| /* |
| * arch/parisc/kernel/firmware.c - safe PDC access routines |
| * |
| * PDC == Processor Dependent Code |
| * |
| * See http://www.parisc-linux.org/documentation/index.html |
| * for documentation describing the entry points and calling |
| * conventions defined below. |
| * |
| * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) |
| * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) |
| * Copyright 2003 Grant Grundler <grundler parisc-linux org> |
| * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> |
| * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| */ |
| |
| /* I think it would be in everyone's best interest to follow this |
| * guidelines when writing PDC wrappers: |
| * |
| * - the name of the pdc wrapper should match one of the macros |
| * used for the first two arguments |
| * - don't use caps for random parts of the name |
| * - use the static PDC result buffers and "copyout" to structs |
| * supplied by the caller to encapsulate alignment restrictions |
| * - hold pdc_lock while in PDC or using static result buffers |
| * - use __pa() to convert virtual (kernel) pointers to physical |
| * ones. |
| * - the name of the struct used for pdc return values should equal |
| * one of the macros used for the first two arguments to the |
| * corresponding PDC call |
| * - keep the order of arguments |
| * - don't be smart (setting trailing NUL bytes for strings, return |
| * something useful even if the call failed) unless you are sure |
| * it's not going to affect functionality or performance |
| * |
| * Example: |
| * int pdc_cache_info(struct pdc_cache_info *cache_info ) |
| * { |
| * int retval; |
| * |
| * spin_lock_irq(&pdc_lock); |
| * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); |
| * convert_to_wide(pdc_result); |
| * memcpy(cache_info, pdc_result, sizeof(*cache_info)); |
| * spin_unlock_irq(&pdc_lock); |
| * |
| * return retval; |
| * } |
| * prumpf 991016 |
| */ |
| |
| #include <stdarg.h> |
| |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/string.h> |
| #include <linux/spinlock.h> |
| |
| #include <asm/page.h> |
| #include <asm/pdc.h> |
| #include <asm/pdcpat.h> |
| #include <asm/system.h> |
| #include <asm/processor.h> /* for boot_cpu_data */ |
| |
| static DEFINE_SPINLOCK(pdc_lock); |
| static unsigned long pdc_result[32] __attribute__ ((aligned (8))); |
| static unsigned long pdc_result2[32] __attribute__ ((aligned (8))); |
| |
| #ifdef __LP64__ |
| #define WIDE_FIRMWARE 0x1 |
| #define NARROW_FIRMWARE 0x2 |
| |
| /* Firmware needs to be initially set to narrow to determine the |
| * actual firmware width. */ |
| int parisc_narrow_firmware __read_mostly = 1; |
| #endif |
| |
| /* On most currently-supported platforms, IODC I/O calls are 32-bit calls |
| * and MEM_PDC calls are always the same width as the OS. |
| * Some PAT boxes may have 64-bit IODC I/O. |
| * |
| * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow |
| * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. |
| * This allowed wide kernels to run on Cxxx boxes. |
| * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode |
| * when running a 64-bit kernel on such boxes (e.g. C200 or C360). |
| */ |
| |
| #ifdef __LP64__ |
| long real64_call(unsigned long function, ...); |
| #endif |
| long real32_call(unsigned long function, ...); |
| |
| #ifdef __LP64__ |
| # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc |
| # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) |
| #else |
| # define MEM_PDC (unsigned long)PAGE0->mem_pdc |
| # define mem_pdc_call(args...) real32_call(MEM_PDC, args) |
| #endif |
| |
| |
| /** |
| * f_extend - Convert PDC addresses to kernel addresses. |
| * @address: Address returned from PDC. |
| * |
| * This function is used to convert PDC addresses into kernel addresses |
| * when the PDC address size and kernel address size are different. |
| */ |
| static unsigned long f_extend(unsigned long address) |
| { |
| #ifdef __LP64__ |
| if(unlikely(parisc_narrow_firmware)) { |
| if((address & 0xff000000) == 0xf0000000) |
| return 0xf0f0f0f000000000UL | (u32)address; |
| |
| if((address & 0xf0000000) == 0xf0000000) |
| return 0xffffffff00000000UL | (u32)address; |
| } |
| #endif |
| return address; |
