ret = -EFAULT; |
| else |
| ret = ptrace_setsiginfo(child, &siginfo); |
| break; |
| #ifdef CONFIG_HAVE_ARCH_TRACEHOOK |
| case PTRACE_GETREGSET: |
| case PTRACE_SETREGSET: |
| { |
| struct iovec kiov; |
| struct compat_iovec __user *uiov = |
| (struct compat_iovec __user *) datap; |
| compat_uptr_t ptr; |
| compat_size_t len; |
| |
| if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov))) |
| return -EFAULT; |
| |
| if (__get_user(ptr, &uiov->iov_base) || |
| __get_user(len, &uiov->iov_len)) |
| return -EFAULT; |
| |
| kiov.iov_base = compat_ptr(ptr); |
| kiov.iov_len = len; |
| |
| ret = ptrace_regset(child, request, addr, &kiov); |
| if (!ret) |
| ret = __put_user(kiov.iov_len, &uiov->iov_len); |
| break; |
| } |
| #endif |
| |
| default: |
| ret = ptrace_request(child, request, addr, data); |
| } |
| |
| return ret; |
| } |
| |
| COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid, |
| compat_long_t, addr, compat_long_t, data) |
| { |
| struct task_struct *child; |
| long ret; |
| |
| if (request == PTRACE_TRACEME) { |
| five_ptrace(current, request); |
| ret = ptrace_traceme(); |
| goto out; |
| } |
| |
| child = ptrace_get_task_struct(pid); |
| if (IS_ERR(child)) { |
| ret = PTR_ERR(child); |
| goto out; |
| } |
| |
| five_ptrace(child, request); |
| |
| if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { |
| ret = ptrace_attach(child, request, addr, data); |
| /* |
| * Some architectures need to do book-keeping after |
| * a ptrace attach. |
| */ |
| if (!ret) |
| arch_ptrace_attach(child); |
| goto out_put_task_struct; |
| } |
| |
| ret = ptrace_check_attach(child, request == PTRACE_KILL || |
| request == PTRACE_INTERRUPT); |
| if (!ret) { |
| ret = compat_arch_ptrace(child, request, addr, data); |
| if (ret || request != PTRACE_DETACH) |
| ptrace_unfreeze_traced(child); |
| } |
| |
| out_put_task_struct: |
| put_task_struct(child); |
| out: |
| return ret; |
| } |
| #endif /* CONFIG_COMPAT */ |