blob: 8fc918c9426b1d7cf2c376bcaaec271e64395694 [file] [log] [blame]
/*
* sec_cisd.c
* Samsung Mobile Battery Driver
*
* Copyright (C) 2012 Samsung Electronics
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "include/sec_battery.h"
#include "include/sec_cisd.h"
#if defined(CONFIG_SEC_ABC)
#include <linux/sti/abc_common.h>
#endif
const char *cisd_data_str[] = {
"RESET_ALG", "ALG_INDEX", "FULL_CNT", "CAP_MAX", "CAP_MIN", "RECHARGING_CNT", "VALERT_CNT",
"BATT_CYCLE", "WIRE_CNT", "WIRELESS_CNT", "HIGH_SWELLING_CNT", "LOW_SWELLING_CNT",
"WC_HIGH_SWELLING_CNT", "SWELLING_FULL_CNT", "SWELLING_RECOVERY_CNT", "AICL_CNT", "BATT_THM_MAX",
"BATT_THM_MIN", "CHG_THM_MAX", "CHG_THM_MIN", "WPC_THM_MAX", "WPC_THM_MIN", "USB_THM_MAX", "USB_THM_MIN",
"CHG_BATT_THM_MAX", "CHG_BATT_THM_MIN", "CHG_CHG_THM_MAX", "CHG_CHG_THM_MIN", "CHG_WPC_THM_MAX",
"CHG_WPC_THM_MIN", "CHG_USB_THM_MAX", "CHG_USB_THM_MIN", "USB_OVERHEAT_CHARGING", "UNSAFETY_VOLT",
"UNSAFETY_TEMP", "SAFETY_TIMER", "VSYS_OVP", "VBAT_OVP", "USB_OVERHEAT_RAPID_CHANGE", "ASOC",
"USB_OVERHEAT_ALONE", "CAP_NOM"
};
const char *cisd_data_str_d[] = {
"FULL_CNT_D", "CAP_MAX_D", "CAP_MIN_D", "RECHARGING_CNT_D", "VALERT_CNT_D", "WIRE_CNT_D", "WIRELESS_CNT_D",
"HIGH_SWELLING_CNT_D", "LOW_SWELLING_CNT_D", "WC_HIGH_SWELLING_CNT_D", "SWELLING_FULL_CNT_D",
"SWELLING_RECOVERY_CNT_D", "AICL_CNT_D", "BATT_THM_MAX_D", "BATT_THM_MIN_D", "CHG_THM_MAX_D",
"CHG_THM_MIN_D", "WPC_THM_MAX_D", "WPC_THM_MIN_D", "USB_THM_MAX_D", "USB_THM_MIN_D",
"CHG_BATT_THM_MAX_D", "CHG_BATT_THM_MIN_D", "CHG_CHG_THM_MAX_D", "CHG_CHG_THM_MIN_D",
"CHG_WPC_THM_MAX_D", "CHG_WPC_THM_MIN_D", "CHG_USB_THM_MAX_D", "CHG_USB_THM_MIN_D",
"USB_OVERHEAT_CHARGING_D", "UNSAFETY_VOLT_D", "UNSAFETY_TEMP_D", "SAFETY_TIMER_D", "VSYS_OVP_D",
"VBAT_OVP_D", "USB_OVERHEAT_RAPID_CHANGE_D", "BUCK_OFF_D", "USB_OVERHEAT_ALONE_D", "DROP_SENSOR_D"
};
const char *cisd_cable_data_str[] = {"TA", "AFC", "AFC_FAIL", "QC", "QC_FAIL", "PD", "PD_HIGH", "HV_WC_20"};
const char *cisd_tx_data_str[] = {"ON", "OTHER", "GEAR", "PHONE", "BUDS"};
const char *cisd_event_data_str[] = {"DC_ERR", "TA_OCP_DET", "TA_OCP_ON"};
bool sec_bat_cisd_check(struct sec_battery_info *battery)
{
union power_supply_propval capcurr_val = {0, };
union power_supply_propval vbat_val = {0, };
struct cisd *pcisd = &battery->cisd;
bool ret = false;
if (battery->factory_mode || battery->is_jig_on || battery->skip_cisd) {
dev_info(battery->dev, "%s: No need to check in factory mode\n",
__func__);
return ret;
}
if ((battery->status == POWER_SUPPLY_STATUS_CHARGING) ||
(battery->status == POWER_SUPPLY_STATUS_FULL)) {
/* check abnormal vbat */
pcisd->ab_vbat_check_count = battery->voltage_now > pcisd->max_voltage_thr ?
