| /* |
| * Copyright (C) 2016 Samsung Electronics. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/uaccess.h> |
| #include <linux/delay.h> |
| #include <linux/gpio.h> |
| |
| #include "et5xx.h" |
| |
| |
| int etspi_io_burst_write_register(struct etspi_data *etspi, |
| struct egis_ioc_transfer *ioc) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status = 0; |
| struct spi_message m; |
| struct spi_transfer xfer = { |
| .tx_buf = etspi->buf, |
| .len = ioc->len + 1, |
| }; |
| |
| if (ioc->len <= 0 || ioc->len + 2 > etspi->bufsiz) { |
| status = -ENOMEM; |
| pr_err("%s error status = %d\n", __func__, status); |
| goto end; |
| } |
| |
| memset(etspi->buf, 0, ioc->len + 1); |
| *etspi->buf = OP_REG_W_C; |
| if (copy_from_user(etspi->buf + 1, |
| (const u8 __user *) (uintptr_t) ioc->tx_buf, |
| ioc->len)) { |
| pr_err("%s buffer copy_from_user fail\n", __func__); |
| status = -EFAULT; |
| goto end; |
| } |
| pr_debug("%s tx_buf = %p op = %x reg = %x, len = %d\n", __func__, |
| ioc->tx_buf, *etspi->buf, *(etspi->buf + 1), xfer.len); |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| |
| if (status < 0) { |
| pr_err("%s error status = %d\n", __func__, status); |
| goto end; |
| } |
| end: |
| return status; |
| #endif |
| } |
| |
| int etspi_io_burst_write_register_backward(struct etspi_data *etspi, |
| struct egis_ioc_transfer *ioc) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status = 0; |
| struct spi_message m; |
| struct spi_transfer xfer = { |
| .tx_buf = etspi->buf, |
| .len = ioc->len + 1, |
| }; |
| |
| if (ioc->len <= 0 || ioc->len + 2 > etspi->bufsiz) { |
| status = -ENOMEM; |
| pr_err("%s error status = %d\n", __func__, status); |
| goto end; |
| } |
| |
| memset(etspi->buf, 0, ioc->len + 1); |
| *etspi->buf = OP_REG_W_C_BW; |
| if (copy_from_user(etspi->buf + 1, |
| (const u8 __user *) (uintptr_t)ioc->tx_buf, ioc->len)) { |
| pr_err("%s buffer copy_from_user fail\n", __func__); |
| status = -EFAULT; |
| goto end; |
| } |
| pr_debug("%s tx_buf = %p op = %x reg = %x, len = %d\n", __func__, |
| ioc->tx_buf, *etspi->buf, *(etspi->buf + 1), xfer.len); |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| |
| if (status < 0) { |
| pr_err("%s error status = %d\n", __func__, status); |
| goto end; |
| } |
| end: |
| return status; |
| #endif |
| } |
| |
| int etspi_io_burst_read_register(struct etspi_data *etspi, |
| struct egis_ioc_transfer *ioc) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status = 0; |
| struct spi_message m; |
| struct spi_transfer xfer = { |
| .tx_buf = etspi->buf, |
| .rx_buf = etspi->buf, |
| .len = ioc->len + 2, |
| }; |
| |
| if (ioc->len <= 0 || ioc->len + 2 > etspi->bufsiz) { |
| status = -ENOMEM; |
| pr_err("%s error status = %d\n", __func__, status); |
| goto end; |
| } |
| |
| memset(etspi->buf, 0, xfer.len); |
| *etspi->buf = OP_REG_R_C; |
| if (copy_from_user(etspi->buf + 1, |
| (const u8 __user *) (uintptr_t) ioc->tx_buf, 1)) { |
| pr_err("%s buffer copy_from_user fail\n", __func__); |
| status = -EFAULT; |
| goto end; |
| } |
| pr_debug("%s tx_buf = %p op = %x reg = %x, len = %d\n", __func__, |
