| /**************************************************************************** |
| * Driver for Solarflare Solarstorm network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2005-2011 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/delay.h> |
| #include <linux/notifier.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/in.h> |
| #include <linux/crc32.h> |
| #include <linux/ethtool.h> |
| #include <linux/topology.h> |
| #include <linux/gfp.h> |
| #include <linux/cpu_rmap.h> |
| #include "net_driver.h" |
| #include "efx.h" |
| #include "nic.h" |
| |
| #include "mcdi.h" |
| #include "workarounds.h" |
| |
| /************************************************************************** |
| * |
| * Type name strings |
| * |
| ************************************************************************** |
| */ |
| |
| /* Loopback mode names (see LOOPBACK_MODE()) */ |
| const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; |
| const char *efx_loopback_mode_names[] = { |
| [LOOPBACK_NONE] = "NONE", |
| [LOOPBACK_DATA] = "DATAPATH", |
| [LOOPBACK_GMAC] = "GMAC", |
| [LOOPBACK_XGMII] = "XGMII", |
| [LOOPBACK_XGXS] = "XGXS", |
| [LOOPBACK_XAUI] = "XAUI", |
| [LOOPBACK_GMII] = "GMII", |
| [LOOPBACK_SGMII] = "SGMII", |
| [LOOPBACK_XGBR] = "XGBR", |
| [LOOPBACK_XFI] = "XFI", |
| [LOOPBACK_XAUI_FAR] = "XAUI_FAR", |
| [LOOPBACK_GMII_FAR] = "GMII_FAR", |
| [LOOPBACK_SGMII_FAR] = "SGMII_FAR", |
| [LOOPBACK_XFI_FAR] = "XFI_FAR", |
| [LOOPBACK_GPHY] = "GPHY", |
| [LOOPBACK_PHYXS] = "PHYXS", |
| [LOOPBACK_PCS] = "PCS", |
| [LOOPBACK_PMAPMD] = "PMA/PMD", |
| [LOOPBACK_XPORT] = "XPORT", |
| [LOOPBACK_XGMII_WS] = "XGMII_WS", |
| [LOOPBACK_XAUI_WS] = "XAUI_WS", |
| [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", |
| [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", |
| [LOOPBACK_GMII_WS] = "GMII_WS", |
| [LOOPBACK_XFI_WS] = "XFI_WS", |
| [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", |
| [LOOPBACK_PHYXS_WS] = "PHYXS_WS", |
| }; |
| |
| const unsigned int efx_reset_type_max = RESET_TYPE_MAX; |
| const char *efx_reset_type_names[] = { |
| [RESET_TYPE_INVISIBLE] = "INVISIBLE", |
| [RESET_TYPE_ALL] = "ALL", |
| [RESET_TYPE_WORLD] = "WORLD", |
| [RESET_TYPE_DISABLE] = "DISABLE", |
| [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", |
| [RESET_TYPE_INT_ERROR] = "INT_ERROR", |
| [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", |
| [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH", |
| [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH", |
| [RESET_TYPE_TX_SKIP] = "TX_SKIP", |
| [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", |
| }; |
| |
| #define EFX_MAX_MTU (9 * 1024) |
| |
| /* Reset workqueue. If any NIC has a hardware failure then a reset will be |
| * queued onto this work queue. This is not a per-nic work queue, because |
| * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. |
| */ |
| static struct workqueue_struct *reset_workqueue; |
| |
| /************************************************************************** |
| * |
| * Configurable values |
| * |
| *************************************************************************/ |
| |
| /* |
| * Use separate channels for TX and RX events |
| * |
| * Set this to 1 to use separate channels for TX and RX. It allows us |
| * to control interrupt affinity separately for TX and RX. |
| * |
| * This is only used in MSI-X interrupt mode |
| */ |
| static unsigned int separate_tx_channels; |
| module_param(separate_tx_channels, uint, 0444); |
| MODULE_PARM_DESC(separate_tx_channels, |
| "Use separate channels for TX and RX"); |
| |
| /* This is the weight assigned to each of the (per-channel) virtual |
| * NAPI devices. |
| */ |
| static int napi_weight = 64; |
| |
| /* This is the time (in jiffies) between invocations of the hardware |
| * monitor. On Falcon-based NICs, this will: |
| * - Check the on-board hardware monitor; |
| * - Poll the link state and reconfigure the hardware as necessary. |
| */ |
| static unsigned int efx_monitor_interval = 1 * HZ; |
| |
| /* This controls whether or not the driver will initialise devices |
| * with invalid MAC addresses stored in the EEPROM or flash. If true, |
| * such devices will be initialised with a random locally-generated |
| * MAC address. This allows for loading the sfc_mtd driver to |
| * reprogram the flash, even if the flash contents (including the MAC |
| * address) have previously been erased. |
| */ |
| static unsigned int allow_bad_hwaddr; |
| |
| /* Initial interrupt moderation settings. They can be modified after |
| * module load with ethtool. |
| * |
| * The default for RX should strike a balance between increasing the |
| * round-trip latency and reducing overhead. |
| */ |
| static unsigned int rx_irq_mod_usec = 60; |
| |
| /* Initial interrupt moderation settings. They can be modified after |
| * module load with ethtool. |
| * |
| * This default is chosen to ensure that a 10G link does not go idle |
| * while a TX queue is stopped after it has become full. A queue is |
| * restarted when it drops below half full. The time this takes (assuming |
| * worst case 3 descriptors per packet and 1024 descriptors) is |
| * 512 / 3 * 1.2 = 205 usec. |
| */ |
| static unsigned int tx_irq_mod_usec = 150; |
| |
| /* This is the first interrupt mode to try out of: |
| * 0 => MSI-X |
| * 1 => MSI |
| * 2 => legacy |
| */ |
| static unsigned int interrupt_mode; |
| |
| /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), |
| * i.e. the number of CPUs among which we may distribute simultaneous |
| * interrupt handling. |
| * |
| * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. |
| * The default (0) means to assign an interrupt to each package (level II cache) |
| */ |
| static unsigned int rss_cpus; |
| module_param(rss_cpus, uint, 0444); |
| MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); |
| |
| static int phy_flash_cfg; |
| module_param(phy_flash_cfg, int, 0644); |
| MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); |
| |
| static unsigned irq_adapt_low_thresh = 10000; |
| module_param(irq_adapt_low_thresh, uint, 0644); |
| MODULE_PARM_DESC(irq_adapt_low_thresh, |
| "Threshold score for reducing IRQ moderation"); |
| |
| static unsigned irq_adapt_high_thresh = 20000; |
| module_param(irq_adapt_high_thresh, uint, 0644); |
| MODULE_PARM_DESC(irq_adapt_high_thresh, |
| "Threshold score for increasing IRQ moderation"); |
| |
| static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | |
| NETIF_MSG_LINK | NETIF_MSG_IFDOWN | |
| NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | |
| NETIF_MSG_TX_ERR | NETIF_MSG_HW); |
| module_param(debug, uint, 0); |
| MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); |
| |
| /************************************************************************** |
| * |
| * Utility functions and prototypes |
| * |
| *************************************************************************/ |
| |
| static void efx_remove_channels(struct efx_nic *efx); |
| static void efx_remove_port(struct efx_nic *efx); |
| static void efx_init_napi(struct efx_nic *efx); |
| static void efx_fini_napi(struct efx_nic *efx); |
| static void efx_fini_napi_channel(struct efx_channel *channel); |
| static void efx_fini_struct(struct efx_nic *efx); |
| static void efx_start_all(struct efx_nic *efx); |
| static void efx_stop_all(struct efx_nic *efx); |
| |
| #define EFX_ASSERT_RESET_SERIALISED(efx) \ |
| do { \ |
| if ((efx->state == STATE_RUNNING) || \ |
| (efx->state == STATE_DISABLED)) \ |
| ASSERT_RTNL(); \ |
| } while (0) |
| |
| /************************************************************************** |
| * |
| * Event queue processing |
| * |
| *************************************************************************/ |
| |
| /* Process channel's event queue |
| * |
| * This function is responsible for processing the event queue of a |
| * single channel. The caller must guarantee that this function will |
| * never be concurrently called more than once on the same channel, |
| * though different channels may be being processed concurrently. |
| */ |
| static int efx_process_channel(struct efx_channel *channel, int budget) |
| { |
| struct efx_nic *efx = channel->efx; |
| int spent; |
| |
| if (unlikely(efx->reset_pending || !channel->enabled)) |
| return 0; |
| |
| spent = efx_nic_process_eventq(channel, budget); |
| if (spent == 0) |
| return 0; |
| |
| /* Deliver last RX packet. */ |
| if (channel->rx_pkt) { |
| __efx_rx_packet(channel, channel->rx_pkt, |
| channel->rx_pkt_csummed); |
| channel->rx_pkt = NULL; |
| } |
| |
| efx_rx_strategy(channel); |
| |
| efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel)); |
| |
| return spent; |
| } |
| |
| /* Mark channel as finished processing |
| * |
| * Note that since we will not receive further interrupts for this |
| * channel before we finish processing and call the eventq_read_ack() |
| * method, there is no need to use the interrupt hold-off timers. |
| */ |
| static inline void efx_channel_processed(struct efx_channel *channel) |
| { |
| /* The interrupt handler for this channel may set work_pending |
| * as soon as we acknowledge the events we've seen. Make sure |
| * it's cleared before then. */ |
| channel->work_pending = false; |
| smp_wmb(); |
| |
| efx_nic_eventq_read_ack(channel); |
| } |
| |
| /* NAPI poll handler |
| * |
| * NAPI guarantees serialisation of polls of the same device, which |
| * provides the guarantee required by efx_process_channel(). |
| */ |
| static int efx_poll(struct napi_struct *napi, int budget) |
| { |
| struct efx_channel *channel = |
| container_of(napi, struct efx_channel, napi_str); |
| struct efx_nic *efx = channel->efx; |
