blob: 83ceb1b2e34607fead71a1be0a8817e7dc8d65f2 [file] [log] [blame]
/*
* Copyright (c) 2017 Samsung Electronics Co., Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/plist.h>
#include <linux/sched/idle.h>
#include <linux/sched/topology.h>
struct gb_qos_request {
struct plist_node node;
char *name;
bool active;
};
#define LEAVE_BAND 0
struct task_band {
int id;
int sse;
pid_t tgid;
raw_spinlock_t lock;
struct list_head members;
int member_count;
struct cpumask playable_cpus;
unsigned long util;
unsigned long last_update_time;
};
struct rq;
extern struct kobject *ems_kobj;
extern unsigned int get_cpu_max_capacity(unsigned int cpu, int sse);
#ifdef CONFIG_SCHED_EMS
/* core */
extern void init_ems(void);
/* task util initialization */
extern void exynos_init_entity_util_avg(struct sched_entity *se);
/* wakeup balance */
extern int
exynos_wakeup_balance(struct task_struct *p, int prev_cpu, int sd_flag, int sync);
/* ontime migration */
extern void ontime_migration(void);
extern int ontime_can_migration(struct task_struct *p, int cpu);
extern void ontime_update_load_avg(u64 delta, int cpu, unsigned long weight, struct sched_avg *sa);
extern void ontime_new_entity_load(struct task_struct *parent, struct sched_entity *se);
extern void ontime_trace_task_info(struct task_struct *p);
/* load balance trigger */
extern bool lbt_overutilized(int cpu, int level);
extern void update_lbt_overutil(int cpu, unsigned long capacity);
/* global boost */
extern void gb_qos_update_request(struct gb_qos_request *req, u32 new_value);
/* task band */
extern void sync_band(struct task_struct *p, bool join);
extern void newbie_join_band(struct task_struct *newbie);
extern void update_band(struct task_struct *p, long old_util);
extern int band_playing(struct task_struct *p, int cpu);
/* multi load */
void update_multi_load(u64 delta, int cpu, struct sched_avg *sa,
unsigned long weight, int running, struct cfs_rq *cfs_rq);
void init_multi_load(struct sched_entity *se);
void detach_entity_multi_load(struct cfs_rq *cfs_rq, struct sched_entity *se);
void attach_entity_multi_load(struct cfs_rq *cfs_rq, struct sched_entity *se);
void remove_entity_multi_load(struct cfs_rq *cfs_rq, struct sched_entity *se);
void apply_removed_multi_load(struct cfs_rq *cfs_rq);
void update_tg_multi_load(struct cfs_rq *cfs_rq, struct sched_entity *se);
void cfs_se_util_change_multi_load(struct task_struct *p, struct sched_avg *avg);
void enqueue_multi_load(struct cfs_rq *cfs_rq, struct task_struct *p);
void dequeue_multi_load(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep);
/* P.A.R.T */
void update_cpu_active_ratio(struct rq *rq, struct task_struct *p, int type);
void part_cpu_active_ratio(unsigned long *util, unsigned long *max, int cpu);
void set_part_period_start(struct rq *rq);
/* load balance */
extern void lb_add_cfs_task(struct rq *rq, struct sched_entity *se);
extern int lb_check_priority(int src_cpu, int dst_cpu);
extern struct list_head *lb_prefer_cfs_tasks(int src_cpu, int dst_cpu);
extern int lb_need_active_balance(enum cpu_idle_type idle,
struct sched_domain *sd, int src_cpu, int dst_cpu);
/* check the status of energy table */
extern bool energy_initialized;
extern void set_energy_table_status(bool status);
extern bool get_energy_table_status(void);
#else
static inline void init_ems(void);
static inline void exynos_init_entity_util_avg(struct sched_entity *se) { }
static inline int
exynos_wakeup_balance(struct task_struct *p, int prev_cpu, int sd_flag, int sync)
{
return -1;
}
static inline void ontime_migration(void) { }
static inline int ontime_can_migration(struct task_struct *p, int cpu)
{
return 1;
}
static inline void ontime_update_load_avg(u64 delta, int cpu, unsigned long weight, struct sched_avg *sa) { }
static inline void ontime_new_entity_load(struct task_struct *p, struct sched_entity *se) { }