| } |
| |
| /** |
| * convert_to_wide - Convert the return buffer addresses into kernel addresses. |
| * @address: The return buffer from PDC. |
| * |
| * This function is used to convert the return buffer addresses retrieved from PDC |
| * into kernel addresses when the PDC address size and kernel address size are |
| * different. |
| */ |
| static void convert_to_wide(unsigned long *addr) |
| { |
| #ifdef __LP64__ |
| int i; |
| unsigned int *p = (unsigned int *)addr; |
| |
| if(unlikely(parisc_narrow_firmware)) { |
| for(i = 31; i >= 0; --i) |
| addr[i] = p[i]; |
| } |
| #endif |
| } |
| |
| /** |
| * set_firmware_width - Determine if the firmware is wide or narrow. |
| * |
| * This function must be called before any pdc_* function that uses the convert_to_wide |
| * function. |
| */ |
| void __init set_firmware_width(void) |
| { |
| #ifdef __LP64__ |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); |
| convert_to_wide(pdc_result); |
| if(pdc_result[0] != NARROW_FIRMWARE) |
| parisc_narrow_firmware = 0; |
| spin_unlock_irq(&pdc_lock); |
| #endif |
| } |
| |
| /** |
| * pdc_emergency_unlock - Unlock the linux pdc lock |
| * |
| * This call unlocks the linux pdc lock in case we need some PDC functions |
| * (like pdc_add_valid) during kernel stack dump. |
| */ |
| void pdc_emergency_unlock(void) |
| { |
| /* Spinlock DEBUG code freaks out if we unconditionally unlock */ |
| if (spin_is_locked(&pdc_lock)) |
| spin_unlock(&pdc_lock); |
| } |
| |
| |
| /** |
| * pdc_add_valid - Verify address can be accessed without causing a HPMC. |
| * @address: Address to be verified. |
| * |
| * This PDC call attempts to read from the specified address and verifies |
| * if the address is valid. |
| * |
| * The return value is PDC_OK (0) in case accessing this address is valid. |
| */ |
| int pdc_add_valid(unsigned long address) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(pdc_add_valid); |
| |
| /** |
| * pdc_chassis_info - Return chassis information. |
| * @result: The return buffer. |
| * @chassis_info: The memory buffer address. |
| * @len: The size of the memory buffer address. |
| * |
| * An HVERSION dependent call for returning the chassis information. |
| */ |
| int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); |
| memcpy(&pdc_result2, led_info, len); |
| retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, |
| __pa(pdc_result), __pa(pdc_result2), len); |
| memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); |
| memcpy(led_info, pdc_result2, len); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. |
| * @retval: -1 on error, 0 on success. Other value are PDC errors |
| * |
| * Must be correctly formatted or expect system crash |
| */ |
| #ifdef __LP64__ |
| int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) |
| { |
| int retval = 0; |
| |
| if (!is_pdc_pat()) |
| return -1; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| #endif |
| |
| /** |
| * pdc_chassis_disp - Updates chassis code |
| * @retval: -1 on error, 0 on success |
| */ |
| int pdc_chassis_disp(unsigned long disp) |
| { |
| int retval = 0; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_chassis_warn - Fetches chassis warnings |
| * @retval: -1 on error, 0 on success |
| */ |
| int pdc_chassis_warn(unsigned long *warn) |
| { |
| int retval = 0; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); |
| *warn = pdc_result[0]; |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_coproc_cfg - To identify coprocessors attached to the processor. |
| * @pdc_coproc_info: Return buffer address. |
| * |
| * This PDC call returns the presence and status of all the coprocessors |
| * attached to the processor. |
| */ |
| int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); |
| convert_to_wide(pdc_result); |
| pdc_coproc_info->ccr_functional = pdc_result[0]; |
| pdc_coproc_info->ccr_present = pdc_result[1]; |
| pdc_coproc_info->revision = pdc_result[17]; |
| pdc_coproc_info->model = pdc_result[18]; |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_iodc_read - Read data from the modules IODC. |
| * @actcnt: The actual number of bytes. |
| * @hpa: The HPA of the module for the iodc read. |
| * @index: The iodc entry point. |