| int spent; |
| |
| netif_vdbg(efx, intr, efx->net_dev, |
| "channel %d NAPI poll executing on CPU %d\n", |
| channel->channel, raw_smp_processor_id()); |
| |
| spent = efx_process_channel(channel, budget); |
| |
| if (spent < budget) { |
| if (channel->channel < efx->n_rx_channels && |
| efx->irq_rx_adaptive && |
| unlikely(++channel->irq_count == 1000)) { |
| if (unlikely(channel->irq_mod_score < |
| irq_adapt_low_thresh)) { |
| if (channel->irq_moderation > 1) { |
| channel->irq_moderation -= 1; |
| efx->type->push_irq_moderation(channel); |
| } |
| } else if (unlikely(channel->irq_mod_score > |
| irq_adapt_high_thresh)) { |
| if (channel->irq_moderation < |
| efx->irq_rx_moderation) { |
| channel->irq_moderation += 1; |
| efx->type->push_irq_moderation(channel); |
| } |
| } |
| channel->irq_count = 0; |
| channel->irq_mod_score = 0; |
| } |
| |
| efx_filter_rfs_expire(channel); |
| |
| /* There is no race here; although napi_disable() will |
| * only wait for napi_complete(), this isn't a problem |
| * since efx_channel_processed() will have no effect if |
| * interrupts have already been disabled. |
| */ |
| napi_complete(napi); |
| efx_channel_processed(channel); |
| } |
| |
| return spent; |
| } |
| |
| /* Process the eventq of the specified channel immediately on this CPU |
| * |
| * Disable hardware generated interrupts, wait for any existing |
| * processing to finish, then directly poll (and ack ) the eventq. |
| * Finally reenable NAPI and interrupts. |
| * |
| * This is for use only during a loopback self-test. It must not |
| * deliver any packets up the stack as this can result in deadlock. |
| */ |
| void efx_process_channel_now(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| |
| BUG_ON(channel->channel >= efx->n_channels); |
| BUG_ON(!channel->enabled); |
| BUG_ON(!efx->loopback_selftest); |
| |
| /* Disable interrupts and wait for ISRs to complete */ |
| efx_nic_disable_interrupts(efx); |
| if (efx->legacy_irq) { |
| synchronize_irq(efx->legacy_irq); |
| efx->legacy_irq_enabled = false; |
| } |
| if (channel->irq) |
| synchronize_irq(channel->irq); |
| |
| /* Wait for any NAPI processing to complete */ |
| napi_disable(&channel->napi_str); |
| |
| /* Poll the channel */ |
| efx_process_channel(channel, channel->eventq_mask + 1); |
| |
| /* Ack the eventq. This may cause an interrupt to be generated |
| * when they are reenabled */ |
| efx_channel_processed(channel); |
| |
| napi_enable(&channel->napi_str); |
| if (efx->legacy_irq) |
| efx->legacy_irq_enabled = true; |
| efx_nic_enable_interrupts(efx); |
| } |
| |
| /* Create event queue |
| * Event queue memory allocations are done only once. If the channel |
| * is reset, the memory buffer will be reused; this guards against |
| * errors during channel reset and also simplifies interrupt handling. |
| */ |
| static int efx_probe_eventq(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| unsigned long entries; |
| |
| netif_dbg(channel->efx, probe, channel->efx->net_dev, |
| "chan %d create event queue\n", channel->channel); |
| |
| /* Build an event queue with room for one event per tx and rx buffer, |
| * plus some extra for link state events and MCDI completions. */ |
| entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); |
| EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); |
| channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; |
| |
| return efx_nic_probe_eventq(channel); |
| } |
| |
| /* Prepare channel's event queue */ |
| static void efx_init_eventq(struct efx_channel *channel) |
| { |
| netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| "chan %d init event queue\n", channel->channel); |
| |
| channel->eventq_read_ptr = 0; |
| |
| efx_nic_init_eventq(channel); |
| } |
| |
| static void efx_fini_eventq(struct efx_channel *channel) |
| { |
| netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| "chan %d fini event queue\n", channel->channel); |
| |
| efx_nic_fini_eventq(channel); |
| } |
| |
| static void efx_remove_eventq(struct efx_channel *channel) |
| { |
| netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| "chan %d remove event queue\n", channel->channel); |
| |
| efx_nic_remove_eventq(channel); |
| } |
| |
| /************************************************************************** |
| * |
| * Channel handling |
| * |
| *************************************************************************/ |
| |
| /* Allocate and initialise a channel structure, optionally copying |
| * parameters (but not resources) from an old channel structure. */ |
| static struct efx_channel * |
| efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) |
| { |
| struct efx_channel *channel; |
| struct efx_rx_queue *rx_queue; |
| struct efx_tx_queue *tx_queue; |
| int j; |
| |
| if (old_channel) { |
| channel = kmalloc(sizeof(*channel), GFP_KERNEL); |
| if (!channel) |
| return NULL; |
| |
| *channel = *old_channel; |
| |
| channel->napi_dev = NULL; |
| memset(&channel->eventq, 0, sizeof(channel->eventq)); |
| |
| rx_queue = &channel->rx_queue; |
| rx_queue->buffer = NULL; |
| memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); |
| |
| for (j = 0; j < EFX_TXQ_TYPES; j++) { |
| tx_queue = &channel->tx_queue[j]; |
| if (tx_queue->channel) |
| tx_queue->channel = channel; |
| tx_queue->buffer = NULL; |
| memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); |
| } |
| } else { |
| channel = kzalloc(sizeof(*channel), GFP_KERNEL); |
| if (!channel) |
| return NULL; |
| |
| channel->efx = efx; |
| channel->channel = i; |
| |
| for (j = 0; j < EFX_TXQ_TYPES; j++) { |
| tx_queue = &channel->tx_queue[j]; |
| tx_queue->efx = efx; |
| tx_queue->queue = i * EFX_TXQ_TYPES + j; |
| tx_queue->channel = channel; |
| } |
| } |
| |
| rx_queue = &channel->rx_queue; |
| rx_queue->efx = efx; |
| setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, |
| (unsigned long)rx_queue); |
| |
| return channel; |
| } |
| |
| static int efx_probe_channel(struct efx_channel *channel) |
| { |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| int rc; |
| |
| netif_dbg(channel->efx, probe, channel->efx->net_dev, |
| "creating channel %d\n", channel->channel); |
| |
| rc = efx_probe_eventq(channel); |
| if (rc) |
| goto fail1; |
| |
| efx_for_each_channel_tx_queue(tx_queue, channel) { |
| rc = efx_probe_tx_queue(tx_queue); |
| if (rc) |
| goto fail2; |
| } |
| |
| efx_for_each_channel_rx_queue(rx_queue, channel) { |
| rc = efx_probe_rx_queue(rx_queue); |
| if (rc) |
| goto fail3; |
| } |
| |
| channel->n_rx_frm_trunc = 0; |
| |
| return 0; |
| |
| fail3: |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| efx_remove_rx_queue(rx_queue); |
| fail2: |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| efx_remove_tx_queue(tx_queue); |
| fail1: |
| return rc; |
| } |
| |
| |
| static void efx_set_channel_names(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| const char *type = ""; |
| int number; |
| |
| efx_for_each_channel(channel, efx) { |
| number = channel->channel; |
| if (efx->n_channels > efx->n_rx_channels) { |
| if (channel->channel < efx->n_rx_channels) { |
| type = "-rx"; |
| } else { |
| type = "-tx"; |
| number -= efx->n_rx_channels; |
| } |
| } |
| snprintf(efx->channel_name[channel->channel], |
| sizeof(efx->channel_name[0]), |
| "%s%s-%d", efx->name, type, number); |
| } |
| } |
| |
| static int efx_probe_channels(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| int rc; |
| |
| /* Restart special buffer allocation */ |
| efx->next_buffer_table = 0; |
| |
| efx_for_each_channel(channel, efx) { |
| rc = efx_probe_channel(channel); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "failed to create channel %d\n", |
| channel->channel); |
| goto fail; |
| } |
| } |
| efx_set_channel_names(efx); |
| |
| return 0; |
| |
| fail: |
| efx_remove_channels(efx); |
| return rc; |
| } |
| |
| /* Channels are shutdown and reinitialised whilst the NIC is running |
| * to propagate configuration changes (mtu, checksum offload), or |
| * to clear hardware error conditions |
| */ |
| static void efx_init_channels(struct efx_nic *efx) |
| { |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| struct efx_channel *channel; |
| |
| /* Calculate the rx buffer allocation parameters required to |
| * support the current MTU, including padding for header |
| * alignment and overruns. |
| */ |
| efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) + |
| EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + |
| efx->type->rx_buffer_hash_size + |
| efx->type->rx_buffer_padding); |
| efx->rx_buffer_order = get_order(efx->rx_buffer_len + |
| sizeof(struct efx_rx_page_state)); |
| |
| /* Initialise the channels */ |
| efx_for_each_channel(channel, efx) { |
| netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| "init chan %d\n", channel->channel); |
| |
| efx_init_eventq(channel); |
| |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| efx_init_tx_queue(tx_queue); |
| |
| /* The rx buffer allocation strategy is MTU dependent */ |
| efx_rx_strategy(channel); |
| |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| efx_init_rx_queue(rx_queue); |
| |
| WARN_ON(channel->rx_pkt != NULL); |
| efx_rx_strategy(channel); |
| } |
| } |
| |
| /* This enables event queue processing and packet transmission. |
| * |
| * Note that this function is not allowed to fail, since that would |
| * introduce too much complexity into the suspend/resume path. |
| */ |
| static void efx_start_channel(struct efx_channel *channel) |
| { |
| struct efx_rx_queue *rx_queue; |
| |
| netif_dbg(channel->efx, ifup, channel->efx->net_dev, |
| "starting chan %d\n", channel->channel); |
| |