| ioc->tx_buf, *etspi->buf, *(etspi->buf + 1), xfer.len); |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| |
| if (status < 0) { |
| status = -ENOMEM; |
| pr_err("%s error status = %d\n", __func__, status); |
| goto end; |
| } |
| |
| if (copy_to_user((u8 __user *) (uintptr_t)ioc->rx_buf, etspi->buf + 2, |
| ioc->len)) { |
| status = -EFAULT; |
| pr_err("%s buffer copy_to_user fail status\n", __func__); |
| goto end; |
| } |
| end: |
| return status; |
| #endif |
| } |
| |
| int etspi_io_burst_read_register_backward(struct etspi_data *etspi, |
| struct egis_ioc_transfer *ioc) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status = 0; |
| struct spi_message m; |
| struct spi_transfer xfer = { |
| .tx_buf = etspi->buf, |
| .rx_buf = etspi->buf, |
| .len = ioc->len + 2, |
| }; |
| |
| if (ioc->len <= 0 || ioc->len + 2 > etspi->bufsiz) { |
| status = -ENOMEM; |
| pr_err("%s error status = %d\n", __func__, status); |
| goto end; |
| } |
| |
| memset(etspi->buf, 0, xfer.len); |
| *etspi->buf = OP_REG_R_C_BW; |
| if (copy_from_user(etspi->buf + 1, |
| (const u8 __user *) (uintptr_t)ioc->tx_buf, 1)) { |
| pr_err("%s buffer copy_from_user fail\n", __func__); |
| status = -EFAULT; |
| goto end; |
| } |
| pr_debug("%s tx_buf = %p op = %x reg = %x, len = %d\n", __func__, |
| ioc->tx_buf, *etspi->buf, *(etspi->buf + 1), xfer.len); |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| |
| if (status < 0) { |
| status = -ENOMEM; |
| pr_err("%s error status = %d\n", __func__, status); |
| goto end; |
| } |
| |
| if (copy_to_user((u8 __user *) (uintptr_t)ioc->rx_buf, etspi->buf + 2, |
| ioc->len)) { |
| status = -EFAULT; |
| pr_err("%s buffer copy_to_user fail status\n", __func__); |
| goto end; |
| } |
| end: |
| return status; |
| #endif |
| } |
| |
| int etspi_io_read_registerex(struct etspi_data *etspi, u8 *addr, u8 *buf, |
| u32 len) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status = 0; |
| struct spi_message m; |
| struct spi_transfer xfer = { |
| .tx_buf = etspi->buf, |
| .rx_buf = etspi->buf, |
| .len = len + 2, |
| }; |
| |
| if (len <= 0 || len + 2 > etspi->bufsiz) { |
| status = -ENOMEM; |
| pr_err("%s error status = %d", __func__, status); |
| goto end; |
| } |
| |
| memset(etspi->buf, 0, xfer.len); |
| *etspi->buf = OP_REG_R; |
| |
| if (copy_from_user(etspi->buf + 1, (const u8 __user *) (uintptr_t) addr |
| , 1)) { |
| pr_err("%s buffer copy_from_user fail\n", __func__); |
| status = -EFAULT; |
| goto end; |
| } |
| |
| pr_debug("%s addr = %p op = %x reg = %x len = %d tx = %p, rx = %p", |
| __func__, addr, etspi->buf[0], etspi->buf[1], len, |
| xfer.tx_buf, xfer.rx_buf); |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| if (status < 0) { |
| pr_err("%s read data error status = %d\n", __func__, status); |
| goto end; |
| } |
| |
| |
| if (copy_to_user((u8 __user *) (uintptr_t) buf, etspi->buf + 2, len)) { |
| pr_err("%s buffer copy_to_user fail status\n", __func__); |
| status = -EFAULT; |
| goto end; |
| } |
| end: |
| return status; |
| #endif |
| } |
| |
| /* Read io register */ |
| int etspi_io_read_register(struct etspi_data *etspi, u8 *addr, u8 *buf) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status = 0; |