| * @iodc_data: A buffer memory for the iodc options. |
| * @iodc_data_size: Size of the memory buffer. |
| * |
| * This PDC call reads from the IODC of the module specified by the hpa |
| * argument. |
| */ |
| int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, |
| void *iodc_data, unsigned int iodc_data_size) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, |
| index, __pa(pdc_result2), iodc_data_size); |
| convert_to_wide(pdc_result); |
| *actcnt = pdc_result[0]; |
| memcpy(iodc_data, pdc_result2, iodc_data_size); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(pdc_iodc_read); |
| |
| /** |
| * pdc_system_map_find_mods - Locate unarchitected modules. |
| * @pdc_mod_info: Return buffer address. |
| * @mod_path: pointer to dev path structure. |
| * @mod_index: fixed address module index. |
| * |
| * To locate and identify modules which reside at fixed I/O addresses, which |
| * do not self-identify via architected bus walks. |
| */ |
| int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, |
| struct pdc_module_path *mod_path, long mod_index) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), |
| __pa(pdc_result2), mod_index); |
| convert_to_wide(pdc_result); |
| memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); |
| memcpy(mod_path, pdc_result2, sizeof(*mod_path)); |
| spin_unlock_irq(&pdc_lock); |
| |
| pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); |
| return retval; |
| } |
| |
| /** |
| * pdc_system_map_find_addrs - Retrieve additional address ranges. |
| * @pdc_addr_info: Return buffer address. |
| * @mod_index: Fixed address module index. |
| * @addr_index: Address range index. |
| * |
| * Retrieve additional information about subsequent address ranges for modules |
| * with multiple address ranges. |
| */ |
| int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, |
| long mod_index, long addr_index) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), |
| mod_index, addr_index); |
| convert_to_wide(pdc_result); |
| memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); |
| spin_unlock_irq(&pdc_lock); |
| |
| pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); |
| return retval; |
| } |
| |
| /** |
| * pdc_model_info - Return model information about the processor. |
| * @model: The return buffer. |
| * |
| * Returns the version numbers, identifiers, and capabilities from the processor module. |
| */ |
| int pdc_model_info(struct pdc_model *model) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); |
| convert_to_wide(pdc_result); |
| memcpy(model, pdc_result, sizeof(*model)); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_model_sysmodel - Get the system model name. |
| * @name: A char array of at least 81 characters. |
| * |
| * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L) |
| */ |
| int pdc_model_sysmodel(char *name) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), |
| OS_ID_HPUX, __pa(name)); |
| convert_to_wide(pdc_result); |
| |
| if (retval == PDC_OK) { |
| name[pdc_result[0]] = '\0'; /* add trailing '\0' */ |
| } else { |
| name[0] = 0; |
| } |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_model_versions - Identify the version number of each processor. |
| * @cpu_id: The return buffer. |
| * @id: The id of the processor to check. |
| * |
| * Returns the version number for each processor component. |
| * |
| * This comment was here before, but I do not know what it means :( -RB |
| * id: 0 = cpu revision, 1 = boot-rom-version |
| */ |
| int pdc_model_versions(unsigned long *versions, int id) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); |
| convert_to_wide(pdc_result); |
| *versions = pdc_result[0]; |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_model_cpuid - Returns the CPU_ID. |
| * @cpu_id: The return buffer. |
| * |
| * Returns the CPU_ID value which uniquely identifies the cpu portion of |
| * the processor module. |
| */ |
| int pdc_model_cpuid(unsigned long *cpu_id) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ |
| retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); |
| convert_to_wide(pdc_result); |
| *cpu_id = pdc_result[0]; |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_model_capabilities - Returns the platform capabilities. |