| /* The interrupt handler for this channel may set work_pending |
| * as soon as we enable it. Make sure it's cleared before |
| * then. Similarly, make sure it sees the enabled flag set. */ |
| channel->work_pending = false; |
| channel->enabled = true; |
| smp_wmb(); |
| |
| /* Fill the queues before enabling NAPI */ |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| efx_fast_push_rx_descriptors(rx_queue); |
| |
| napi_enable(&channel->napi_str); |
| } |
| |
| /* This disables event queue processing and packet transmission. |
| * This function does not guarantee that all queue processing |
| * (e.g. RX refill) is complete. |
| */ |
| static void efx_stop_channel(struct efx_channel *channel) |
| { |
| if (!channel->enabled) |
| return; |
| |
| netif_dbg(channel->efx, ifdown, channel->efx->net_dev, |
| "stop chan %d\n", channel->channel); |
| |
| channel->enabled = false; |
| napi_disable(&channel->napi_str); |
| } |
| |
| static void efx_fini_channels(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| int rc; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| BUG_ON(efx->port_enabled); |
| |
| rc = efx_nic_flush_queues(efx); |
| if (rc && EFX_WORKAROUND_7803(efx)) { |
| /* Schedule a reset to recover from the flush failure. The |
| * descriptor caches reference memory we're about to free, |
| * but falcon_reconfigure_mac_wrapper() won't reconnect |
| * the MACs because of the pending reset. */ |
| netif_err(efx, drv, efx->net_dev, |
| "Resetting to recover from flush failure\n"); |
| efx_schedule_reset(efx, RESET_TYPE_ALL); |
| } else if (rc) { |
| netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); |
| } else { |
| netif_dbg(efx, drv, efx->net_dev, |
| "successfully flushed all queues\n"); |
| } |
| |
| efx_for_each_channel(channel, efx) { |
| netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| "shut down chan %d\n", channel->channel); |
| |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| efx_fini_rx_queue(rx_queue); |
| efx_for_each_possible_channel_tx_queue(tx_queue, channel) |
| efx_fini_tx_queue(tx_queue); |
| efx_fini_eventq(channel); |
| } |
| } |
| |
| static void efx_remove_channel(struct efx_channel *channel) |
| { |
| struct efx_tx_queue *tx_queue; |
| struct efx_rx_queue *rx_queue; |
| |
| netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| "destroy chan %d\n", channel->channel); |
| |
| efx_for_each_channel_rx_queue(rx_queue, channel) |
| efx_remove_rx_queue(rx_queue); |
| efx_for_each_possible_channel_tx_queue(tx_queue, channel) |
| efx_remove_tx_queue(tx_queue); |
| efx_remove_eventq(channel); |
| } |
| |
| static void efx_remove_channels(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) |
| efx_remove_channel(channel); |
| } |
| |
| int |
| efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) |
| { |
| struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; |
| u32 old_rxq_entries, old_txq_entries; |
| unsigned i; |
| int rc; |
| |
| efx_stop_all(efx); |
| efx_fini_channels(efx); |
| |
| /* Clone channels */ |
| memset(other_channel, 0, sizeof(other_channel)); |
| for (i = 0; i < efx->n_channels; i++) { |
| channel = efx_alloc_channel(efx, i, efx->channel[i]); |
| if (!channel) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| other_channel[i] = channel; |
| } |
| |
| /* Swap entry counts and channel pointers */ |
| old_rxq_entries = efx->rxq_entries; |
| old_txq_entries = efx->txq_entries; |
| efx->rxq_entries = rxq_entries; |
| efx->txq_entries = txq_entries; |
| for (i = 0; i < efx->n_channels; i++) { |
| channel = efx->channel[i]; |
| efx->channel[i] = other_channel[i]; |
| other_channel[i] = channel; |
| } |
| |
| rc = efx_probe_channels(efx); |
| if (rc) |
| goto rollback; |
| |
| efx_init_napi(efx); |
| |
| /* Destroy old channels */ |
| for (i = 0; i < efx->n_channels; i++) { |
| efx_fini_napi_channel(other_channel[i]); |
| efx_remove_channel(other_channel[i]); |
| } |
| out: |
| /* Free unused channel structures */ |
| for (i = 0; i < efx->n_channels; i++) |
| kfree(other_channel[i]); |
| |
| efx_init_channels(efx); |
| efx_start_all(efx); |
| return rc; |
| |
| rollback: |
| /* Swap back */ |
| efx->rxq_entries = old_rxq_entries; |
| efx->txq_entries = old_txq_entries; |
| for (i = 0; i < efx->n_channels; i++) { |
| channel = efx->channel[i]; |
| efx->channel[i] = other_channel[i]; |
| other_channel[i] = channel; |
| } |
| goto out; |
| } |
| |
| void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) |
| { |
| mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); |
| } |
| |
| /************************************************************************** |
| * |
| * Port handling |
| * |
| **************************************************************************/ |
| |
| /* This ensures that the kernel is kept informed (via |
| * netif_carrier_on/off) of the link status, and also maintains the |
| * link status's stop on the port's TX queue. |
| */ |
| void efx_link_status_changed(struct efx_nic *efx) |
| { |
| struct efx_link_state *link_state = &efx->link_state; |
| |
| /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure |
| * that no events are triggered between unregister_netdev() and the |
| * driver unloading. A more general condition is that NETDEV_CHANGE |
| * can only be generated between NETDEV_UP and NETDEV_DOWN */ |
| if (!netif_running(efx->net_dev)) |
| return; |
| |
| if (link_state->up != netif_carrier_ok(efx->net_dev)) { |
| efx->n_link_state_changes++; |
| |
| if (link_state->up) |
| netif_carrier_on(efx->net_dev); |
| else |
| netif_carrier_off(efx->net_dev); |
| } |
| |
| /* Status message for kernel log */ |
| if (link_state->up) { |
| netif_info(efx, link, efx->net_dev, |
| "link up at %uMbps %s-duplex (MTU %d)%s\n", |
| link_state->speed, link_state->fd ? "full" : "half", |
| efx->net_dev->mtu, |
| (efx->promiscuous ? " [PROMISC]" : "")); |
| } else { |
| netif_info(efx, link, efx->net_dev, "link down\n"); |
| } |
| |
| } |
| |
| void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) |
| { |
| efx->link_advertising = advertising; |
| if (advertising) { |
| if (advertising & ADVERTISED_Pause) |
| efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); |
| else |
| efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); |
| if (advertising & ADVERTISED_Asym_Pause) |
| efx->wanted_fc ^= EFX_FC_TX; |
| } |
| } |
| |
| void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) |
| { |
| efx->wanted_fc = wanted_fc; |
| if (efx->link_advertising) { |
| if (wanted_fc & EFX_FC_RX) |
| efx->link_advertising |= (ADVERTISED_Pause | |
| ADVERTISED_Asym_Pause); |
| else |
| efx->link_advertising &= ~(ADVERTISED_Pause | |
| ADVERTISED_Asym_Pause); |
| if (wanted_fc & EFX_FC_TX) |
| efx->link_advertising ^= ADVERTISED_Asym_Pause; |
| } |
| } |
| |
| static void efx_fini_port(struct efx_nic *efx); |
| |
| /* Push loopback/power/transmit disable settings to the PHY, and reconfigure |
| * the MAC appropriately. All other PHY configuration changes are pushed |
| * through phy_op->set_settings(), and pushed asynchronously to the MAC |
| * through efx_monitor(). |
| * |
| * Callers must hold the mac_lock |
| */ |
| int __efx_reconfigure_port(struct efx_nic *efx) |
| { |
| enum efx_phy_mode phy_mode; |
| int rc; |
| |
| WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| |
| /* Serialise the promiscuous flag with efx_set_multicast_list. */ |
| if (efx_dev_registered(efx)) { |
| netif_addr_lock_bh(efx->net_dev); |
| netif_addr_unlock_bh(efx->net_dev); |
| } |
| |
| /* Disable PHY transmit in mac level loopbacks */ |
| phy_mode = efx->phy_mode; |
| if (LOOPBACK_INTERNAL(efx)) |
| efx->phy_mode |= PHY_MODE_TX_DISABLED; |
| else |
| efx->phy_mode &= ~PHY_MODE_TX_DISABLED; |
| |
| rc = efx->type->reconfigure_port(efx); |
| |
| if (rc) |
| efx->phy_mode = phy_mode; |
| |
| return rc; |
| } |
| |
| /* Reinitialise the MAC to pick up new PHY settings, even if the port is |
| * disabled. */ |
| int efx_reconfigure_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| mutex_lock(&efx->mac_lock); |
| rc = __efx_reconfigure_port(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| return rc; |
| } |
| |
| /* Asynchronous work item for changing MAC promiscuity and multicast |
| * hash. Avoid a drain/rx_ingress enable by reconfiguring the current |
| * MAC directly. */ |
| static void efx_mac_work(struct work_struct *data) |
| { |
| struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); |
| |
| mutex_lock(&efx->mac_lock); |
| if (efx->port_enabled) { |
| efx->type->push_multicast_hash(efx); |
| efx->mac_op->reconfigure(efx); |
| } |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| static int efx_probe_port(struct efx_nic *efx) |
| { |
| unsigned char *perm_addr; |
| int rc; |
| |
| netif_dbg(efx, probe, efx->net_dev, "create port\n"); |
| |
| if (phy_flash_cfg) |
| efx->phy_mode = PHY_MODE_SPECIAL; |
| |
| /* Connect up MAC/PHY operations table */ |
| rc = efx->type->probe_port(efx); |
| if (rc) |
| return rc; |
| |
| /* Sanity check MAC address */ |
| perm_addr = efx->net_dev->perm_addr; |
| if (is_valid_ether_addr(perm_addr)) { |
| memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN); |
| } else { |
| netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n", |
| perm_addr); |
| if (!allow_bad_hwaddr) { |
| rc = -EINVAL; |
| goto err; |
| } |
| random_ether_addr(efx->net_dev->dev_addr); |
| netif_info(efx, probe, efx->net_dev, |
| "using locally-generated MAC %pM\n", |
| efx->net_dev->dev_addr); |
| } |
| |
| return 0; |
| |
| err: |
| efx->type->remove_port(efx); |
| return rc; |
| } |
| |
| static int efx_init_port(struct efx_nic *efx) |
| { |
| int rc; |
| |
| netif_dbg(efx, drv, efx->net_dev, "init port\n"); |