pcisd->ab_vbat_check_count + 1 : 0;
if ((pcisd->ab_vbat_check_count >= pcisd->ab_vbat_max_count) &&
!(pcisd->state & CISD_STATE_OVER_VOLTAGE)) {
dev_info(battery->dev, "%s : [CISD] Battery Over Voltage Protction !! vbat(%d)mV\n",
__func__, battery->voltage_now);
vbat_val.intval = true;
psy_do_property("battery", set, POWER_SUPPLY_EXT_PROP_VBAT_OVP,
vbat_val);
pcisd->data[CISD_DATA_VBAT_OVP]++;
pcisd->data[CISD_DATA_VBAT_OVP_PER_DAY]++;
pcisd->state |= CISD_STATE_OVER_VOLTAGE;
#if defined(CONFIG_SEC_ABC)
sec_abc_send_event("MODULE=battery@ERROR=over_voltage");
#endif
}
if (battery->temperature > pcisd->data[CISD_DATA_CHG_BATT_TEMP_MAX])
pcisd->data[CISD_DATA_CHG_BATT_TEMP_MAX] = battery->temperature;
if (battery->temperature < pcisd->data[CISD_DATA_CHG_BATT_TEMP_MIN])
pcisd->data[CISD_DATA_CHG_BATT_TEMP_MIN] = battery->temperature;
if (battery->chg_temp > pcisd->data[CISD_DATA_CHG_CHG_TEMP_MAX])
pcisd->data[CISD_DATA_CHG_CHG_TEMP_MAX] = battery->chg_temp;
if (battery->chg_temp < pcisd->data[CISD_DATA_CHG_CHG_TEMP_MIN])
pcisd->data[CISD_DATA_CHG_CHG_TEMP_MIN] = battery->chg_temp;
if (battery->wpc_temp > pcisd->data[CISD_DATA_CHG_WPC_TEMP_MAX])
pcisd->data[CISD_DATA_CHG_WPC_TEMP_MAX] = battery->wpc_temp;
if (battery->wpc_temp < pcisd->data[CISD_DATA_CHG_WPC_TEMP_MIN])
pcisd->data[CISD_DATA_CHG_WPC_TEMP_MIN] = battery->wpc_temp;
if (battery->usb_temp > pcisd->data[CISD_DATA_CHG_USB_TEMP_MAX])
pcisd->data[CISD_DATA_CHG_USB_TEMP_MAX] = battery->usb_temp;
if (battery->usb_temp < pcisd->data[CISD_DATA_CHG_USB_TEMP_MIN])
pcisd->data[CISD_DATA_CHG_USB_TEMP_MIN] = battery->usb_temp;
if (battery->temperature > pcisd->data[CISD_DATA_CHG_BATT_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_CHG_BATT_TEMP_MAX_PER_DAY] = battery->temperature;
if (battery->temperature < pcisd->data[CISD_DATA_CHG_BATT_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_CHG_BATT_TEMP_MIN_PER_DAY] = battery->temperature;
if (battery->chg_temp > pcisd->data[CISD_DATA_CHG_CHG_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_CHG_CHG_TEMP_MAX_PER_DAY] = battery->chg_temp;
if (battery->chg_temp < pcisd->data[CISD_DATA_CHG_CHG_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_CHG_CHG_TEMP_MIN_PER_DAY] = battery->chg_temp;
if (battery->wpc_temp > pcisd->data[CISD_DATA_CHG_WPC_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_CHG_WPC_TEMP_MAX_PER_DAY] = battery->wpc_temp;
if (battery->wpc_temp < pcisd->data[CISD_DATA_CHG_WPC_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_CHG_WPC_TEMP_MIN_PER_DAY] = battery->wpc_temp;
if (battery->usb_temp > pcisd->data[CISD_DATA_CHG_USB_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_CHG_USB_TEMP_MAX_PER_DAY] = battery->usb_temp;
if (battery->usb_temp < pcisd->data[CISD_DATA_CHG_USB_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_CHG_USB_TEMP_MIN_PER_DAY] = battery->usb_temp;
if (battery->usb_temp > 800 && !battery->usb_overheat_check) {
battery->cisd.data[CISD_DATA_USB_OVERHEAT_CHARGING]++;
battery->cisd.data[CISD_DATA_USB_OVERHEAT_CHARGING_PER_DAY]++;
battery->usb_overheat_check = true;
}
} else {
/* discharging */
if (battery->status == POWER_SUPPLY_STATUS_NOT_CHARGING) {
/* check abnormal vbat */
pcisd->ab_vbat_check_count = battery->voltage_now > pcisd->max_voltage_thr ?