| * @capabilities: The return buffer. |
| * |
| * Returns information about platform support for 32- and/or 64-bit |
| * OSes, IO-PDIR coherency, and virtual aliasing. |
| */ |
| int pdc_model_capabilities(unsigned long *capabilities) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ |
| retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); |
| convert_to_wide(pdc_result); |
| *capabilities = pdc_result[0]; |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_cache_info - Return cache and TLB information. |
| * @cache_info: The return buffer. |
| * |
| * Returns information about the processor's cache and TLB. |
| */ |
| int pdc_cache_info(struct pdc_cache_info *cache_info) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); |
| convert_to_wide(pdc_result); |
| memcpy(cache_info, pdc_result, sizeof(*cache_info)); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| #ifndef CONFIG_PA20 |
| /** |
| * pdc_btlb_info - Return block TLB information. |
| * @btlb: The return buffer. |
| * |
| * Returns information about the hardware Block TLB. |
| */ |
| int pdc_btlb_info(struct pdc_btlb_info *btlb) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); |
| memcpy(btlb, pdc_result, sizeof(*btlb)); |
| spin_unlock_irq(&pdc_lock); |
| |
| if(retval < 0) { |
| btlb->max_size = 0; |
| } |
| return retval; |
| } |
| |
| /** |
| * pdc_mem_map_hpa - Find fixed module information. |
| * @address: The return buffer |
| * @mod_path: pointer to dev path structure. |
| * |
| * This call was developed for S700 workstations to allow the kernel to find |
| * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this |
| * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP |
| * call. |
| * |
| * This call is supported by all existing S700 workstations (up to Gecko). |
| */ |
| int pdc_mem_map_hpa(struct pdc_memory_map *address, |
| struct pdc_module_path *mod_path) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| memcpy(pdc_result2, mod_path, sizeof(*mod_path)); |
| retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), |
| __pa(pdc_result2)); |
| memcpy(address, pdc_result, sizeof(*address)); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| #endif /* !CONFIG_PA20 */ |
| |
| /** |
| * pdc_lan_station_id - Get the LAN address. |
| * @lan_addr: The return buffer. |
| * @hpa: The network device HPA. |
| * |
| * Get the LAN station address when it is not directly available from the LAN hardware. |
| */ |
| int pdc_lan_station_id(char *lan_addr, unsigned long hpa) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, |
| __pa(pdc_result), hpa); |
| if (retval < 0) { |
| /* FIXME: else read MAC from NVRAM */ |
| memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); |
| } else { |
| memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); |
| } |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(pdc_lan_station_id); |
| |
| /** |
| * pdc_stable_read - Read data from Stable Storage. |
| * @staddr: Stable Storage address to access. |
| * @memaddr: The memory address where Stable Storage data shall be copied. |
| * @count: number of bytes to transfert. count is multiple of 4. |
| * |
| * This PDC call reads from the Stable Storage address supplied in staddr |
| * and copies count bytes to the memory address memaddr. |
| * The call will fail if staddr+count > PDC_STABLE size. |
| */ |
| int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, |
| __pa(pdc_result), count); |
| convert_to_wide(pdc_result); |
| memcpy(memaddr, pdc_result, count); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(pdc_stable_read); |
| |
| /** |
| * pdc_stable_write - Write data to Stable Storage. |
| * @staddr: Stable Storage address to access. |
| * @memaddr: The memory address where Stable Storage data shall be read from. |
| * @count: number of bytes to transfert. count is multiple of 4. |
| * |
| * This PDC call reads count bytes from the supplied memaddr address, |
| * and copies count bytes to the Stable Storage address staddr. |
| * The call will fail if staddr+count > PDC_STABLE size. |
| */ |
| int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| memcpy(pdc_result, memaddr, count); |
| convert_to_wide(pdc_result); |
| retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, |