| |
| mutex_lock(&efx->mac_lock); |
| |
| rc = efx->phy_op->init(efx); |
| if (rc) |
| goto fail1; |
| |
| efx->port_initialized = true; |
| |
| /* Reconfigure the MAC before creating dma queues (required for |
| * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ |
| efx->mac_op->reconfigure(efx); |
| |
| /* Ensure the PHY advertises the correct flow control settings */ |
| rc = efx->phy_op->reconfigure(efx); |
| if (rc) |
| goto fail2; |
| |
| mutex_unlock(&efx->mac_lock); |
| return 0; |
| |
| fail2: |
| efx->phy_op->fini(efx); |
| fail1: |
| mutex_unlock(&efx->mac_lock); |
| return rc; |
| } |
| |
| static void efx_start_port(struct efx_nic *efx) |
| { |
| netif_dbg(efx, ifup, efx->net_dev, "start port\n"); |
| BUG_ON(efx->port_enabled); |
| |
| mutex_lock(&efx->mac_lock); |
| efx->port_enabled = true; |
| |
| /* efx_mac_work() might have been scheduled after efx_stop_port(), |
| * and then cancelled by efx_flush_all() */ |
| efx->type->push_multicast_hash(efx); |
| efx->mac_op->reconfigure(efx); |
| |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| /* Prevent efx_mac_work() and efx_monitor() from working */ |
| static void efx_stop_port(struct efx_nic *efx) |
| { |
| netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); |
| |
| mutex_lock(&efx->mac_lock); |
| efx->port_enabled = false; |
| mutex_unlock(&efx->mac_lock); |
| |
| /* Serialise against efx_set_multicast_list() */ |
| if (efx_dev_registered(efx)) { |
| netif_addr_lock_bh(efx->net_dev); |
| netif_addr_unlock_bh(efx->net_dev); |
| } |
| } |
| |
| static void efx_fini_port(struct efx_nic *efx) |
| { |
| netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); |
| |
| if (!efx->port_initialized) |
| return; |
| |
| efx->phy_op->fini(efx); |
| efx->port_initialized = false; |
| |
| efx->link_state.up = false; |
| efx_link_status_changed(efx); |
| } |
| |
| static void efx_remove_port(struct efx_nic *efx) |
| { |
| netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); |
| |
| efx->type->remove_port(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * NIC handling |
| * |
| **************************************************************************/ |
| |
| /* This configures the PCI device to enable I/O and DMA. */ |
| static int efx_init_io(struct efx_nic *efx) |
| { |
| struct pci_dev *pci_dev = efx->pci_dev; |
| dma_addr_t dma_mask = efx->type->max_dma_mask; |
| int rc; |
| |
| netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); |
| |
| rc = pci_enable_device(pci_dev); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "failed to enable PCI device\n"); |
| goto fail1; |
| } |
| |
| pci_set_master(pci_dev); |
| |
| /* Set the PCI DMA mask. Try all possibilities from our |
| * genuine mask down to 32 bits, because some architectures |
| * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit |
| * masks event though they reject 46 bit masks. |
| */ |
| while (dma_mask > 0x7fffffffUL) { |
| if (pci_dma_supported(pci_dev, dma_mask) && |
| ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0)) |
| break; |
| dma_mask >>= 1; |
| } |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "could not find a suitable DMA mask\n"); |
| goto fail2; |
| } |
| netif_dbg(efx, probe, efx->net_dev, |
| "using DMA mask %llx\n", (unsigned long long) dma_mask); |
| rc = pci_set_consistent_dma_mask(pci_dev, dma_mask); |
| if (rc) { |
| /* pci_set_consistent_dma_mask() is not *allowed* to |
| * fail with a mask that pci_set_dma_mask() accepted, |
| * but just in case... |
| */ |
| netif_err(efx, probe, efx->net_dev, |
| "failed to set consistent DMA mask\n"); |
| goto fail2; |
| } |
| |
| efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); |
| rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "request for memory BAR failed\n"); |
| rc = -EIO; |
| goto fail3; |
| } |
| efx->membase = ioremap_nocache(efx->membase_phys, |
| efx->type->mem_map_size); |
| if (!efx->membase) { |
| netif_err(efx, probe, efx->net_dev, |
| "could not map memory BAR at %llx+%x\n", |
| (unsigned long long)efx->membase_phys, |
| efx->type->mem_map_size); |
| rc = -ENOMEM; |
| goto fail4; |
| } |
| netif_dbg(efx, probe, efx->net_dev, |
| "memory BAR at %llx+%x (virtual %p)\n", |
| (unsigned long long)efx->membase_phys, |
| efx->type->mem_map_size, efx->membase); |
| |
| return 0; |
| |
| fail4: |
| pci_release_region(efx->pci_dev, EFX_MEM_BAR); |
| fail3: |
| efx->membase_phys = 0; |
| fail2: |
| pci_disable_device(efx->pci_dev); |
| fail1: |
| return rc; |
| } |
| |
| static void efx_fini_io(struct efx_nic *efx) |
| { |
| netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); |
| |
| if (efx->membase) { |
| iounmap(efx->membase); |
| efx->membase = NULL; |
| } |
| |
| if (efx->membase_phys) { |
| pci_release_region(efx->pci_dev, EFX_MEM_BAR); |
| efx->membase_phys = 0; |
| } |
| |
| pci_disable_device(efx->pci_dev); |
| } |
| |
| /* Get number of channels wanted. Each channel will have its own IRQ, |
| * 1 RX queue and/or 2 TX queues. */ |
| static int efx_wanted_channels(void) |
| { |
| cpumask_var_t core_mask; |
| int count; |
| int cpu; |
| |
| if (rss_cpus) |
| return rss_cpus; |
| |
| if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) { |
| printk(KERN_WARNING |
| "sfc: RSS disabled due to allocation failure\n"); |
| return 1; |
| } |
| |
| count = 0; |
| for_each_online_cpu(cpu) { |
| if (!cpumask_test_cpu(cpu, core_mask)) { |
| ++count; |
| cpumask_or(core_mask, core_mask, |
| topology_core_cpumask(cpu)); |
| } |
| } |
| |
| free_cpumask_var(core_mask); |
| return count; |
| } |
| |
| static int |
| efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| int i, rc; |
| |
| efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels); |
| if (!efx->net_dev->rx_cpu_rmap) |
| return -ENOMEM; |
| for (i = 0; i < efx->n_rx_channels; i++) { |
| rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap, |
| xentries[i].vector); |
| if (rc) { |
| free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); |
| efx->net_dev->rx_cpu_rmap = NULL; |
| return rc; |
| } |
| } |
| #endif |
| return 0; |
| } |
| |
| /* Probe the number and type of interrupts we are able to obtain, and |
| * the resulting numbers of channels and RX queues. |
| */ |
| static int efx_probe_interrupts(struct efx_nic *efx) |
| { |
| int max_channels = |
| min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS); |
| int rc, i; |
| |
| if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { |
| struct msix_entry xentries[EFX_MAX_CHANNELS]; |
| int n_channels; |
| |
| n_channels = efx_wanted_channels(); |
| if (separate_tx_channels) |
| n_channels *= 2; |
| n_channels = min(n_channels, max_channels); |
| |
| for (i = 0; i < n_channels; i++) |
| xentries[i].entry = i; |
| rc = pci_enable_msix(efx->pci_dev, xentries, n_channels); |
| if (rc > 0) { |
| netif_err(efx, drv, efx->net_dev, |
| "WARNING: Insufficient MSI-X vectors" |
| " available (%d < %d).\n", rc, n_channels); |
| netif_err(efx, drv, efx->net_dev, |
| "WARNING: Performance may be reduced.\n"); |
| EFX_BUG_ON_PARANOID(rc >= n_channels); |
| n_channels = rc; |
| rc = pci_enable_msix(efx->pci_dev, xentries, |
| n_channels); |
| } |
| |
| if (rc == 0) { |
| efx->n_channels = n_channels; |
| if (separate_tx_channels) { |
| efx->n_tx_channels = |
| max(efx->n_channels / 2, 1U); |
| efx->n_rx_channels = |
| max(efx->n_channels - |
| efx->n_tx_channels, 1U); |
| } else { |
| efx->n_tx_channels = efx->n_channels; |
| efx->n_rx_channels = efx->n_channels; |
| } |
| rc = efx_init_rx_cpu_rmap(efx, xentries); |
| if (rc) { |
| pci_disable_msix(efx->pci_dev); |
| return rc; |
| } |
| for (i = 0; i < n_channels; i++) |
| efx_get_channel(efx, i)->irq = |
| xentries[i].vector; |
| } else { |
| /* Fall back to single channel MSI */ |
| efx->interrupt_mode = EFX_INT_MODE_MSI; |
| netif_err(efx, drv, efx->net_dev, |
| "could not enable MSI-X\n"); |
| } |
| } |
| |
| /* Try single interrupt MSI */ |
| if (efx->interrupt_mode == EFX_INT_MODE_MSI) { |
| efx->n_channels = 1; |
| efx->n_rx_channels = 1; |
| efx->n_tx_channels = 1; |
| rc = pci_enable_msi(efx->pci_dev); |
| if (rc == 0) { |
| efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; |
| } else { |
| netif_err(efx, drv, efx->net_dev, |
| "could not enable MSI\n"); |
| efx->interrupt_mode = EFX_INT_MODE_LEGACY; |
| } |
| } |
| |
| /* Assume legacy interrupts */ |
| if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { |
| efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); |
| efx->n_rx_channels = 1; |
| efx->n_tx_channels = 1; |
| efx->legacy_irq = efx->pci_dev->irq; |
| } |
| |
| return 0; |
| } |
| |
| static void efx_remove_interrupts(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| /* Remove MSI/MSI-X interrupts */ |
| efx_for_each_channel(channel, efx) |
| channel->irq = 0; |
| pci_disable_msi(efx->pci_dev); |
| pci_disable_msix(efx->pci_dev); |
| |
| /* Remove legacy interrupt */ |
| efx->legacy_irq = 0; |
| } |
| |
| static void efx_set_channels(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| |
| efx->tx_channel_offset = |
| separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; |
| |
| /* We need to adjust the TX queue numbers if we have separate |
| * RX-only and TX-only channels. |
| */ |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| tx_queue->queue -= (efx->tx_channel_offset * |
| EFX_TXQ_TYPES); |
| } |
| } |
| |
| static int efx_probe_nic(struct efx_nic *efx) |
| { |
| size_t i; |
| int rc; |
| |
| netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); |
| |
| /* Carry out hardware-type specific initialisation */ |
| rc = efx->type->probe(efx); |
| if (rc) |
| return rc; |
| |