static inline void ontime_trace_task_info(struct task_struct *p) { }
static inline bool lbt_overutilized(int cpu, int level)
{
return false;
}
static inline void update_lbt_overutil(int cpu, unsigned long capacity) { }
static inline void gb_qos_update_request(struct gb_qos_request *req, u32 new_value) { }
static inline void sync_band(struct task_struct *p, bool join) { }
static inline void newbie_join_band(struct task_struct *newbie) { }
static inline void update_band(struct task_struct *p, long old_util) { }
static inline int band_playing(struct task_struct *p, int cpu)
{
return 0;
}
static inline void update_multi_load(u64 delta, int cpu, struct sched_avg *sa,
unsigned long weight, int running, struct cfs_rq *cfs_rq) { }
static inline void init_multi_load(struct sched_entity *se) { }
static inline void detach_entity_multi_load(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void attach_entity_multi_load(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void remove_entity_multi_load(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void apply_removed_multi_load(struct cfs_rq *cfs_rq) { }
static inline void update_tg_multi_load(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void cfs_se_util_change_multi_load(struct task_struct *p, struct sched_avg *avg) { }
static inline void enqueue_multi_load(struct cfs_rq *cfs_rq, struct task_struct *p) { }
static inline void dequeue_multi_load(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) { }
/* P.A.R.T */
static inline void update_cpu_active_ratio(struct rq *rq, struct task_struct *p, int type) { }
static inline void part_cpu_active_ratio(unsigned long *util, unsigned long *max, int cpu) { }
static inline void set_part_period_start(struct rq *rq) { }
static inline void lb_add_cfs_task(struct rq *rq, struct sched_entity *se) { }
static inline int lb_check_priority(int src_cpu, int dst_cpu)
{
return 0;
}
static inline struct list_head *lb_prefer_cfs_tasks(int src_cpu, int dst_cpu)
{
return NULL;
}
static inline int lb_need_active_balance(enum cpu_idle_type idle,
struct sched_domain *sd, int src_cpu, int dst_cpu)
{
return 0;
}
static inline void set_energy_table_status(bool status) { }
static inline bool get_energy_table_status(void)
{
return false;
}
#endif /* CONFIG_SCHED_EMS */
#ifdef CONFIG_SIMPLIFIED_ENERGY_MODEL
extern void init_sched_energy_table(struct cpumask *cpus, int table_size,
unsigned long *f_table, unsigned int *v_table,
int max_f, int min_f);
extern void update_qos_capacity(int cpu, unsigned long freq, unsigned long max);
#else
static inline void init_sched_energy_table(struct cpumask *cpus, int table_size,
unsigned long *f_table, unsigned int *v_table,
int max_f, int min_f) { }
static inline void update_qos_capacity(int cpu, unsigned long freq, unsigned long max) { }
#endif
/* Fluid Real Time */
extern unsigned int frt_disable_cpufreq;
/*
* Maximum number of boost groups to support
* When per-task boosting is used we still allow only limited number of
* boost groups for two main reasons:
* 1. on a real system we usually have only few classes of workloads which
* make sense to boost with different values (e.g. background vs foreground
* tasks, interactive vs low-priority tasks)
* 2. a limited number allows for a simpler and more memory/time efficient
* implementation especially for the computation of the per-CPU boost
* value
*/
#define BOOSTGROUPS_COUNT 6
struct boost_groups {
/* Maximum boost value for all RUNNABLE tasks on a CPU */
bool idle;
int boost_max;
u64 boost_ts;
struct {
/* The boost for tasks on that boost group */
int boost;
/* Count of RUNNABLE tasks on that boost group */
unsigned tasks;
/* Timestamp of boost activation */
u64 ts;
} group[BOOSTGROUPS_COUNT];
/* CPU's boost group locking */
raw_spinlock_t lock;
};