blob: 1799bfb382e50288d7b5a4a893fa0417d0a33733 [file] [log] [blame]
/*
* Freescale Hypervisor Management Driver
* Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
* Author: Timur Tabi <timur@freescale.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*
* The Freescale hypervisor management driver provides several services to
* drivers and applications related to the Freescale hypervisor:
*
* 1. An ioctl interface for querying and managing partitions.
*
* 2. A file interface to reading incoming doorbells.
*
* 3. An interrupt handler for shutting down the partition upon receiving the
* shutdown doorbell from a manager partition.
*
* 4. A kernel interface for receiving callbacks when a managed partition
* shuts down.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/reboot.h>
#include <linux/uaccess.h>
#include <linux/notifier.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <asm/fsl_hcalls.h>
#include <linux/fsl_hypervisor.h>
static BLOCKING_NOTIFIER_HEAD(failover_subscribers);
/*
* Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART
*
* Restart a running partition
*/
static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p)
{
struct fsl_hv_ioctl_restart param;
/* Get the parameters from the user */
if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_restart)))
return -EFAULT;
param.ret = fh_partition_restart(param.partition);
if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
return -EFAULT;
return 0;
}
/*
* Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS
*
* Query the status of a partition
*/
static long ioctl_status(struct fsl_hv_ioctl_status __user *p)
{
struct fsl_hv_ioctl_status param;
u32 status;
/* Get the parameters from the user */
if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_status)))
return -EFAULT;
param.ret = fh_partition_get_status(param.partition, &status);
if (!param.ret)
param.status = status;
if (copy_to_user(p, &param, sizeof(struct fsl_hv_ioctl_status)))
return -EFAULT;
return 0;
}
/*
* Ioctl interface for FSL_HV_IOCTL_PARTITION_START
*
* Start a stopped partition.
*/
static long ioctl_start(struct fsl_hv_ioctl_start __user *p)
{
struct fsl_hv_ioctl_start param;
/* Get the parameters from the user */
if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_start)))
return -EFAULT;
param.ret = fh_partition_start(param.partition, param.entry_point,
param.load);
if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
return -EFAULT;
return 0;
}
/*
* Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP
*
* Stop a running partition
*/
static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p)
{
struct fsl_hv_ioctl_stop param;
/* Get the parameters from the user */
if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_stop)))
return -EFAULT;
param.ret = fh_partition_stop(param.partition);
if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
return -EFAULT;
return 0;
}
/*
* Ioctl interface for FSL_HV_IOCTL_MEMCPY
*
* The FH_MEMCPY hypercall takes an array of address/address/size structures
* to represent the data being copied. As a convenience to the user, this
* ioctl takes a user-create buffer and a pointer to a guest physically
* contiguous buffer in the remote partition, and creates the
* address/address/size array for the hypercall.
*/
static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p)
{
struct fsl_hv_ioctl_memcpy param;
struct page **pages = NULL;
void *sg_list_unaligned = NULL;
struct fh_sg_list *sg_list = NULL;
unsigned int num_pages;
unsigned long lb_offset; /* Offset within a page of the local buffer */
unsigned int i;
long ret = 0;
int num_pinned = 0; /* return value from get_user_pages_fast() */
phys_addr_t remote_paddr; /* The next address in the remote buffer */
uint32_t count; /* The number of bytes left to copy */
/* Get the parameters from the user */
if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_memcpy)))
return -EFAULT;
/*
* One partition must be local, the other must be remote. In other
* words, if source and target are both -1, or are both not -1, then
* return an error.
*/
if ((param.source == -1) == (param.target == -1))
return -EINVAL;
/*
* The array of pages returned by get_user_pages_fast() covers only
* page-aligned memory. Since the user buffer is probably not
* page-aligned, we need to handle the discrepancy.
*
* We calculate the offset within a page of the S/G list, and make
* adjustments accordingly. This will result in a page list that looks
* like this:
*
* ---- <-- first page starts before the buffer
* | |
* |////|-> ----
* |////| | |
* ---- | |
* | |
* ---- | |
* |////| | |
* |////| | |
* |////| | |
* ---- | |
* | |
* ---- | |
* |////| | |
* |////| | |
* |////| | |
* ---- | |
* | |
* ---- | |
* |////| | |
* |////|-> ----
* | | <-- last page ends after the buffer
* ----
*
* The distance between the start of the first page and the start of the
* buffer is lb_offset. The hashed (///) areas are the parts of the
* page list that contain the actual buffer.
*
* The advantage of this approach is that the number of pages is
* equal to the number of entries in the S/G list that we give to the
* hypervisor.