| /* Determine the number of channels and queues by trying to hook |
| * in MSI-X interrupts. */ |
| rc = efx_probe_interrupts(efx); |
| if (rc) |
| goto fail; |
| |
| if (efx->n_channels > 1) |
| get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); |
| for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) |
| efx->rx_indir_table[i] = i % efx->n_rx_channels; |
| |
| efx_set_channels(efx); |
| netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); |
| netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); |
| |
| /* Initialise the interrupt moderation settings */ |
| efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true); |
| |
| return 0; |
| |
| fail: |
| efx->type->remove(efx); |
| return rc; |
| } |
| |
| static void efx_remove_nic(struct efx_nic *efx) |
| { |
| netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); |
| |
| efx_remove_interrupts(efx); |
| efx->type->remove(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * NIC startup/shutdown |
| * |
| *************************************************************************/ |
| |
| static int efx_probe_all(struct efx_nic *efx) |
| { |
| int rc; |
| |
| rc = efx_probe_nic(efx); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); |
| goto fail1; |
| } |
| |
| rc = efx_probe_port(efx); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, "failed to create port\n"); |
| goto fail2; |
| } |
| |
| efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; |
| rc = efx_probe_channels(efx); |
| if (rc) |
| goto fail3; |
| |
| rc = efx_probe_filters(efx); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "failed to create filter tables\n"); |
| goto fail4; |
| } |
| |
| return 0; |
| |
| fail4: |
| efx_remove_channels(efx); |
| fail3: |
| efx_remove_port(efx); |
| fail2: |
| efx_remove_nic(efx); |
| fail1: |
| return rc; |
| } |
| |
| /* Called after previous invocation(s) of efx_stop_all, restarts the |
| * port, kernel transmit queue, NAPI processing and hardware interrupts, |
| * and ensures that the port is scheduled to be reconfigured. |
| * This function is safe to call multiple times when the NIC is in any |
| * state. */ |
| static void efx_start_all(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| /* Check that it is appropriate to restart the interface. All |
| * of these flags are safe to read under just the rtnl lock */ |
| if (efx->port_enabled) |
| return; |
| if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT)) |
| return; |
| if (efx_dev_registered(efx) && !netif_running(efx->net_dev)) |
| return; |
| |
| /* Mark the port as enabled so port reconfigurations can start, then |
| * restart the transmit interface early so the watchdog timer stops */ |
| efx_start_port(efx); |
| |
| if (efx_dev_registered(efx) && netif_device_present(efx->net_dev)) |
| netif_tx_wake_all_queues(efx->net_dev); |
| |
| efx_for_each_channel(channel, efx) |
| efx_start_channel(channel); |
| |
| if (efx->legacy_irq) |
| efx->legacy_irq_enabled = true; |
| efx_nic_enable_interrupts(efx); |
| |
| /* Switch to event based MCDI completions after enabling interrupts. |
| * If a reset has been scheduled, then we need to stay in polled mode. |
| * Rather than serialising efx_mcdi_mode_event() [which sleeps] and |
| * reset_pending [modified from an atomic context], we instead guarantee |
| * that efx_mcdi_mode_poll() isn't reverted erroneously */ |
| efx_mcdi_mode_event(efx); |
| if (efx->reset_pending) |
| efx_mcdi_mode_poll(efx); |
| |
| /* Start the hardware monitor if there is one. Otherwise (we're link |
| * event driven), we have to poll the PHY because after an event queue |
| * flush, we could have a missed a link state change */ |
| if (efx->type->monitor != NULL) { |
| queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| efx_monitor_interval); |
| } else { |
| mutex_lock(&efx->mac_lock); |
| if (efx->phy_op->poll(efx)) |
| efx_link_status_changed(efx); |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| efx->type->start_stats(efx); |
| } |
| |
| /* Flush all delayed work. Should only be called when no more delayed work |
| * will be scheduled. This doesn't flush pending online resets (efx_reset), |
| * since we're holding the rtnl_lock at this point. */ |
| static void efx_flush_all(struct efx_nic *efx) |
| { |
| /* Make sure the hardware monitor is stopped */ |
| cancel_delayed_work_sync(&efx->monitor_work); |
| /* Stop scheduled port reconfigurations */ |
| cancel_work_sync(&efx->mac_work); |
| } |
| |
| /* Quiesce hardware and software without bringing the link down. |
| * Safe to call multiple times, when the nic and interface is in any |
| * state. The caller is guaranteed to subsequently be in a position |
| * to modify any hardware and software state they see fit without |
| * taking locks. */ |
| static void efx_stop_all(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| /* port_enabled can be read safely under the rtnl lock */ |
| if (!efx->port_enabled) |
| return; |
| |
| efx->type->stop_stats(efx); |
| |
| /* Switch to MCDI polling on Siena before disabling interrupts */ |
| efx_mcdi_mode_poll(efx); |
| |
| /* Disable interrupts and wait for ISR to complete */ |
| efx_nic_disable_interrupts(efx); |
| if (efx->legacy_irq) { |
| synchronize_irq(efx->legacy_irq); |
| efx->legacy_irq_enabled = false; |
| } |
| efx_for_each_channel(channel, efx) { |
| if (channel->irq) |
| synchronize_irq(channel->irq); |
| } |
| |
| /* Stop all NAPI processing and synchronous rx refills */ |
| efx_for_each_channel(channel, efx) |
| efx_stop_channel(channel); |
| |
| /* Stop all asynchronous port reconfigurations. Since all |
| * event processing has already been stopped, there is no |
| * window to loose phy events */ |
| efx_stop_port(efx); |
| |
| /* Flush efx_mac_work(), refill_workqueue, monitor_work */ |
| efx_flush_all(efx); |
| |
| /* Stop the kernel transmit interface late, so the watchdog |
| * timer isn't ticking over the flush */ |
| if (efx_dev_registered(efx)) { |
| netif_tx_stop_all_queues(efx->net_dev); |
| netif_tx_lock_bh(efx->net_dev); |
| netif_tx_unlock_bh(efx->net_dev); |
| } |
| } |
| |
| static void efx_remove_all(struct efx_nic *efx) |
| { |
| efx_remove_filters(efx); |
| efx_remove_channels(efx); |
| efx_remove_port(efx); |
| efx_remove_nic(efx); |
| } |
| |
| /************************************************************************** |
| * |
| * Interrupt moderation |
| * |
| **************************************************************************/ |
| |
| static unsigned irq_mod_ticks(int usecs, int resolution) |
| { |
| if (usecs <= 0) |
| return 0; /* cannot receive interrupts ahead of time :-) */ |
| if (usecs < resolution) |
| return 1; /* never round down to 0 */ |
| return usecs / resolution; |
| } |
| |
| /* Set interrupt moderation parameters */ |
| void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs, |
| bool rx_adaptive) |
| { |
| struct efx_channel *channel; |
| unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION); |
| unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION); |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| efx->irq_rx_adaptive = rx_adaptive; |
| efx->irq_rx_moderation = rx_ticks; |
| efx_for_each_channel(channel, efx) { |
| if (efx_channel_has_rx_queue(channel)) |
| channel->irq_moderation = rx_ticks; |
| else if (efx_channel_has_tx_queues(channel)) |
| channel->irq_moderation = tx_ticks; |
| } |
| } |
| |
| /************************************************************************** |
| * |
| * Hardware monitor |
| * |
| **************************************************************************/ |
| |
| /* Run periodically off the general workqueue */ |
| static void efx_monitor(struct work_struct *data) |
| { |
| struct efx_nic *efx = container_of(data, struct efx_nic, |
| monitor_work.work); |
| |
| netif_vdbg(efx, timer, efx->net_dev, |
| "hardware monitor executing on CPU %d\n", |
| raw_smp_processor_id()); |
| BUG_ON(efx->type->monitor == NULL); |
| |
| /* If the mac_lock is already held then it is likely a port |
| * reconfiguration is already in place, which will likely do |
| * most of the work of monitor() anyway. */ |
| if (mutex_trylock(&efx->mac_lock)) { |
| if (efx->port_enabled) |
| efx->type->monitor(efx); |
| mutex_unlock(&efx->mac_lock); |
| } |
| |
| queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| efx_monitor_interval); |
| } |
| |
| /************************************************************************** |
| * |
| * ioctls |
| * |
| *************************************************************************/ |
| |
| /* Net device ioctl |
| * Context: process, rtnl_lock() held. |
| */ |
| static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct mii_ioctl_data *data = if_mii(ifr); |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| /* Convert phy_id from older PRTAD/DEVAD format */ |
| if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && |
| (data->phy_id & 0xfc00) == 0x0400) |
| data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; |
| |
| return mdio_mii_ioctl(&efx->mdio, data, cmd); |
| } |
| |
| /************************************************************************** |
| * |
| * NAPI interface |
| * |
| **************************************************************************/ |
| |
| static void efx_init_napi(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) { |
| channel->napi_dev = efx->net_dev; |
| netif_napi_add(channel->napi_dev, &channel->napi_str, |
| efx_poll, napi_weight); |
| } |
| } |
| |
| static void efx_fini_napi_channel(struct efx_channel *channel) |
| { |
| if (channel->napi_dev) |
| netif_napi_del(&channel->napi_str); |
| channel->napi_dev = NULL; |
| } |
| |