pcisd->ab_vbat_check_count + 1 : 0;
if ((pcisd->ab_vbat_check_count >= pcisd->ab_vbat_max_count) &&
!(pcisd->state & CISD_STATE_OVER_VOLTAGE)) {
pcisd->data[CISD_DATA_VBAT_OVP]++;
pcisd->data[CISD_DATA_VBAT_OVP_PER_DAY]++;
pcisd->state |= CISD_STATE_OVER_VOLTAGE;
#if defined(CONFIG_SEC_ABC)
sec_abc_send_event("MODULE=battery@ERROR=over_voltage");
#endif
}
}
capcurr_val.intval = SEC_BATTERY_CAPACITY_FULL;
psy_do_property(battery->pdata->fuelgauge_name, get,
POWER_SUPPLY_PROP_ENERGY_NOW, capcurr_val);
if (capcurr_val.intval == -1) {
dev_info(battery->dev, "%s: [CISD] FG I2C fail. skip cisd check \n", __func__);
return ret;
}
if (capcurr_val.intval > pcisd->data[CISD_DATA_CAP_MAX])
pcisd->data[CISD_DATA_CAP_MAX] = capcurr_val.intval;
if (capcurr_val.intval < pcisd->data[CISD_DATA_CAP_MIN])
pcisd->data[CISD_DATA_CAP_MIN] = capcurr_val.intval;
if (capcurr_val.intval > pcisd->data[CISD_DATA_CAP_MAX_PER_DAY])
pcisd->data[CISD_DATA_CAP_MAX_PER_DAY] = capcurr_val.intval;
if (capcurr_val.intval < pcisd->data[CISD_DATA_CAP_MIN_PER_DAY])
pcisd->data[CISD_DATA_CAP_MIN_PER_DAY] = capcurr_val.intval;
capcurr_val.intval = SEC_BATTERY_CAPACITY_AGEDCELL;
psy_do_property(battery->pdata->fuelgauge_name, get,
POWER_SUPPLY_PROP_ENERGY_NOW, capcurr_val);
if (capcurr_val.intval == -1) {
dev_info(battery->dev, "%s: [CISD] FG I2C fail. skip cisd check \n", __func__);
return ret;
}
pcisd->data[CISD_DATA_CAP_NOM] = capcurr_val.intval;
dev_info(battery->dev, "%s: [CISD] CAP_NOM %dmAh\n", __func__, pcisd->data[CISD_DATA_CAP_NOM]);
}
if (battery->temperature > pcisd->data[CISD_DATA_BATT_TEMP_MAX])
pcisd->data[CISD_DATA_BATT_TEMP_MAX] = battery->temperature;
if (battery->temperature < battery->cisd.data[CISD_DATA_BATT_TEMP_MIN])
pcisd->data[CISD_DATA_BATT_TEMP_MIN] = battery->temperature;
if (battery->chg_temp > pcisd->data[CISD_DATA_CHG_TEMP_MAX])
pcisd->data[CISD_DATA_CHG_TEMP_MAX] = battery->chg_temp;
if (battery->chg_temp < pcisd->data[CISD_DATA_CHG_TEMP_MIN])
pcisd->data[CISD_DATA_CHG_TEMP_MIN] = battery->chg_temp;
if (battery->wpc_temp > pcisd->data[CISD_DATA_WPC_TEMP_MAX])
pcisd->data[CISD_DATA_WPC_TEMP_MAX] = battery->wpc_temp;
if (battery->wpc_temp < battery->cisd.data[CISD_DATA_WPC_TEMP_MIN])
pcisd->data[CISD_DATA_WPC_TEMP_MIN] = battery->wpc_temp;
if (battery->usb_temp > pcisd->data[CISD_DATA_USB_TEMP_MAX])
pcisd->data[CISD_DATA_USB_TEMP_MAX] = battery->usb_temp;
if (battery->usb_temp < pcisd->data[CISD_DATA_USB_TEMP_MIN])
pcisd->data[CISD_DATA_USB_TEMP_MIN] = battery->usb_temp;
if (battery->temperature > pcisd->data[CISD_DATA_BATT_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_BATT_TEMP_MAX_PER_DAY] = battery->temperature;
if (battery->temperature < pcisd->data[CISD_DATA_BATT_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_BATT_TEMP_MIN_PER_DAY] = battery->temperature;
if (battery->chg_temp > pcisd->data[CISD_DATA_CHG_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_CHG_TEMP_MAX_PER_DAY] = battery->chg_temp;
if (battery->chg_temp < pcisd->data[CISD_DATA_CHG_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_CHG_TEMP_MIN_PER_DAY] = battery->chg_temp;
if (battery->wpc_temp > pcisd->data[CISD_DATA_WPC_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_WPC_TEMP_MAX_PER_DAY] = battery->wpc_temp;
if (battery->wpc_temp < pcisd->data[CISD_DATA_WPC_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_WPC_TEMP_MIN_PER_DAY] = battery->wpc_temp;
if (battery->usb_temp > pcisd->data[CISD_DATA_USB_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_USB_TEMP_MAX_PER_DAY] = battery->usb_temp;
if (battery->usb_temp < pcisd->data[CISD_DATA_USB_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_USB_TEMP_MIN_PER_DAY] = battery->usb_temp;