*/
lb_offset = param.local_vaddr & (PAGE_SIZE - 1);
if (param.count == 0 ||
param.count > U64_MAX - lb_offset - PAGE_SIZE + 1)
return -EINVAL;
num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
/* Allocate the buffers we need */
/*
* 'pages' is an array of struct page pointers that's initialized by
* get_user_pages_fast().
*/
pages = kzalloc(num_pages * sizeof(struct page *), GFP_KERNEL);
if (!pages) {
pr_debug("fsl-hv: could not allocate page list\n");
return -ENOMEM;
}
/*
* sg_list is the list of fh_sg_list objects that we pass to the
* hypervisor.
*/
sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) +
sizeof(struct fh_sg_list) - 1, GFP_KERNEL);
if (!sg_list_unaligned) {
pr_debug("fsl-hv: could not allocate S/G list\n");
ret = -ENOMEM;
goto free_pages;
}
sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list));
/* Get the physical addresses of the source buffer */
num_pinned = get_user_pages_unlocked(param.local_vaddr - lb_offset,
num_pages, pages, (param.source == -1) ? 0 : FOLL_WRITE);
if (num_pinned != num_pages) {
pr_debug("fsl-hv: could not lock source buffer\n");
ret = (num_pinned < 0) ? num_pinned : -EFAULT;
goto exit;
}
/*
* Build the fh_sg_list[] array. The first page is special
* because it's misaligned.
*/
if (param.source == -1) {
sg_list[0].source = page_to_phys(pages[0]) + lb_offset;
sg_list[0].target = param.remote_paddr;
} else {
sg_list[0].source = param.remote_paddr;
sg_list[0].target = page_to_phys(pages[0]) + lb_offset;
}
sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset);
remote_paddr = param.remote_paddr + sg_list[0].size;
count = param.count - sg_list[0].size;
for (i = 1; i < num_pages; i++) {
if (param.source == -1) {
/* local to remote */
sg_list[i].source = page_to_phys(pages[i]);
sg_list[i].target = remote_paddr;
} else {
/* remote to local */
sg_list[i].source = remote_paddr;
sg_list[i].target = page_to_phys(pages[i]);
}
sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE);
remote_paddr += sg_list[i].size;
count -= sg_list[i].size;
}
param.ret = fh_partition_memcpy(param.source, param.target,
virt_to_phys(sg_list), num_pages);
exit:
if (pages && (num_pinned > 0)) {
for (i = 0; i < num_pinned; i++)
put_page(pages[i]);
}
kfree(sg_list_unaligned);
free_pages:
kfree(pages);
if (!ret)
if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
return -EFAULT;
return ret;
}
/*
* Ioctl interface for FSL_HV_IOCTL_DOORBELL
*
* Ring a doorbell
*/
static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p)
{
struct fsl_hv_ioctl_doorbell param;
/* Get the parameters from the user. */
if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_doorbell)))
return -EFAULT;
param.ret = ev_doorbell_send(param.doorbell);
if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
return -EFAULT;
return 0;
}
static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set)
{
struct fsl_hv_ioctl_prop param;
char __user *upath, *upropname;
void __user *upropval;
char *path, *propname;
void *propval;
int ret = 0;
/* Get the parameters from the user. */
if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_prop)))
return -EFAULT;
upath = (char __user *)(uintptr_t)param.path;
upropname = (char __user *)(uintptr_t)param.propname;
upropval = (void __user *)(uintptr_t)param.propval;
path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN);
if (IS_ERR(path))
return PTR_ERR(path);
propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN);
if (IS_ERR(propname)) {
ret = PTR_ERR(propname);
goto err_free_path;
}
if (param.proplen > FH_DTPROP_MAX_PROPLEN) {
ret = -EINVAL;
goto err_free_propname;
}
propval = kmalloc(param.proplen, GFP_KERNEL);
if (!propval) {
ret = -ENOMEM;
goto err_free_propname;
}
if (set) {
if (copy_from_user(propval, upropval, param.proplen)) {
ret = -EFAULT;
goto err_free_propval;
}
param.ret = fh_partition_set_dtprop(param.handle,
virt_to_phys(path),
virt_to_phys(propname),
virt_to_phys(propval),
param.proplen);
} else {
param.ret = fh_partition_get_dtprop(param.handle,
virt_to_phys(path),
virt_to_phys(propname),
virt_to_phys(propval),
&param.proplen);
if (param.ret == 0) {
if (copy_to_user(upropval, propval, param.proplen) ||
put_user(param.proplen, &p->proplen)) {
ret = -EFAULT;
goto err_free_propval;
}
}
}
if (put_user(param.ret, &p->ret))
ret = -EFAULT;
err_free_propval:
kfree(propval);
err_free_propname:
kfree(propname);
err_free_path:
kfree(path);
return ret;
}
/*
* Ioctl main entry point