| static void efx_fini_napi(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) |
| efx_fini_napi_channel(channel); |
| } |
| |
| /************************************************************************** |
| * |
| * Kernel netpoll interface |
| * |
| *************************************************************************/ |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| |
| /* Although in the common case interrupts will be disabled, this is not |
| * guaranteed. However, all our work happens inside the NAPI callback, |
| * so no locking is required. |
| */ |
| static void efx_netpoll(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_channel *channel; |
| |
| efx_for_each_channel(channel, efx) |
| efx_schedule_channel(channel); |
| } |
| |
| #endif |
| |
| /************************************************************************** |
| * |
| * Kernel net device interface |
| * |
| *************************************************************************/ |
| |
| /* Context: process, rtnl_lock() held. */ |
| static int efx_net_open(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", |
| raw_smp_processor_id()); |
| |
| if (efx->state == STATE_DISABLED) |
| return -EIO; |
| if (efx->phy_mode & PHY_MODE_SPECIAL) |
| return -EBUSY; |
| if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) |
| return -EIO; |
| |
| /* Notify the kernel of the link state polled during driver load, |
| * before the monitor starts running */ |
| efx_link_status_changed(efx); |
| |
| efx_start_all(efx); |
| return 0; |
| } |
| |
| /* Context: process, rtnl_lock() held. |
| * Note that the kernel will ignore our return code; this method |
| * should really be a void. |
| */ |
| static int efx_net_stop(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| |
| netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", |
| raw_smp_processor_id()); |
| |
| if (efx->state != STATE_DISABLED) { |
| /* Stop the device and flush all the channels */ |
| efx_stop_all(efx); |
| efx_fini_channels(efx); |
| efx_init_channels(efx); |
| } |
| |
| return 0; |
| } |
| |
| /* Context: process, dev_base_lock or RTNL held, non-blocking. */ |
| static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_mac_stats *mac_stats = &efx->mac_stats; |
| |
| spin_lock_bh(&efx->stats_lock); |
| efx->type->update_stats(efx); |
| spin_unlock_bh(&efx->stats_lock); |
| |
| stats->rx_packets = mac_stats->rx_packets; |
| stats->tx_packets = mac_stats->tx_packets; |
| stats->rx_bytes = mac_stats->rx_bytes; |
| stats->tx_bytes = mac_stats->tx_bytes; |
| stats->rx_dropped = efx->n_rx_nodesc_drop_cnt; |
| stats->multicast = mac_stats->rx_multicast; |
| stats->collisions = mac_stats->tx_collision; |
| stats->rx_length_errors = (mac_stats->rx_gtjumbo + |
| mac_stats->rx_length_error); |
| stats->rx_crc_errors = mac_stats->rx_bad; |
| stats->rx_frame_errors = mac_stats->rx_align_error; |
| stats->rx_fifo_errors = mac_stats->rx_overflow; |
| stats->rx_missed_errors = mac_stats->rx_missed; |
| stats->tx_window_errors = mac_stats->tx_late_collision; |
| |
| stats->rx_errors = (stats->rx_length_errors + |
| stats->rx_crc_errors + |
| stats->rx_frame_errors + |
| mac_stats->rx_symbol_error); |
| stats->tx_errors = (stats->tx_window_errors + |
| mac_stats->tx_bad); |
| |
| return stats; |
| } |
| |
| /* Context: netif_tx_lock held, BHs disabled. */ |
| static void efx_watchdog(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| |
| netif_err(efx, tx_err, efx->net_dev, |
| "TX stuck with port_enabled=%d: resetting channels\n", |
| efx->port_enabled); |
| |
| efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); |
| } |
| |
| |
| /* Context: process, rtnl_lock() held. */ |
| static int efx_change_mtu(struct net_device *net_dev, int new_mtu) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| int rc = 0; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| if (new_mtu > EFX_MAX_MTU) |
| return -EINVAL; |
| |
| efx_stop_all(efx); |
| |
| netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); |
| |
| efx_fini_channels(efx); |
| |
| mutex_lock(&efx->mac_lock); |
| /* Reconfigure the MAC before enabling the dma queues so that |
| * the RX buffers don't overflow */ |
| net_dev->mtu = new_mtu; |
| efx->mac_op->reconfigure(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| efx_init_channels(efx); |
| |
| efx_start_all(efx); |
| return rc; |
| } |
| |
| static int efx_set_mac_address(struct net_device *net_dev, void *data) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct sockaddr *addr = data; |
| char *new_addr = addr->sa_data; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| if (!is_valid_ether_addr(new_addr)) { |
| netif_err(efx, drv, efx->net_dev, |
| "invalid ethernet MAC address requested: %pM\n", |
| new_addr); |
| return -EINVAL; |
| } |
| |
| memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len); |
| |
| /* Reconfigure the MAC */ |
| mutex_lock(&efx->mac_lock); |
| efx->mac_op->reconfigure(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| return 0; |
| } |
| |
| /* Context: netif_addr_lock held, BHs disabled. */ |
| static void efx_set_multicast_list(struct net_device *net_dev) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct netdev_hw_addr *ha; |
| union efx_multicast_hash *mc_hash = &efx->multicast_hash; |
| u32 crc; |
| int bit; |
| |
| efx->promiscuous = !!(net_dev->flags & IFF_PROMISC); |
| |
| /* Build multicast hash table */ |
| if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) { |
| memset(mc_hash, 0xff, sizeof(*mc_hash)); |
| } else { |
| memset(mc_hash, 0x00, sizeof(*mc_hash)); |
| netdev_for_each_mc_addr(ha, net_dev) { |
| crc = ether_crc_le(ETH_ALEN, ha->addr); |
| bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); |
| set_bit_le(bit, mc_hash->byte); |
| } |
| |
| /* Broadcast packets go through the multicast hash filter. |
| * ether_crc_le() of the broadcast address is 0xbe2612ff |
| * so we always add bit 0xff to the mask. |
| */ |
| set_bit_le(0xff, mc_hash->byte); |
| } |
| |
| if (efx->port_enabled) |
| queue_work(efx->workqueue, &efx->mac_work); |
| /* Otherwise efx_start_port() will do this */ |
| } |
| |
| static int efx_set_features(struct net_device *net_dev, u32 data) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| |
| /* If disabling RX n-tuple filtering, clear existing filters */ |
| if (net_dev->features & ~data & NETIF_F_NTUPLE) |
| efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); |
| |
| return 0; |
| } |
| |
| static const struct net_device_ops efx_netdev_ops = { |
| .ndo_open = efx_net_open, |
| .ndo_stop = efx_net_stop, |
| .ndo_get_stats64 = efx_net_stats, |
| .ndo_tx_timeout = efx_watchdog, |
| .ndo_start_xmit = efx_hard_start_xmit, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_do_ioctl = efx_ioctl, |
| .ndo_change_mtu = efx_change_mtu, |
| .ndo_set_mac_address = efx_set_mac_address, |
| .ndo_set_multicast_list = efx_set_multicast_list, |
| .ndo_set_features = efx_set_features, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = efx_netpoll, |
| #endif |
| .ndo_setup_tc = efx_setup_tc, |
| #ifdef CONFIG_RFS_ACCEL |
| .ndo_rx_flow_steer = efx_filter_rfs, |
| #endif |
| }; |
| |
| static void efx_update_name(struct efx_nic *efx) |
| { |
| strcpy(efx->name, efx->net_dev->name); |
| efx_mtd_rename(efx); |
| efx_set_channel_names(efx); |
| } |
| |
| static int efx_netdev_event(struct notifier_block *this, |
| unsigned long event, void *ptr) |
| { |
| struct net_device *net_dev = ptr; |
| |
| if (net_dev->netdev_ops == &efx_netdev_ops && |
| event == NETDEV_CHANGENAME) |
| efx_update_name(netdev_priv(net_dev)); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block efx_netdev_notifier = { |
| .notifier_call = efx_netdev_event, |
| }; |
| |
| static ssize_t |
| show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) |
| { |
| struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); |
| return sprintf(buf, "%d\n", efx->phy_type); |
| } |
| static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL); |
| |
| static int efx_register_netdev(struct efx_nic *efx) |
| { |
| struct net_device *net_dev = efx->net_dev; |
| struct efx_channel *channel; |
| int rc; |
| |
| net_dev->watchdog_timeo = 5 * HZ; |
| net_dev->irq = efx->pci_dev->irq; |
| net_dev->netdev_ops = &efx_netdev_ops; |
| SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); |
| |
| /* Clear MAC statistics */ |
| efx->mac_op->update_stats(efx); |
| memset(&efx->mac_stats, 0, sizeof(efx->mac_stats)); |
| |
| rtnl_lock(); |
| |
| rc = dev_alloc_name(net_dev, net_dev->name); |
| if (rc < 0) |
| goto fail_locked; |
| efx_update_name(efx); |
| |
| rc = register_netdevice(net_dev); |
| if (rc) |
| goto fail_locked; |
| |
| efx_for_each_channel(channel, efx) { |
| struct efx_tx_queue *tx_queue; |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| efx_init_tx_queue_core_txq(tx_queue); |
| } |
| |
| /* Always start with carrier off; PHY events will detect the link */ |
| netif_carrier_off(efx->net_dev); |
| |
| rtnl_unlock(); |
| |
| rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, |
| "failed to init net dev attributes\n"); |
| goto fail_registered; |
| } |
| |
| return 0; |
| |
| fail_locked: |
| rtnl_unlock(); |
| netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); |
| return rc; |
| |
| fail_registered: |
| unregister_netdev(net_dev); |
| return rc; |
| } |
| |
| static void efx_unregister_netdev(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| struct efx_tx_queue *tx_queue; |
| |
| if (!efx->net_dev) |
| return; |
| |
| BUG_ON(netdev_priv(efx->net_dev) != efx); |
| |
| /* Free up any skbs still remaining. This has to happen before |
| * we try to unregister the netdev as running their destructors |