return ret;
}
struct cisd *gcisd;
void sec_battery_cisd_init(struct sec_battery_info *battery)
{
battery->cisd.state = CISD_STATE_NONE;
battery->cisd.data[CISD_DATA_ALG_INDEX] = battery->pdata->cisd_alg_index;
battery->cisd.data[CISD_DATA_FULL_COUNT] = 1;
battery->cisd.data[CISD_DATA_BATT_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_CHG_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_WPC_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_USB_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_BATT_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_CHG_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_WPC_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_USB_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_CHG_BATT_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_CHG_CHG_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_CHG_WPC_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_CHG_USB_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_CHG_BATT_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_CHG_CHG_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_CHG_WPC_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_CHG_USB_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_CAP_MIN] = 0xFFFF;
battery->cisd.data[CISD_DATA_FULL_COUNT_PER_DAY] = 1;
battery->cisd.data[CISD_DATA_BATT_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_CHG_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_WPC_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_USB_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_BATT_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_CHG_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_WPC_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_USB_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_CHG_BATT_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_CHG_CHG_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_CHG_WPC_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_CHG_USB_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_CHG_BATT_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_CHG_CHG_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_CHG_WPC_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_CHG_USB_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.ab_vbat_max_count = 2; /* should be 2 */
battery->cisd.ab_vbat_check_count = 0;
battery->cisd.max_voltage_thr = battery->pdata->max_voltage_thr;
/* set cisd pointer */
gcisd = &battery->cisd;
/* initialize pad data */
mutex_init(&battery->cisd.padlock);
mutex_init(&battery->cisd.powerlock);
init_cisd_pad_data(&battery->cisd);
init_cisd_power_data(&battery->cisd);
}
static struct pad_data* create_pad_data(unsigned int pad_id, unsigned int pad_count)
{
struct pad_data* temp_data;
temp_data = kzalloc(sizeof(struct pad_data), GFP_KERNEL);
if (temp_data == NULL)
return NULL;
temp_data->id = pad_id;
temp_data->count = pad_count;
temp_data->prev = temp_data->next = NULL;
return temp_data;
}
static struct pad_data* find_pad_data_by_id(struct cisd* cisd, unsigned int pad_id)
{
struct pad_data* temp_data = cisd->pad_array->next;
if (cisd->pad_count <= 0 || temp_data == NULL)
return NULL;
while ((temp_data->id != pad_id) &&
((temp_data = temp_data->next) != NULL));
return temp_data;
}
static void add_pad_data(struct cisd* cisd, unsigned int pad_id, unsigned int pad_count)
{
struct pad_data* temp_data = cisd->pad_array->next;
struct pad_data* pad_data;
if (pad_id >= MAX_PAD_ID)
return;
pad_data = create_pad_data(pad_id, pad_count);
if (pad_data == NULL)
return;
pr_info("%s: id(0x%x), count(%d)\n", __func__, pad_id, pad_count);
while (temp_data) {
if (temp_data->id > pad_id) {