*/
static long fsl_hv_ioctl(struct file *file, unsigned int cmd,
unsigned long argaddr)
{
void __user *arg = (void __user *)argaddr;
long ret;
switch (cmd) {
case FSL_HV_IOCTL_PARTITION_RESTART:
ret = ioctl_restart(arg);
break;
case FSL_HV_IOCTL_PARTITION_GET_STATUS:
ret = ioctl_status(arg);
break;
case FSL_HV_IOCTL_PARTITION_START:
ret = ioctl_start(arg);
break;
case FSL_HV_IOCTL_PARTITION_STOP:
ret = ioctl_stop(arg);
break;
case FSL_HV_IOCTL_MEMCPY:
ret = ioctl_memcpy(arg);
break;
case FSL_HV_IOCTL_DOORBELL:
ret = ioctl_doorbell(arg);
break;
case FSL_HV_IOCTL_GETPROP:
ret = ioctl_dtprop(arg, 0);
break;
case FSL_HV_IOCTL_SETPROP:
ret = ioctl_dtprop(arg, 1);
break;
default:
pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n",
_IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd),
_IOC_SIZE(cmd));
return -ENOTTY;
}
return ret;
}
/* Linked list of processes that have us open */
static struct list_head db_list;
/* spinlock for db_list */
static DEFINE_SPINLOCK(db_list_lock);
/* The size of the doorbell event queue. This must be a power of two. */
#define QSIZE 16
/* Returns the next head/tail pointer, wrapping around the queue if necessary */
#define nextp(x) (((x) + 1) & (QSIZE - 1))
/* Per-open data structure */
struct doorbell_queue {
struct list_head list;
spinlock_t lock;
wait_queue_head_t wait;
unsigned int head;
unsigned int tail;
uint32_t q[QSIZE];
};
/* Linked list of ISRs that we registered */
struct list_head isr_list;
/* Per-ISR data structure */
struct doorbell_isr {
struct list_head list;
unsigned int irq;
uint32_t doorbell; /* The doorbell handle */
uint32_t partition; /* The partition handle, if used */
};
/*
* Add a doorbell to all of the doorbell queues
*/
static void fsl_hv_queue_doorbell(uint32_t doorbell)
{
struct doorbell_queue *dbq;
unsigned long flags;
/* Prevent another core from modifying db_list */
spin_lock_irqsave(&db_list_lock, flags);
list_for_each_entry(dbq, &db_list, list) {
if (dbq->head != nextp(dbq->tail)) {
dbq->q[dbq->tail] = doorbell;
/*
* This memory barrier eliminates the need to grab
* the spinlock for dbq.
*/
smp_wmb();
dbq->tail = nextp(dbq->tail);
wake_up_interruptible(&dbq->wait);
}
}
spin_unlock_irqrestore(&db_list_lock, flags);
}
/*
* Interrupt handler for all doorbells
*
* We use the same interrupt handler for all doorbells. Whenever a doorbell
* is rung, and we receive an interrupt, we just put the handle for that
* doorbell (passed to us as *data) into all of the queues.
*/
static irqreturn_t fsl_hv_isr(int irq, void *data)
{
fsl_hv_queue_doorbell((uintptr_t) data);
return IRQ_HANDLED;
}
/*
* State change thread function
*
* The state change notification arrives in an interrupt, but we can't call
* blocking_notifier_call_chain() in an interrupt handler. We could call
* atomic_notifier_call_chain(), but that would require the clients' call-back
* function to run in interrupt context. Since we don't want to impose that
* restriction on the clients, we use a threaded IRQ to process the
* notification in kernel context.
*/
static irqreturn_t fsl_hv_state_change_thread(int irq, void *data)
{
struct doorbell_isr *dbisr = data;
blocking_notifier_call_chain(&failover_subscribers, dbisr->partition,
NULL);
return IRQ_HANDLED;
}
/*
* Interrupt handler for state-change doorbells
*/
static irqreturn_t fsl_hv_state_change_isr(int irq, void *data)
{
unsigned int status;
struct doorbell_isr *dbisr = data;
int ret;
/* It's still a doorbell, so add it to all the queues. */
fsl_hv_queue_doorbell(dbisr->doorbell);
/* Determine the new state, and if it's stopped, notify the clients. */
ret = fh_partition_get_status(dbisr->partition, &status);
if (!ret && (status == FH_PARTITION_STOPPED))
return IRQ_WAKE_THREAD;
return IRQ_HANDLED;
}
/*
* Returns a bitmask indicating whether a read will block
*/
static unsigned int fsl_hv_poll(struct file *filp, struct poll_table_struct *p)
{
struct doorbell_queue *dbq = filp->private_data;
unsigned long flags;
unsigned int mask;
spin_lock_irqsave(&dbq->lock, flags);
poll_wait(filp, &dbq->wait, p);
mask = (dbq->head == dbq->tail) ? 0 : (POLLIN | POLLRDNORM);
spin_unlock_irqrestore(&dbq->lock, flags);
return mask;
}
/*
* Return the handles for any incoming doorbells
*
* If there are doorbell handles in the queue for this open instance, then
* return them to the caller as an array of 32-bit integers. Otherwise,
* block until there is at least one handle to return.