| * may be needed to get the device ref. count to 0. */ |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_channel_tx_queue(tx_queue, channel) |
| efx_release_tx_buffers(tx_queue); |
| } |
| |
| if (efx_dev_registered(efx)) { |
| strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); |
| device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); |
| unregister_netdev(efx->net_dev); |
| } |
| } |
| |
| /************************************************************************** |
| * |
| * Device reset and suspend |
| * |
| **************************************************************************/ |
| |
| /* Tears down the entire software state and most of the hardware state |
| * before reset. */ |
| void efx_reset_down(struct efx_nic *efx, enum reset_type method) |
| { |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| efx_stop_all(efx); |
| mutex_lock(&efx->mac_lock); |
| |
| efx_fini_channels(efx); |
| if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) |
| efx->phy_op->fini(efx); |
| efx->type->fini(efx); |
| } |
| |
| /* This function will always ensure that the locks acquired in |
| * efx_reset_down() are released. A failure return code indicates |
| * that we were unable to reinitialise the hardware, and the |
| * driver should be disabled. If ok is false, then the rx and tx |
| * engines are not restarted, pending a RESET_DISABLE. */ |
| int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) |
| { |
| int rc; |
| |
| EFX_ASSERT_RESET_SERIALISED(efx); |
| |
| rc = efx->type->init(efx); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); |
| goto fail; |
| } |
| |
| if (!ok) |
| goto fail; |
| |
| if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { |
| rc = efx->phy_op->init(efx); |
| if (rc) |
| goto fail; |
| if (efx->phy_op->reconfigure(efx)) |
| netif_err(efx, drv, efx->net_dev, |
| "could not restore PHY settings\n"); |
| } |
| |
| efx->mac_op->reconfigure(efx); |
| |
| efx_init_channels(efx); |
| efx_restore_filters(efx); |
| |
| mutex_unlock(&efx->mac_lock); |
| |
| efx_start_all(efx); |
| |
| return 0; |
| |
| fail: |
| efx->port_initialized = false; |
| |
| mutex_unlock(&efx->mac_lock); |
| |
| return rc; |
| } |
| |
| /* Reset the NIC using the specified method. Note that the reset may |
| * fail, in which case the card will be left in an unusable state. |
| * |
| * Caller must hold the rtnl_lock. |
| */ |
| int efx_reset(struct efx_nic *efx, enum reset_type method) |
| { |
| int rc, rc2; |
| bool disabled; |
| |
| netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", |
| RESET_TYPE(method)); |
| |
| netif_device_detach(efx->net_dev); |
| efx_reset_down(efx, method); |
| |
| rc = efx->type->reset(efx, method); |
| if (rc) { |
| netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); |
| goto out; |
| } |
| |
| /* Clear flags for the scopes we covered. We assume the NIC and |
| * driver are now quiescent so that there is no race here. |
| */ |
| efx->reset_pending &= -(1 << (method + 1)); |
| |
| /* Reinitialise bus-mastering, which may have been turned off before |
| * the reset was scheduled. This is still appropriate, even in the |
| * RESET_TYPE_DISABLE since this driver generally assumes the hardware |
| * can respond to requests. */ |
| pci_set_master(efx->pci_dev); |
| |
| out: |
| /* Leave device stopped if necessary */ |
| disabled = rc || method == RESET_TYPE_DISABLE; |
| rc2 = efx_reset_up(efx, method, !disabled); |
| if (rc2) { |
| disabled = true; |
| if (!rc) |
| rc = rc2; |
| } |
| |
| if (disabled) { |
| dev_close(efx->net_dev); |
| netif_err(efx, drv, efx->net_dev, "has been disabled\n"); |
| efx->state = STATE_DISABLED; |
| } else { |
| netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); |
| netif_device_attach(efx->net_dev); |
| } |
| return rc; |
| } |
| |
| /* The worker thread exists so that code that cannot sleep can |
| * schedule a reset for later. |
| */ |
| static void efx_reset_work(struct work_struct *data) |
| { |
| struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); |
| unsigned long pending = ACCESS_ONCE(efx->reset_pending); |
| |
| if (!pending) |
| return; |
| |
| /* If we're not RUNNING then don't reset. Leave the reset_pending |
| * flags set so that efx_pci_probe_main will be retried */ |
| if (efx->state != STATE_RUNNING) { |
| netif_info(efx, drv, efx->net_dev, |
| "scheduled reset quenched. NIC not RUNNING\n"); |
| return; |
| } |
| |
| rtnl_lock(); |
| (void)efx_reset(efx, fls(pending) - 1); |
| rtnl_unlock(); |
| } |
| |
| void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) |
| { |
| enum reset_type method; |
| |
| switch (type) { |
| case RESET_TYPE_INVISIBLE: |
| case RESET_TYPE_ALL: |
| case RESET_TYPE_WORLD: |
| case RESET_TYPE_DISABLE: |
| method = type; |
| netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", |
| RESET_TYPE(method)); |
| break; |
| default: |
| method = efx->type->map_reset_reason(type); |
| netif_dbg(efx, drv, efx->net_dev, |
| "scheduling %s reset for %s\n", |
| RESET_TYPE(method), RESET_TYPE(type)); |
| break; |
| } |
| |
| set_bit(method, &efx->reset_pending); |
| |
| /* efx_process_channel() will no longer read events once a |
| * reset is scheduled. So switch back to poll'd MCDI completions. */ |
| efx_mcdi_mode_poll(efx); |
| |
| queue_work(reset_workqueue, &efx->reset_work); |
| } |
| |
| /************************************************************************** |
| * |
| * List of NICs we support |
| * |
| **************************************************************************/ |
| |
| /* PCI device ID table */ |
| static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { |
| {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, |
| PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), |
| .driver_data = (unsigned long) &falcon_a1_nic_type}, |
| {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, |
| PCI_DEVICE_ID_SOLARFLARE_SFC4000B), |
| .driver_data = (unsigned long) &falcon_b0_nic_type}, |
| {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, BETHPAGE_A_P_DEVID), |
| .driver_data = (unsigned long) &siena_a0_nic_type}, |
| {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, SIENA_A_P_DEVID), |
| .driver_data = (unsigned long) &siena_a0_nic_type}, |
| {0} /* end of list */ |
| }; |
| |
| /************************************************************************** |
| * |
| * Dummy PHY/MAC operations |
| * |
| * Can be used for some unimplemented operations |
| * Needed so all function pointers are valid and do not have to be tested |
| * before use |
| * |
| **************************************************************************/ |
| int efx_port_dummy_op_int(struct efx_nic *efx) |
| { |
| return 0; |
| } |
| void efx_port_dummy_op_void(struct efx_nic *efx) {} |
| |
| static bool efx_port_dummy_op_poll(struct efx_nic *efx) |
| { |
| return false; |
| } |
| |
| static const struct efx_phy_operations efx_dummy_phy_operations = { |
| .init = efx_port_dummy_op_int, |
| .reconfigure = efx_port_dummy_op_int, |
| .poll = efx_port_dummy_op_poll, |
| .fini = efx_port_dummy_op_void, |
| }; |
| |
| /************************************************************************** |
| * |
| * Data housekeeping |
| * |
| **************************************************************************/ |
| |
| /* This zeroes out and then fills in the invariants in a struct |
| * efx_nic (including all sub-structures). |
| */ |
| static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type, |
| struct pci_dev *pci_dev, struct net_device *net_dev) |
| { |
| int i; |
| |
| /* Initialise common structures */ |
| memset(efx, 0, sizeof(*efx)); |
| spin_lock_init(&efx->biu_lock); |
| #ifdef CONFIG_SFC_MTD |
| INIT_LIST_HEAD(&efx->mtd_list); |
| #endif |
| INIT_WORK(&efx->reset_work, efx_reset_work); |
| INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); |
| efx->pci_dev = pci_dev; |
| efx->msg_enable = debug; |
| efx->state = STATE_INIT; |
| strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); |
| |
| efx->net_dev = net_dev; |
| spin_lock_init(&efx->stats_lock); |
| mutex_init(&efx->mac_lock); |
| efx->mac_op = type->default_mac_ops; |
| efx->phy_op = &efx_dummy_phy_operations; |
| efx->mdio.dev = net_dev; |
| INIT_WORK(&efx->mac_work, efx_mac_work); |
| |
| for (i = 0; i < EFX_MAX_CHANNELS; i++) { |
| efx->channel[i] = efx_alloc_channel(efx, i, NULL); |
| if (!efx->channel[i]) |
| goto fail; |
| } |
| |
| efx->type = type; |
| |
| EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS); |
| |
| /* Higher numbered interrupt modes are less capable! */ |
| efx->interrupt_mode = max(efx->type->max_interrupt_mode, |
| interrupt_mode); |
| |
| /* Would be good to use the net_dev name, but we're too early */ |
| snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", |
| pci_name(pci_dev)); |
| efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); |
| if (!efx->workqueue) |
| goto fail; |
| |
| return 0; |
| |
| fail: |
| efx_fini_struct(efx); |
| return -ENOMEM; |
| } |
| |
| static void efx_fini_struct(struct efx_nic *efx) |
| { |
| int i; |
| |
| for (i = 0; i < EFX_MAX_CHANNELS; i++) |
| kfree(efx->channel[i]); |
| |
| if (efx->workqueue) { |
| destroy_workqueue(efx->workqueue); |
| efx->workqueue = NULL; |
| } |
| } |
| |
| /************************************************************************** |
| * |
| * PCI interface |
| * |
| **************************************************************************/ |
| |
| /* Main body of final NIC shutdown code |
| * This is called only at module unload (or hotplug removal). |
| */ |
| static void efx_pci_remove_main(struct efx_nic *efx) |
| { |
| #ifdef CONFIG_RFS_ACCEL |