temp_data->prev->next = pad_data;
pad_data->prev = temp_data->prev;
pad_data->next = temp_data;
temp_data->prev = pad_data;
cisd->pad_count++;
return;
}
temp_data = temp_data->next;
}
pr_info("%s: failed to add pad_data(%d, %d)\n",
__func__, pad_id, pad_count);
kfree(pad_data);
}
void init_cisd_pad_data(struct cisd* cisd)
{
struct pad_data* temp_data = cisd->pad_array;
mutex_lock(&cisd->padlock);
while (temp_data) {
struct pad_data* next_data = temp_data->next;
kfree(temp_data);
temp_data = next_data;
}
/* create dummy data */
cisd->pad_array = create_pad_data(0, 0);
if (cisd->pad_array == NULL)
goto err_create_dummy_data;
temp_data = create_pad_data(MAX_PAD_ID, 0);
if (temp_data == NULL) {
kfree(cisd->pad_array);
cisd->pad_array = NULL;
goto err_create_dummy_data;
}
cisd->pad_count = 0;
cisd->pad_array->next = temp_data;
temp_data->prev = cisd->pad_array;
err_create_dummy_data:
mutex_unlock(&cisd->padlock);
}
void count_cisd_pad_data(struct cisd* cisd, unsigned int pad_id)
{
struct pad_data* pad_data;
if (cisd->pad_array == NULL) {
pr_info("%s: can't update the connected count of pad_id(0x%x) because of null\n",
__func__, pad_id);
return;
}
mutex_lock(&cisd->padlock);
if ((pad_data = find_pad_data_by_id(cisd, pad_id)) != NULL)
pad_data->count++;
else
add_pad_data(cisd, pad_id, 1);
mutex_unlock(&cisd->padlock);
}
static unsigned int convert_wc_index_to_pad_id(unsigned int wc_index)
{
switch (wc_index) {
case WC_UNKNOWN:
return WC_PAD_ID_UNKNOWN;
case WC_SNGL_NOBLE:
return WC_PAD_ID_SNGL_NOBLE;
case WC_SNGL_VEHICLE:
return WC_PAD_ID_SNGL_VEHICLE;
case WC_SNGL_MINI:
return WC_PAD_ID_SNGL_MINI;
case WC_SNGL_ZERO:
return WC_PAD_ID_SNGL_ZERO;
case WC_SNGL_DREAM:
return WC_PAD_ID_SNGL_DREAM;
case WC_STAND_HERO:
return WC_PAD_ID_STAND_HERO;
case WC_STAND_DREAM:
return WC_PAD_ID_STAND_DREAM;
case WC_EXT_PACK:
return WC_PAD_ID_EXT_BATT_PACK;
case WC_EXT_PACK_TA:
return WC_PAD_ID_EXT_BATT_PACK_TA;
default:
break;
}
return 0;
}
void set_cisd_pad_data(struct sec_battery_info *battery, const char* buf)
{
struct cisd* pcisd = &battery->cisd;
unsigned int pad_total_count, pad_id, pad_count;
struct pad_data* pad_data;
int i, x;
pr_info("%s: %s\n", __func__, buf);
if (pcisd->pad_count > 0)
init_cisd_pad_data(pcisd);
if (pcisd->pad_array == NULL) {
pr_info("%s: can't set the pad data because of null\n", __func__);
return;
}
if (sscanf(buf, "%10u %n", &pad_total_count, &x) <= 0) {
pr_info("%s: failed to read pad index\n", __func__);
return;
}
buf += (size_t)x;
pr_info("%s: stored pad_total_count(%d)\n", __func__, pad_total_count);
if (!pad_total_count) {
for (i = WC_DATA_INDEX + 1; i < WC_DATA_MAX; i++) {
if (sscanf(buf, "%10d %n", &pad_count, &x) <= 0)
break;
buf += (size_t)x;
if (pad_count > 0) {
pad_id = convert_wc_index_to_pad_id(i);
mutex_lock(&pcisd->padlock);
if ((pad_data = find_pad_data_by_id(pcisd, pad_id)) != NULL)
pad_data->count = pad_count;
else
add_pad_data(pcisd, pad_id, pad_count);
mutex_unlock(&pcisd->padlock);
}
}
} else {
if (pad_total_count >= MAX_PAD_ID)
return;
pr_info("%s: add pad data(count: %d)\n", __func__, pad_total_count);
for (i = 0; i < pad_total_count; i++) {
if (sscanf(buf, "0x%02x:%10d %n", &pad_id, &pad_count, &x) != 2) {
pr_info("%s: failed to read pad data(0x%x, %d, %d)!!!re-init pad data\n",
__func__, pad_id, pad_count, x);
init_cisd_pad_data(pcisd);
break;
}
buf += (size_t)x;
mutex_lock(&pcisd->padlock);
if ((pad_data = find_pad_data_by_id(pcisd, pad_id)) != NULL)
pad_data->count = pad_count;
else
add_pad_data(pcisd, pad_id, pad_count);
mutex_unlock(&pcisd->padlock);
}
}
}
static struct power_data* create_power_data(unsigned int power, unsigned int power_count)
{
struct power_data* temp_data;