| struct spi_message m; |
| int read_len = 1; |
| |
| u8 val, addrval; |
| |
| struct spi_transfer xfer = { |
| .tx_buf = etspi->buf, |
| .rx_buf = etspi->buf, |
| .len = 3, |
| }; |
| |
| memset(etspi->buf, 0, xfer.len); |
| *etspi->buf = OP_REG_R; |
| |
| if (copy_from_user(&addrval, (const u8 __user *) (uintptr_t) addr |
| , read_len)) { |
| pr_err("%s buffer copy_from_user fail\n", __func__); |
| status = -EFAULT; |
| return status; |
| } |
| |
| *(etspi->buf + 1) = addrval; |
| |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| if (status < 0) { |
| pr_err("%s read data error status = %d\n", __func__, status); |
| return status; |
| } |
| |
| val = *(etspi->buf + 2); |
| |
| pr_debug("%s len = %d addr = %x val = %x\n", __func__, |
| read_len, addrval, val); |
| |
| if (copy_to_user((u8 __user *) (uintptr_t) buf, &val, read_len)) { |
| pr_err("%s buffer copy_to_user fail status\n", __func__); |
| status = -EFAULT; |
| return status; |
| } |
| |
| return status; |
| #endif |
| } |
| |
| /* Write data to register */ |
| int etspi_io_write_register(struct etspi_data *etspi, u8 *buf) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status = 0; |
| int write_len = 2; |
| struct spi_message m; |
| |
| u8 val[3]; |
| |
| struct spi_transfer xfer = { |
| .tx_buf = etspi->buf, |
| .len = 3, |
| }; |
| |
| memset(etspi->buf, 0, xfer.len); |
| *etspi->buf = OP_REG_W; |
| |
| if (copy_from_user(val, (const u8 __user *) (uintptr_t) buf, |
| write_len)) { |
| pr_err("%s buffer copy_from_user fail\n", __func__); |
| status = -EFAULT; |
| return status; |
| } |
| |
| pr_debug("%s write_len = %d addr = %x data = %x\n", __func__, |
| write_len, val[0], val[1]); |
| |
| *(etspi->buf + 1) = val[0]; |
| *(etspi->buf + 2) = val[1]; |
| |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| if (status < 0) { |
| pr_err("%s read data error status = %d\n", __func__, status); |
| return status; |
| } |
| |
| return status; |
| #endif |
| } |
| |
| int etspi_write_register(struct etspi_data *etspi, u8 addr, u8 buf) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status; |
| int i, buf_size; |
| struct spi_message m; |
| |
| u8 tx[] = {OP_REG_W, addr, buf}; |
| u8 *tx_buffer = NULL; |
| |
| struct spi_transfer xfer = { |
| .rx_buf = NULL, |
| .len = 3, |
| }; |
| |
| buf_size = 3; |
| tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA); |
| if (tx_buffer == NULL) |
| return -ENOMEM; |
| for (i = 0; i < buf_size; i++) |
| tx_buffer[i] = tx[i]; |
| xfer.tx_buf = tx_buffer; |
| |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| |
| if (status == 0) { |
| DEBUG_PRINT("%s address = %x\n",__func__, addr); |
| } else { |
| pr_err("%s read data error status = %d\n", __func__, status); |
| } |
| |
| kfree(tx_buffer); |
| return status; |
| #endif |
| } |
| int etspi_read_register(struct etspi_data *etspi, u8 addr, u8 *buf) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status; |
| int i, buf_size; |
| struct spi_message m; |
| |
| u8 read_value[] = {OP_REG_R, addr, 0x00}; |
| u8 result[] = {0xFF, 0xFF, 0xFF}; |
| |
| u8 *tx_buffer = NULL; |
| u8 *rx_buffer = NULL; |
| |
| struct spi_transfer xfer = { |