*/
static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len,
loff_t *off)
{
struct doorbell_queue *dbq = filp->private_data;
uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */
unsigned long flags;
ssize_t count = 0;
/* Make sure we stop when the user buffer is full. */
while (len >= sizeof(uint32_t)) {
uint32_t dbell; /* Local copy of doorbell queue data */
spin_lock_irqsave(&dbq->lock, flags);
/*
* If the queue is empty, then either we're done or we need
* to block. If the application specified O_NONBLOCK, then
* we return the appropriate error code.
*/
if (dbq->head == dbq->tail) {
spin_unlock_irqrestore(&dbq->lock, flags);
if (count)
break;
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
if (wait_event_interruptible(dbq->wait,
dbq->head != dbq->tail))
return -ERESTARTSYS;
continue;
}
/*
* Even though we have an smp_wmb() in the ISR, the core
* might speculatively execute the "dbell = ..." below while
* it's evaluating the if-statement above. In that case, the
* value put into dbell could be stale if the core accepts the
* speculation. To prevent that, we need a read memory barrier
* here as well.
*/
smp_rmb();
/* Copy the data to a temporary local buffer, because
* we can't call copy_to_user() from inside a spinlock
*/
dbell = dbq->q[dbq->head];
dbq->head = nextp(dbq->head);
spin_unlock_irqrestore(&dbq->lock, flags);
if (put_user(dbell, p))
return -EFAULT;
p++;
count += sizeof(uint32_t);
len -= sizeof(uint32_t);
}
return count;
}
/*
* Open the driver and prepare for reading doorbells.
*
* Every time an application opens the driver, we create a doorbell queue
* for that file handle. This queue is used for any incoming doorbells.
*/
static int fsl_hv_open(struct inode *inode, struct file *filp)
{
struct doorbell_queue *dbq;
unsigned long flags;
int ret = 0;
dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL);
if (!dbq) {
pr_err("fsl-hv: out of memory\n");
return -ENOMEM;
}
spin_lock_init(&dbq->lock);
init_waitqueue_head(&dbq->wait);
spin_lock_irqsave(&db_list_lock, flags);
list_add(&dbq->list, &db_list);
spin_unlock_irqrestore(&db_list_lock, flags);
filp->private_data = dbq;
return ret;
}
/*
* Close the driver
*/
static int fsl_hv_close(struct inode *inode, struct file *filp)
{
struct doorbell_queue *dbq = filp->private_data;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&db_list_lock, flags);
list_del(&dbq->list);
spin_unlock_irqrestore(&db_list_lock, flags);
kfree(dbq);
return ret;
}
static const struct file_operations fsl_hv_fops = {
.owner = THIS_MODULE,
.open = fsl_hv_open,
.release = fsl_hv_close,
.poll = fsl_hv_poll,
.read = fsl_hv_read,
.unlocked_ioctl = fsl_hv_ioctl,
.compat_ioctl = fsl_hv_ioctl,
};
static struct miscdevice fsl_hv_misc_dev = {
MISC_DYNAMIC_MINOR,
"fsl-hv",
&fsl_hv_fops
};
static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data)
{
orderly_poweroff(false);
return IRQ_HANDLED;
}
/*
* Returns the handle of the parent of the given node
*
* The handle is the value of the 'hv-handle' property
*/
static int get_parent_handle(struct device_node *np)
{
struct device_node *parent;
const uint32_t *prop;
uint32_t handle;
int len;
parent = of_get_parent(np);
if (!parent)
/* It's not really possible for this to fail */
return -ENODEV;
/*
* The proper name for the handle property is "hv-handle", but some
* older versions of the hypervisor used "reg".