| __pa(pdc_result), count); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(pdc_stable_write); |
| |
| /** |
| * pdc_stable_get_size - Get Stable Storage size in bytes. |
| * @size: pointer where the size will be stored. |
| * |
| * This PDC call returns the number of bytes in the processor's Stable |
| * Storage, which is the number of contiguous bytes implemented in Stable |
| * Storage starting from staddr=0. size in an unsigned 64-bit integer |
| * which is a multiple of four. |
| */ |
| int pdc_stable_get_size(unsigned long *size) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); |
| *size = pdc_result[0]; |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(pdc_stable_get_size); |
| |
| /** |
| * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. |
| * |
| * This PDC call is meant to be used to check the integrity of the current |
| * contents of Stable Storage. |
| */ |
| int pdc_stable_verify_contents(void) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(pdc_stable_verify_contents); |
| |
| /** |
| * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize |
| * the validity indicator. |
| * |
| * This PDC call will erase all contents of Stable Storage. Use with care! |
| */ |
| int pdc_stable_initialize(void) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(pdc_stable_initialize); |
| |
| /** |
| * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) |
| * @hwpath: fully bc.mod style path to the device. |
| * @initiator: the array to return the result into |
| * |
| * Get the SCSI operational parameters from PDC. |
| * Needed since HPUX never used BIOS or symbios card NVRAM. |
| * Most ncr/sym cards won't have an entry and just use whatever |
| * capabilities of the card are (eg Ultra, LVD). But there are |
| * several cases where it's useful: |
| * o set SCSI id for Multi-initiator clusters, |
| * o cable too long (ie SE scsi 10Mhz won't support 6m length), |
| * o bus width exported is less than what the interface chip supports. |
| */ |
| int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| |
| /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ |
| #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ |
| strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) |
| |
| retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, |
| __pa(pdc_result), __pa(hwpath)); |
| if (retval < PDC_OK) |
| goto out; |
| |
| if (pdc_result[0] < 16) { |
| initiator->host_id = pdc_result[0]; |
| } else { |
| initiator->host_id = -1; |
| } |
| |
| /* |
| * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns |
| * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively |
| */ |
| switch (pdc_result[1]) { |
| case 1: initiator->factor = 50; break; |
| case 2: initiator->factor = 25; break; |
| case 5: initiator->factor = 12; break; |
| case 25: initiator->factor = 10; break; |
| case 20: initiator->factor = 12; break; |
| case 40: initiator->factor = 10; break; |
| default: initiator->factor = -1; break; |
| } |
| |
| if (IS_SPROCKETS()) { |
| initiator->width = pdc_result[4]; |
| initiator->mode = pdc_result[5]; |
| } else { |
| initiator->width = -1; |
| initiator->mode = -1; |
| } |
| |
| out: |
| spin_unlock_irq(&pdc_lock); |
| return (retval >= PDC_OK); |
| } |
| EXPORT_SYMBOL(pdc_get_initiator); |
| |
| |
| /** |
| * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. |
| * @num_entries: The return value. |
| * @hpa: The HPA for the device. |
| * |
| * This PDC function returns the number of entries in the specified cell's |
| * interrupt table. |
| * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes |
| */ |
| int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, |
| __pa(pdc_result), hpa); |
| convert_to_wide(pdc_result); |
| *num_entries = pdc_result[0]; |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_pci_irt - Get the PCI interrupt routing table. |
| * @num_entries: The number of entries in the table. |
| * @hpa: The Hard Physical Address of the device. |
| * @tbl: |
| * |
| * Get the PCI interrupt routing table for the device at the given HPA. |
| * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes |
| */ |
| int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) |
| { |
| int retval; |