| .len = 3, |
| }; |
| |
| buf_size = 3; |
| tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA); |
| if (tx_buffer == NULL) |
| return -ENOMEM; |
| rx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA); |
| if (rx_buffer == NULL) { |
| kfree(tx_buffer); |
| return -ENOMEM; |
| } |
| for (i = 0; i < buf_size; i++) { |
| tx_buffer[i] = read_value[i]; |
| rx_buffer[i] = result[i]; |
| } |
| |
| xfer.tx_buf = tx_buffer; |
| xfer.rx_buf = rx_buffer; |
| |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| |
| if (status == 0) { |
| *buf = rx_buffer[2]; |
| DEBUG_PRINT("%s address = %x result = %x %x\n" |
| __func__, addr, rx_buffer[1], rx_buffer[2]); |
| } else { |
| pr_err("%s read data error status = %d\n", __func__, status); |
| } |
| |
| kfree(tx_buffer); |
| kfree(rx_buffer); |
| |
| return status; |
| #endif |
| } |
| |
| int etspi_io_nvm_read(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status; |
| int i, buf_size; |
| struct spi_message m; |
| |
| u8 addr; /* nvm logical address */ |
| u8 buf[] = {OP_NVM_RE, 0x00}; |
| u8 *tx_buffer = NULL; |
| |
| struct spi_transfer xfer = { |
| .rx_buf = NULL, |
| .len = 2, |
| }; |
| |
| buf_size = 2; |
| tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA); |
| if (tx_buffer == NULL) |
| return -ENOMEM; |
| for (i = 0; i < buf_size; i++) |
| tx_buffer[i] = buf[i]; |
| xfer.tx_buf = tx_buffer; |
| |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| |
| if (status == 0) |
| DEBUG_PRINT("%s nvm enabled\n", __func__); |
| else |
| pr_err("%s nvm enable error status = %d\n", __func__, status); |
| |
| kfree(tx_buffer); |
| |
| usleep_range(10, 50); |
| |
| if (copy_from_user(&addr, (const u8 __user *) (uintptr_t) ioc->tx_buf |
| , 1)) { |
| pr_err("%s buffer copy_from_user fail\n", __func__); |
| status = -EFAULT; |
| return status; |
| } |
| |
| etspi->buf[0] = OP_NVM_ON_R; |
| |
| pr_debug("%s logical addr(%x) len(%d)\n", __func__, addr, ioc->len); |
| if ((addr + ioc->len) > MAX_NVM_LEN) |
| return -EINVAL; |
| |
| /* transfer to nvm physical address*/ |
| etspi->buf[1] = ((addr % 2) ? (addr - 1) : addr) / 2; |
| /* thansfer to nvm physical length */ |
| xfer.len = ((ioc->len % 2) ? ioc->len + 1 : |
| (addr % 2 ? ioc->len + 2 : ioc->len)) + 3; |
| if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) { |
| if ((xfer.len) % DIVISION_OF_IMAGE != 0) |
| xfer.len = xfer.len + (DIVISION_OF_IMAGE - |
| (xfer.len % DIVISION_OF_IMAGE)); |
| } |
| xfer.tx_buf = xfer.rx_buf = etspi->buf; |
| |
| pr_debug("%s nvm read addr(%d) len(%d) xfer.rx_buf(%p), etspi->buf(%p)\n", |
| __func__, etspi->buf[1], |
| xfer.len, xfer.rx_buf, etspi->buf); |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| if (status < 0) { |
| pr_err("%s error status = %d\n", __func__, status); |
| return status; |
| } |
| |
| if (copy_to_user((u8 __user *) (uintptr_t) ioc->rx_buf, xfer.rx_buf + 3 |
| , ioc->len)) { |
| pr_err("%s buffer copy_to_user fail status\n", __func__); |
| status = -EFAULT; |
| return status; |
| } |
| |
| return status; |
| #endif |
| } |
| |
| int etspi_io_nvm_write(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status, i, j, len/* physical nvm length */; |