| free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); |
| efx->net_dev->rx_cpu_rmap = NULL; |
| #endif |
| efx_nic_fini_interrupt(efx); |
| efx_fini_channels(efx); |
| efx_fini_port(efx); |
| efx->type->fini(efx); |
| efx_fini_napi(efx); |
| efx_remove_all(efx); |
| } |
| |
| /* Final NIC shutdown |
| * This is called only at module unload (or hotplug removal). |
| */ |
| static void efx_pci_remove(struct pci_dev *pci_dev) |
| { |
| struct efx_nic *efx; |
| |
| efx = pci_get_drvdata(pci_dev); |
| if (!efx) |
| return; |
| |
| /* Mark the NIC as fini, then stop the interface */ |
| rtnl_lock(); |
| efx->state = STATE_FINI; |
| dev_close(efx->net_dev); |
| |
| /* Allow any queued efx_resets() to complete */ |
| rtnl_unlock(); |
| |
| efx_unregister_netdev(efx); |
| |
| efx_mtd_remove(efx); |
| |
| /* Wait for any scheduled resets to complete. No more will be |
| * scheduled from this point because efx_stop_all() has been |
| * called, we are no longer registered with driverlink, and |
| * the net_device's have been removed. */ |
| cancel_work_sync(&efx->reset_work); |
| |
| efx_pci_remove_main(efx); |
| |
| efx_fini_io(efx); |
| netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); |
| |
| pci_set_drvdata(pci_dev, NULL); |
| efx_fini_struct(efx); |
| free_netdev(efx->net_dev); |
| }; |
| |
| /* Main body of NIC initialisation |
| * This is called at module load (or hotplug insertion, theoretically). |
| */ |
| static int efx_pci_probe_main(struct efx_nic *efx) |
| { |
| int rc; |
| |
| /* Do start-of-day initialisation */ |
| rc = efx_probe_all(efx); |
| if (rc) |
| goto fail1; |
| |
| efx_init_napi(efx); |
| |
| rc = efx->type->init(efx); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "failed to initialise NIC\n"); |
| goto fail3; |
| } |
| |
| rc = efx_init_port(efx); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "failed to initialise port\n"); |
| goto fail4; |
| } |
| |
| efx_init_channels(efx); |
| |
| rc = efx_nic_init_interrupt(efx); |
| if (rc) |
| goto fail5; |
| |
| return 0; |
| |
| fail5: |
| efx_fini_channels(efx); |
| efx_fini_port(efx); |
| fail4: |
| efx->type->fini(efx); |
| fail3: |
| efx_fini_napi(efx); |
| efx_remove_all(efx); |
| fail1: |
| return rc; |
| } |
| |
| /* NIC initialisation |
| * |
| * This is called at module load (or hotplug insertion, |
| * theoretically). It sets up PCI mappings, tests and resets the NIC, |
| * sets up and registers the network devices with the kernel and hooks |
| * the interrupt service routine. It does not prepare the device for |
| * transmission; this is left to the first time one of the network |
| * interfaces is brought up (i.e. efx_net_open). |
| */ |
| static int __devinit efx_pci_probe(struct pci_dev *pci_dev, |
| const struct pci_device_id *entry) |
| { |
| const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data; |
| struct net_device *net_dev; |
| struct efx_nic *efx; |
| int i, rc; |
| |
| /* Allocate and initialise a struct net_device and struct efx_nic */ |
| net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, |
| EFX_MAX_RX_QUEUES); |
| if (!net_dev) |
| return -ENOMEM; |
| net_dev->features |= (type->offload_features | NETIF_F_SG | |
| NETIF_F_HIGHDMA | NETIF_F_TSO | |
| NETIF_F_RXCSUM); |
| if (type->offload_features & NETIF_F_V6_CSUM) |
| net_dev->features |= NETIF_F_TSO6; |
| /* Mask for features that also apply to VLAN devices */ |
| net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | |
| NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | |
| NETIF_F_RXCSUM); |
| /* All offloads can be toggled */ |
| net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; |
| efx = netdev_priv(net_dev); |
| pci_set_drvdata(pci_dev, efx); |
| SET_NETDEV_DEV(net_dev, &pci_dev->dev); |
| rc = efx_init_struct(efx, type, pci_dev, net_dev); |
| if (rc) |
| goto fail1; |
| |
| netif_info(efx, probe, efx->net_dev, |
| "Solarflare NIC detected\n"); |
| |
| /* Set up basic I/O (BAR mappings etc) */ |
| rc = efx_init_io(efx); |
| if (rc) |
| goto fail2; |
| |
| /* No serialisation is required with the reset path because |
| * we're in STATE_INIT. */ |
| for (i = 0; i < 5; i++) { |
| rc = efx_pci_probe_main(efx); |
| |
| /* Serialise against efx_reset(). No more resets will be |
| * scheduled since efx_stop_all() has been called, and we |
| * have not and never have been registered with either |
| * the rtnetlink or driverlink layers. */ |
| cancel_work_sync(&efx->reset_work); |
| |
| if (rc == 0) { |
| if (efx->reset_pending) { |
| /* If there was a scheduled reset during |
| * probe, the NIC is probably hosed anyway */ |
| efx_pci_remove_main(efx); |
| rc = -EIO; |
| } else { |
| break; |
| } |
| } |
| |
| /* Retry if a recoverably reset event has been scheduled */ |
| if (efx->reset_pending & |
| ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) || |
| !efx->reset_pending) |
| goto fail3; |
| |
| efx->reset_pending = 0; |
| } |
| |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n"); |
| goto fail4; |
| } |
| |
| /* Switch to the running state before we expose the device to the OS, |
| * so that dev_open()|efx_start_all() will actually start the device */ |
| efx->state = STATE_RUNNING; |
| |
| rc = efx_register_netdev(efx); |
| if (rc) |
| goto fail5; |
| |
| netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); |
| |
| rtnl_lock(); |
| efx_mtd_probe(efx); /* allowed to fail */ |
| rtnl_unlock(); |
| return 0; |
| |
| fail5: |
| efx_pci_remove_main(efx); |
| fail4: |
| fail3: |
| efx_fini_io(efx); |
| fail2: |
| efx_fini_struct(efx); |
| fail1: |
| WARN_ON(rc > 0); |
| netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); |
| free_netdev(net_dev); |
| return rc; |
| } |
| |
| static int efx_pm_freeze(struct device *dev) |
| { |
| struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); |
| |
| efx->state = STATE_FINI; |
| |
| netif_device_detach(efx->net_dev); |
| |
| efx_stop_all(efx); |
| efx_fini_channels(efx); |
| |
| return 0; |
| } |
| |
| static int efx_pm_thaw(struct device *dev) |
| { |
| struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); |
| |
| efx->state = STATE_INIT; |
| |
| efx_init_channels(efx); |
| |
| mutex_lock(&efx->mac_lock); |
| efx->phy_op->reconfigure(efx); |
| mutex_unlock(&efx->mac_lock); |
| |
| efx_start_all(efx); |
| |
| netif_device_attach(efx->net_dev); |
| |
| efx->state = STATE_RUNNING; |
| |
| efx->type->resume_wol(efx); |
| |
| /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ |
| queue_work(reset_workqueue, &efx->reset_work); |
| |
| return 0; |
| } |
| |
| static int efx_pm_poweroff(struct device *dev) |
| { |
| struct pci_dev *pci_dev = to_pci_dev(dev); |
| struct efx_nic *efx = pci_get_drvdata(pci_dev); |
| |
| efx->type->fini(efx); |
| |
| efx->reset_pending = 0; |
| |
| pci_save_state(pci_dev); |
| return pci_set_power_state(pci_dev, PCI_D3hot); |
| } |
| |
| /* Used for both resume and restore */ |
| static int efx_pm_resume(struct device *dev) |
| { |
| struct pci_dev *pci_dev = to_pci_dev(dev); |
| struct efx_nic *efx = pci_get_drvdata(pci_dev); |
| int rc; |
| |
| rc = pci_set_power_state(pci_dev, PCI_D0); |
| if (rc) |
| return rc; |
| pci_restore_state(pci_dev); |
| rc = pci_enable_device(pci_dev); |
| if (rc) |
| return rc; |
| pci_set_master(efx->pci_dev); |
| rc = efx->type->reset(efx, RESET_TYPE_ALL); |
| if (rc) |
| return rc; |
| rc = efx->type->init(efx); |
| if (rc) |
| return rc; |
| efx_pm_thaw(dev); |
| return 0; |
| } |
| |
| static int efx_pm_suspend(struct device *dev) |
| { |
| int rc; |
| |
| efx_pm_freeze(dev); |
| rc = efx_pm_poweroff(dev); |
| if (rc) |
| efx_pm_resume(dev); |
| return rc; |
| } |
| |
| static struct dev_pm_ops efx_pm_ops = { |
| .suspend = efx_pm_suspend, |
| .resume = efx_pm_resume, |
| .freeze = efx_pm_freeze, |
| .thaw = efx_pm_thaw, |
| .poweroff = efx_pm_poweroff, |
| .restore = efx_pm_resume, |
| }; |
| |
| static struct pci_driver efx_pci_driver = { |
| .name = KBUILD_MODNAME, |
| .id_table = efx_pci_table, |
| .probe = efx_pci_probe, |
| .remove = efx_pci_remove, |
| .driver.pm = &efx_pm_ops, |
| }; |
| |
| /************************************************************************** |
| * |
| * Kernel module interface |
| * |
| *************************************************************************/ |
| |
| module_param(interrupt_mode, uint, 0444); |
| MODULE_PARM_DESC(interrupt_mode, |
| "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); |
| |
| static int __init efx_init_module(void) |
| { |
| int rc; |
| |
| printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); |
| |
| rc = register_netdevice_notifier(&efx_netdev_notifier); |
| if (rc) |
| goto err_notifier; |
| |
| reset_workqueue = create_singlethread_workqueue("sfc_reset"); |
| if (!reset_workqueue) { |
| rc = -ENOMEM; |
| goto err_reset; |
| } |
| |
| rc = pci_register_driver(&efx_pci_driver); |
| if (rc < 0) |
| goto err_pci; |
| |
| return 0; |
| |
| err_pci: |
| destroy_workqueue(reset_workqueue); |
| err_reset: |
| unregister_netdevice_notifier(&efx_netdev_notifier); |
| err_notifier: |
| return rc; |
| } |
| |
| static void __exit efx_exit_module(void) |
| { |
| printk(KERN_INFO "Solarflare NET driver unloading\n"); |
| |
| pci_unregister_driver(&efx_pci_driver); |
| destroy_workqueue(reset_workqueue); |
| unregister_netdevice_notifier(&efx_netdev_notifier); |
| |
| } |
| |
| module_init(efx_init_module); |
| module_exit(efx_exit_module); |
| |
| MODULE_AUTHOR("Solarflare Communications and " |
| "Michael Brown <mbrown@fensystems.co.uk>"); |
| MODULE_DESCRIPTION("Solarflare Communications network driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DEVICE_TABLE(pci, efx_pci_table); |