*/
prop = of_get_property(parent, "hv-handle", &len);
if (!prop)
prop = of_get_property(parent, "reg", &len);
if (!prop || (len != sizeof(uint32_t))) {
/* This can happen only if the node is malformed */
of_node_put(parent);
return -ENODEV;
}
handle = be32_to_cpup(prop);
of_node_put(parent);
return handle;
}
/*
* Register a callback for failover events
*
* This function is called by device drivers to register their callback
* functions for fail-over events.
*/
int fsl_hv_failover_register(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&failover_subscribers, nb);
}
EXPORT_SYMBOL(fsl_hv_failover_register);
/*
* Unregister a callback for failover events
*/
int fsl_hv_failover_unregister(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&failover_subscribers, nb);
}
EXPORT_SYMBOL(fsl_hv_failover_unregister);
/*
* Return TRUE if we're running under FSL hypervisor
*
* This function checks to see if we're running under the Freescale
* hypervisor, and returns zero if we're not, or non-zero if we are.
*
* First, it checks if MSR[GS]==1, which means we're running under some
* hypervisor. Then it checks if there is a hypervisor node in the device
* tree. Currently, that means there needs to be a node in the root called
* "hypervisor" and which has a property named "fsl,hv-version".
*/
static int has_fsl_hypervisor(void)
{
struct device_node *node;
int ret;
node = of_find_node_by_path("/hypervisor");
if (!node)
return 0;
ret = of_find_property(node, "fsl,hv-version", NULL) != NULL;
of_node_put(node);
return ret;
}
/*
* Freescale hypervisor management driver init
*
* This function is called when this module is loaded.
*
* Register ourselves as a miscellaneous driver. This will register the
* fops structure and create the right sysfs entries for udev.
*/
static int __init fsl_hypervisor_init(void)
{
struct device_node *np;
struct doorbell_isr *dbisr, *n;
int ret;
pr_info("Freescale hypervisor management driver\n");
if (!has_fsl_hypervisor()) {
pr_info("fsl-hv: no hypervisor found\n");
return -ENODEV;
}
ret = misc_register(&fsl_hv_misc_dev);
if (ret) {
pr_err("fsl-hv: cannot register device\n");
return ret;
}
INIT_LIST_HEAD(&db_list);
INIT_LIST_HEAD(&isr_list);
for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") {
unsigned int irq;
const uint32_t *handle;
handle = of_get_property(np, "interrupts", NULL);
irq = irq_of_parse_and_map(np, 0);
if (!handle || (irq == NO_IRQ)) {
pr_err("fsl-hv: no 'interrupts' property in %pOF node\n",
np);
continue;
}
dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL);
if (!dbisr)
goto out_of_memory;
dbisr->irq = irq;
dbisr->doorbell = be32_to_cpup(handle);
if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) {
/* The shutdown doorbell gets its own ISR */
ret = request_irq(irq, fsl_hv_shutdown_isr, 0,
np->name, NULL);
} else if (of_device_is_compatible(np,
"fsl,hv-state-change-doorbell")) {
/*
* The state change doorbell triggers a notification if
* the state of the managed partition changes to
* "stopped". We need a separate interrupt handler for
* that, and we also need to know the handle of the
* target partition, not just the handle of the
* doorbell.
*/
dbisr->partition = ret = get_parent_handle(np);
if (ret < 0) {
pr_err("fsl-hv: node %pOF has missing or "
"malformed parent\n", np);
kfree(dbisr);
continue;
}
ret = request_threaded_irq(irq, fsl_hv_state_change_isr,
fsl_hv_state_change_thread,
0, np->name, dbisr);
} else
ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr);
if (ret < 0) {
pr_err("fsl-hv: could not request irq %u for node %pOF\n",
irq, np);
kfree(dbisr);
continue;
}
list_add(&dbisr->list, &isr_list);
pr_info("fsl-hv: registered handler for doorbell %u\n",
dbisr->doorbell);
}
return 0;
out_of_memory:
list_for_each_entry_safe(dbisr, n, &isr_list, list) {
free_irq(dbisr->irq, dbisr);
list_del(&dbisr->list);
kfree(dbisr);
}
misc_deregister(&fsl_hv_misc_dev);
return -ENOMEM;
}
/*
* Freescale hypervisor management driver termination
*
* This function is called when this driver is unloaded.
*/
static void __exit fsl_hypervisor_exit(void)
{
struct doorbell_isr *dbisr, *n;
list_for_each_entry_safe(dbisr, n, &isr_list, list) {
free_irq(dbisr->irq, dbisr);
list_del(&dbisr->list);
kfree(dbisr);
}
misc_deregister(&fsl_hv_misc_dev);
}
module_init(fsl_hypervisor_init);
module_exit(fsl_hypervisor_exit);
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale hypervisor management driver");
MODULE_LICENSE("GPL v2");