| int buf_size; |
| struct spi_message m; |
| u8 *bufw = NULL; |
| u8 buf[MAX_NVM_LEN + 1] = {OP_NVM_WE, 0x00}; |
| u8 addr/* nvm physical addr */; |
| u8 *tx_buffer = NULL; |
| |
| struct spi_transfer xfer = { |
| .rx_buf = NULL, |
| .len = 2, |
| }; |
| |
| if (ioc->len > (MAX_NVM_LEN + 1)) |
| return -EINVAL; |
| |
| buf_size = MAX_NVM_LEN+1; |
| tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA); |
| if (tx_buffer == NULL) |
| return -ENOMEM; |
| for (i = 0; i < buf_size; i++) |
| tx_buffer[i] = buf[i]; |
| |
| xfer.tx_buf = tx_buffer; |
| |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| |
| if (status == 0) |
| DEBUG_PRINT("%s nvm enabled\n", __func__); |
| else |
| pr_err("%s nvm enable error status = %d\n", __func__, status); |
| |
| kfree(tx_buffer); |
| |
| usleep_range(10, 50); |
| |
| pr_debug("%s buf(%p) tx_buf(%p) len(%d)\n", __func__, buf, |
| ioc->tx_buf, ioc->len); |
| if (copy_from_user(buf, (const u8 __user *) (uintptr_t) ioc->tx_buf, |
| ioc->len)) { |
| pr_err("%s buffer copy_from_user fail\n", __func__); |
| status = -EFAULT; |
| return status; |
| } |
| |
| if ((buf[0] + (ioc->len - 1)) > MAX_NVM_LEN) |
| return -EINVAL; |
| if ((buf[0] % 2) || ((ioc->len - 1) % 2)) { |
| /* TODO: add non alignment handling */ |
| pr_err("%s can't handle address alignment issue. %d %d\n", |
| __func__, buf[0], ioc->len); |
| return -EINVAL; |
| } |
| |
| bufw = kzalloc(NVM_WRITE_LENGTH, GFP_KERNEL | GFP_DMA); |
| /*TODO: need to dynamic assign nvm length*/ |
| if (bufw == NULL) { |
| status = -ENOMEM; |
| pr_err("%s bufw kmalloc error\n", __func__); |
| return status; |
| } |
| xfer.tx_buf = xfer.rx_buf = bufw; |
| xfer.len = NVM_WRITE_LENGTH; |
| |
| len = (ioc->len - 1) / 2; |
| pr_debug("%s nvm write addr(%d) len(%d) xfer.tx_buf(%p), etspi->buf(%p)\n", |
| __func__, buf[0], len, xfer.tx_buf, etspi->buf); |
| for (i = 0, addr = buf[0] / 2/* thansfer to nvm physical length */; |
| i < len; i++) { |
| bufw[0] = OP_NVM_ON_W; |
| bufw[1] = addr++; |
| bufw[2] = buf[i * 2 + 1]; |
| bufw[3] = buf[i * 2 + 2]; |
| memset(bufw + 4, 1, NVM_WRITE_LENGTH - 4); |
| |
| pr_debug("%s write transaction (%d): %x %x %x %x\n", |
| __func__, i, |
| bufw[0], bufw[1], bufw[2], bufw[3]); |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| if (status < 0) { |
| pr_err("%s error status = %d\n", __func__, status); |
| goto end; |
| } |
| for (j = 0; j < NVM_WRITE_LENGTH - 4; j++) { |
| if (bufw[4 + j] == 0) { |
| pr_debug("%s nvm write ready(%d)\n", |
| __func__, j); |
| break; |
| } |
| if (j == NVM_WRITE_LENGTH - 5) { |
| pr_err("%s nvm write fail(timeout)\n", |
| __func__); |
| status = -EIO; |
| goto end; |
| } |
| } |
| } |
| end: |
| kfree(bufw); |
| return status; |
| #endif |
| } |
| |
| int etspi_nvm_read(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status; |
| int i, buf_size; |
| struct spi_message m; |
| |
| u8 addr; /* nvm logical address */ |
| u8 buf[] = {OP_NVM_RE, 0x00}; |
| u8 *tx_buffer = NULL; |
| |
| struct spi_transfer xfer = { |
| .rx_buf = NULL, |
| .len = 2, |
| }; |
| |
| buf_size = 2; |
| tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA); |