temp_data = kzalloc(sizeof(struct power_data), GFP_KERNEL);
if (temp_data == NULL)
return NULL;
temp_data->power = power;
temp_data->count = power_count;
temp_data->prev = temp_data->next = NULL;
return temp_data;
}
static struct power_data* find_data_by_power(struct cisd* cisd, unsigned int power)
{
struct power_data* temp_data = cisd->power_array->next;
if (cisd->power_count <= 0 || temp_data == NULL)
return NULL;
while ((temp_data->power != power) &&
((temp_data = temp_data->next) != NULL));
return temp_data;
}
static void add_power_data(struct cisd* cisd, unsigned int power, unsigned int power_count)
{
struct power_data* temp_data = cisd->power_array->next;
struct power_data* power_data;
power_data = create_power_data(power, power_count);
if (power_data == NULL)
return;
pr_info("%s: power(%d), count(%d)\n", __func__, power, power_count);
while (temp_data) {
if (temp_data->power > power) {
temp_data->prev->next = power_data;
power_data->prev = temp_data->prev;
power_data->next = temp_data;
temp_data->prev = power_data;
cisd->power_count++;
return;
}
temp_data = temp_data->next;
}
pr_info("%s: failed to add pad_data(%d, %d)\n",
__func__, power, power_count);
kfree(power_data);
}
void init_cisd_power_data(struct cisd* cisd)
{
struct power_data* temp_data = cisd->power_array;
mutex_lock(&cisd->powerlock);
while (temp_data) {
struct power_data* next_data = temp_data->next;
kfree(temp_data);
temp_data = next_data;
}
/* create dummy data */
cisd->power_array = create_power_data(0, 0);
if (cisd->power_array == NULL)
goto err_create_dummy_data;
temp_data = create_power_data(MAX_CHARGER_POWER, 0);
if (temp_data == NULL) {
kfree(cisd->power_array);
cisd->power_array = NULL;
goto err_create_dummy_data;
}
cisd->power_count = 0;
cisd->power_array->next = temp_data;
temp_data->prev = cisd->power_array;
err_create_dummy_data:
mutex_unlock(&cisd->powerlock);
}
#define FIND_MAX_POWER 45000
#define FIND_POWER_STEP 10000
#define POWER_MARGIN 1000
void count_cisd_power_data(struct cisd* cisd, int power)
{
struct power_data* power_data;
int power_index = 0;
pr_info("%s: power value : %d\n", __func__, power);
if (cisd->power_array == NULL || power < 15000) {
pr_info("%s: can't update the connected count of power(%d) because of null\n",
__func__, power);
return;
}
power_index = FIND_MAX_POWER;
while (power_index >= 14000) {
if (power + POWER_MARGIN - power_index >= 0) {
power_index /= 1000;
break;
}
power_index -= FIND_POWER_STEP;
}
mutex_lock(&cisd->powerlock);
if ((power_data = find_data_by_power(cisd, power_index)) != NULL)
power_data->count++;
else
add_power_data(cisd, power_index, 1);
mutex_unlock(&cisd->powerlock);
}
void set_cisd_power_data(struct sec_battery_info *battery, const char* buf)
{
struct cisd* pcisd = &battery->cisd;
unsigned int power_total_count, power_id, power_count;
struct power_data* power_data;
int i, x;
pr_info("%s: %s\n", __func__, buf);
if (pcisd->power_count > 0)
init_cisd_power_data(pcisd);
if (pcisd->power_array == NULL) {
pr_info("%s: can't set the power data because of null\n", __func__);
return;
}
if (sscanf(buf, "%10d %n", &power_total_count, &x) <= 0)
return;
buf += (size_t)x;
pr_info("%s: add power data(count: %d)\n", __func__, power_total_count);
for (i = 0; i < power_total_count; i++) {
if (sscanf(buf, "%10d:%10d %n", &power_id, &power_count, &x) != 2) {
pr_info("%s: failed to read power data(%d, %d, %d)!!!re-init power data\n",
__func__, power_id, power_count, x);
init_cisd_power_data(pcisd);
break;
}
buf += (size_t)x;
mutex_lock(&pcisd->powerlock);
if ((power_data = find_data_by_power(pcisd, power_id)) != NULL)
power_data->count = power_count;
else
add_power_data(pcisd, power_id, power_count);
mutex_unlock(&pcisd->powerlock);
}
}