| if (tx_buffer == NULL) |
| return -ENOMEM; |
| for (i = 0; i < buf_size; i++) |
| tx_buffer[i] = buf[i]; |
| |
| xfer.tx_buf = tx_buffer; |
| |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| |
| if (status == 0) |
| DEBUG_PRINT("%s nvm enabled\n", __func__); |
| else |
| pr_err("%s nvm enable error status = %d\n", __func__, status); |
| |
| kfree(tx_buffer); |
| |
| usleep_range(10, 50); |
| |
| addr = ioc->tx_buf[0]; |
| |
| etspi->buf[0] = OP_NVM_ON_R; |
| |
| pr_debug("%s logical addr(%x) len(%d)\n", __func__, addr, ioc->len); |
| if ((addr + ioc->len) > MAX_NVM_LEN) |
| return -EINVAL; |
| |
| /* transfer to nvm physical address*/ |
| etspi->buf[1] = ((addr % 2) ? (addr - 1) : addr) / 2; |
| /* thansfer to nvm physical length */ |
| xfer.len = ((ioc->len % 2) ? ioc->len + 1 : |
| (addr % 2 ? ioc->len + 2 : ioc->len)) + 3; |
| if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) { |
| if ((xfer.len) % DIVISION_OF_IMAGE != 0) |
| xfer.len = xfer.len + (DIVISION_OF_IMAGE - |
| (xfer.len % DIVISION_OF_IMAGE)); |
| } |
| xfer.tx_buf = xfer.rx_buf = etspi->buf; |
| |
| pr_debug("%s nvm read addr(%d) len(%d) xfer.rx_buf(%p), etspi->buf(%p)\n", |
| __func__, etspi->buf[1], |
| xfer.len, xfer.rx_buf, etspi->buf); |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| if (status < 0) { |
| pr_err("%s error status = %d\n", __func__, status); |
| return status; |
| } |
| |
| if (memcpy((u8 __user *) (uintptr_t) ioc->rx_buf, xfer.rx_buf + 3, |
| ioc->len)) { |
| pr_err("%s buffer copy_to_user fail status\n", __func__); |
| status = -EFAULT; |
| return status; |
| } |
| |
| return status; |
| #endif |
| } |
| int etspi_io_nvm_writeex(struct etspi_data *etspi, |
| struct egis_ioc_transfer *ioc) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status, i, j, len/* physical nvm length */, wlen; |
| int buf_size; |
| struct spi_message m; |
| u8 *bufw = NULL; |
| u8 bufr[MAX_NVM_LEN + 3]; |
| u8 buf[MAX_NVM_LEN + 3] = {OP_NVM_WE, 0x00}; |
| u8 addr/* nvm physical addr */, *tmp = NULL; |
| u8 *tx_buffer = NULL; |
| struct egis_ioc_transfer r; |
| |
| struct spi_transfer xfer = { |
| .rx_buf = NULL, |
| .len = 2, |
| }; |
| |
| pr_debug("%s buf(%p) tx_buf(%p) len(%d)\n", __func__, |
| buf, ioc->tx_buf, ioc->len); |
| if (copy_from_user(buf, (const u8 __user *) (uintptr_t) ioc->tx_buf |
| , ioc->len)) { |
| pr_err("%s buffer copy_from_user fail\n", __func__); |
| status = -EFAULT; |
| return status; |
| } |
| |
| if ((buf[0] + (ioc->len - 3)) > MAX_NVM_LEN) |
| return -EINVAL; |
| if ((buf[0] % 2) || ((ioc->len - 3) % 2)) { |
| /* address non-alignment handling */ |
| pr_debug("%s handle address alignment issue. %d %d\n", |
| __func__, buf[0], ioc->len); |
| |
| r.tx_buf = r.rx_buf = bufr; |
| r.len = ioc->len; |
| if (buf[0] % 2) { |
| r.tx_buf[0] = buf[0] - 1; |
| r.len = ioc->len % 2 ? r.len + 1 : r.len + 2; |
| } else { |
| if (ioc->len % 2) |
| r.len++; |
| } |
| pr_debug("%s fixed address alignment issue. %d %d\n", |
| __func__, r.tx_buf[0], r.len); |
| etspi_nvm_read(etspi, &r); |
| |
| tmp = bufr; |
| if (buf[0] % 2) |
| tmp++; |
| memcpy(tmp, buf, ioc->len); |
| } |
| |
| buf[0] = OP_NVM_WE; |
| |
| buf_size = MAX_NVM_LEN+1; |
| tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA); |
| if (tx_buffer == NULL) |
| return -ENOMEM; |
| for (i = 0; i < buf_size; i++) |
| tx_buffer[i] = buf[i]; |
| xfer.tx_buf = tx_buffer; |
| |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| |
| if (status == 0) |
| DEBUG_PRINT("%s nvm enabled\n", __func__); |
| else |
| pr_err("%s nvm enable error status = %d\n", __func__, status); |
| |
| kfree(tx_buffer); |
| |
| usleep_range(10, 50); |
| |
| wlen = *(u16 *)(buf + 1); |
| pr_debug("%s wlen(%d)\n", __func__, wlen); |
| if (wlen > 8192) |
| wlen = 8196; |
| bufw = kzalloc(wlen, GFP_KERNEL | GFP_DMA); |
| if (bufw == NULL) { |
| status = -ENOMEM; |
| pr_err("%s bufw kmalloc error\n", __func__); |
| return status; |
| } |
| xfer.tx_buf = xfer.rx_buf = bufw; |
| xfer.len = wlen; |
| |
| if ((buf[0] % 2) || ((ioc->len - 3) % 2)) { |
| memcpy(buf, bufr, r.len); |
| ioc->len = r.len; |
| } |
| len = (ioc->len - 3) / 2; |
| pr_debug("%s nvm write addr(%d) len(%d) xfer.tx_buf(%p), etspi->buf(%p), wlen(%d)\n", |
| __func__, buf[0], len, xfer.tx_buf, etspi->buf, wlen); |
| for (i = 0, addr = buf[0] / 2/* thansfer to nvm physical length */; |
| i < len; i++) { |
| bufw[0] = OP_NVM_ON_W; |
| bufw[1] = addr++; |
| bufw[2] = buf[i * 2 + 3]; |
| bufw[3] = buf[i * 2 + 4]; |
| memset(bufw + 4, 1, wlen - 4); |
| |
| pr_debug("%s write transaction (%d): %x %x %x %x\n", |
| __func__, i, |
| bufw[0], bufw[1], bufw[2], bufw[3]); |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| if (status < 0) { |
| pr_err("%s error status = %d\n", __func__, status); |
| goto end; |
| } |
| for (j = 0; j < wlen - 4; j++) { |
| if (bufw[4 + j] == 0) { |
| pr_debug("%s nvm write ready(%d)\n", |
| __func__, j); |
| break; |
| } |
| if (j == wlen - 5) { |
| pr_err("%s nvm write fail(timeout)\n", |
| __func__); |
| status = -EIO; |
| goto end; |
| } |
| } |
| } |
| end: |
| kfree(bufw); |
| return status; |
| #endif |
| } |
| |
| int etspi_io_nvm_off(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status; |
| int i, buf_size; |
| struct spi_message m; |
| |
| u8 buf[] = {OP_NVM_OFF, 0x00}; |
| u8 *tx_buffer = NULL; |
| |
| struct spi_transfer xfer = { |
| .rx_buf = NULL, |
| .len = 2, |
| }; |
| |
| buf_size = 2; |
| tx_buffer = kzalloc(buf_size*sizeof(u8), GFP_KERNEL | GFP_DMA); |
| if (tx_buffer == NULL) |
| return -ENOMEM; |
| for (i = 0; i < buf_size; i++) |
| tx_buffer[i] = buf[i]; |
| xfer.tx_buf = tx_buffer; |
| |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| |
| if (status == 0) |
| DEBUG_PRINT("%s nvm disabled\n", __func__); |
| else |
| pr_err("%s nvm disable error status = %d\n", __func__, status); |
| |
| kfree(tx_buffer); |
| return status; |
| #endif |
| } |
| int etspi_io_vdm_read(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status; |
| struct spi_message m; |
| u8 *buf = NULL; |
| |
| struct spi_transfer xfer = { |
| .tx_buf = NULL, |
| .rx_buf = NULL, |
| .len = ioc->len + 1, |
| }; |
| |
| if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) { |
| if ((xfer.len) % DIVISION_OF_IMAGE != 0) |
| xfer.len = xfer.len + (DIVISION_OF_IMAGE - |
| (xfer.len % DIVISION_OF_IMAGE)); |
| } |
| |
| buf = kzalloc(xfer.len, GFP_KERNEL | GFP_DMA); |
| |
| if (buf == NULL) |
| return -ENOMEM; |
| |
| xfer.tx_buf = xfer.rx_buf = buf; |
| buf[0] = OP_VDM_R; |
| |
| pr_debug("%s len = %d, xfer.len = %d, buf = %p, rx_buf = %p\n", |
| __func__, ioc->len, xfer.len, buf, ioc->rx_buf); |
| |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| if (status < 0) { |
| pr_err("%s read data error status = %d\n", __func__, status); |
| goto end; |
| } |
| |
| if (copy_to_user((u8 __user *) (uintptr_t) ioc->rx_buf, buf + 1, |
| ioc->len)) { |
| pr_err("%s buffer copy_to_user fail status\n", __func__); |
| status = -EFAULT; |
| } |
| end: |
| kfree(buf); |
| return status; |
| #endif |
| } |
| |
| int etspi_io_vdm_write(struct etspi_data *etspi, struct egis_ioc_transfer *ioc) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status; |
| struct spi_message m; |
| u8 *buf = NULL; |
| |
| struct spi_transfer xfer = { |
| .tx_buf = NULL, |
| .rx_buf = NULL, |
| .len = ioc->len + 1, |
| }; |
| |
| if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) { |
| if ((xfer.len) % DIVISION_OF_IMAGE != 0) |
| xfer.len = xfer.len + (DIVISION_OF_IMAGE - |
| (xfer.len % DIVISION_OF_IMAGE)); |
| } |
| |
| buf = kzalloc(xfer.len, GFP_KERNEL | GFP_DMA); |
| if (buf == NULL) |
| return -ENOMEM; |
| |
| if (copy_from_user((u8 __user *) (uintptr_t) buf + 1, ioc->tx_buf, |
| ioc->len)) { |
| pr_err("buffer copy_from_user fail status\n"); |
| status = -EFAULT; |
| goto end; |
| } |
| |
| xfer.tx_buf = xfer.rx_buf = buf; |
| buf[0] = OP_VDM_W; |
| |
| pr_debug("%s len = %d, xfer.len = %d, buf = %p, tx_buf = %p\n", |
| __func__, ioc->len, xfer.len, buf, ioc->tx_buf); |
| |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| |
| if (status < 0) |
| pr_err("%s read data error status = %d\n", __func__, status); |
| end: |
| kfree(buf); |
| return status; |
| #endif |
| } |
| |
| int etspi_io_get_frame(struct etspi_data *etspi, u8 *fr, u32 size) |
| { |
| #ifdef ENABLE_SENSORS_FPRINT_SECURE |
| return 0; |
| #else |
| int status; |
| struct spi_message m; |
| u8 *buf = NULL; |
| |
| struct spi_transfer xfer = { |
| .tx_buf = NULL, |
| .rx_buf = NULL, |
| .len = size + 1, |
| }; |
| |
| if (xfer.len >= LARGE_SPI_TRANSFER_BUFFER) { |
| if ((xfer.len) % DIVISION_OF_IMAGE != 0) |
| xfer.len = xfer.len + (DIVISION_OF_IMAGE - |
| (xfer.len % DIVISION_OF_IMAGE)); |
| } |
| |
| buf = kzalloc(xfer.len, GFP_KERNEL | GFP_DMA); |
| |
| if (buf == NULL) |
| return -ENOMEM; |
| |
| xfer.tx_buf = xfer.rx_buf = buf; |
| buf[0] = OP_IMG_R; |
| |
| pr_debug("%s size = %d, xfer.len = %d, buf = %p, fr = %p\n", __func__, |
| size, xfer.len, buf, fr); |
| |
| spi_message_init(&m); |
| spi_message_add_tail(&xfer, &m); |
| status = spi_sync(etspi->spi, &m); |
| if (status < 0) { |
| pr_err("%s read data error status = %d\n", __func__, status); |
| goto end; |
| } |
| |
| if (copy_to_user((u8 __user *) (uintptr_t) fr, buf + 1, size)) { |
| pr_err("%s buffer copy_to_user fail status\n", __func__); |
| status = -EFAULT; |
| } |
| end: |
| kfree(buf); |
| return status; |
| #endif |
| } |