| |
| BUG_ON((unsigned long)tbl & 0x7); |
| |
| spin_lock_irq(&pdc_lock); |
| pdc_result[0] = num_entries; |
| retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, |
| __pa(pdc_result), hpa, __pa(tbl)); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| |
| #if 0 /* UNTEST CODE - left here in case someone needs it */ |
| |
| /** |
| * pdc_pci_config_read - read PCI config space. |
| * @hpa token from PDC to indicate which PCI device |
| * @pci_addr configuration space address to read from |
| * |
| * Read PCI Configuration space *before* linux PCI subsystem is running. |
| */ |
| unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) |
| { |
| int retval; |
| spin_lock_irq(&pdc_lock); |
| pdc_result[0] = 0; |
| pdc_result[1] = 0; |
| retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, |
| __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); |
| spin_unlock_irq(&pdc_lock); |
| return retval ? ~0 : (unsigned int) pdc_result[0]; |
| } |
| |
| |
| /** |
| * pdc_pci_config_write - read PCI config space. |
| * @hpa token from PDC to indicate which PCI device |
| * @pci_addr configuration space address to write |
| * @val value we want in the 32-bit register |
| * |
| * Write PCI Configuration space *before* linux PCI subsystem is running. |
| */ |
| void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) |
| { |
| int retval; |
| spin_lock_irq(&pdc_lock); |
| pdc_result[0] = 0; |
| retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, |
| __pa(pdc_result), hpa, |
| cfg_addr&~3UL, 4UL, (unsigned long) val); |
| spin_unlock_irq(&pdc_lock); |
| return retval; |
| } |
| #endif /* UNTESTED CODE */ |
| |
| /** |
| * pdc_tod_read - Read the Time-Of-Day clock. |
| * @tod: The return buffer: |
| * |
| * Read the Time-Of-Day clock |
| */ |
| int pdc_tod_read(struct pdc_tod *tod) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); |
| convert_to_wide(pdc_result); |
| memcpy(tod, pdc_result, sizeof(*tod)); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(pdc_tod_read); |
| |
| /** |
| * pdc_tod_set - Set the Time-Of-Day clock. |
| * @sec: The number of seconds since epoch. |
| * @usec: The number of micro seconds. |
| * |
| * Set the Time-Of-Day clock. |
| */ |
| int pdc_tod_set(unsigned long sec, unsigned long usec) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(pdc_tod_set); |
| |
| #ifdef __LP64__ |
| int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, |
| struct pdc_memory_table *tbl, unsigned long entries) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); |
| convert_to_wide(pdc_result); |
| memcpy(r_addr, pdc_result, sizeof(*r_addr)); |
| memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| #endif /* __LP64__ */ |
| |
| /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap |
| * so I guessed at unsigned long. Someone who knows what this does, can fix |
| * it later. :) |
| */ |
| int pdc_do_firm_test_reset(unsigned long ftc_bitmap) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, |
| PDC_FIRM_TEST_MAGIC, ftc_bitmap); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /* |
| * pdc_do_reset - Reset the system. |
| * |
| * Reset the system. |
| */ |
| int pdc_do_reset(void) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /* |
| * pdc_soft_power_info - Enable soft power switch. |
| * @power_reg: address of soft power register |
| * |
| * Return the absolute address of the soft power switch register |
| */ |
| int __init pdc_soft_power_info(unsigned long *power_reg) |
| { |
| int retval; |
| |
| *power_reg = (unsigned long) (-1); |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); |
| if (retval == PDC_OK) { |
| convert_to_wide(pdc_result); |
| *power_reg = f_extend(pdc_result[0]); |
| } |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /* |
| * pdc_soft_power_button - Control the soft power button behaviour |
| * @sw_control: 0 for hardware control, 1 for software control |
| * |
| * |
| * This PDC function places the soft power button under software or |
| * hardware control. |
| * Under software control the OS may control to when to allow to shut |
| * down the system. Under hardware control pressing the power button |
| * powers off the system immediately. |
| */ |
| int pdc_soft_power_button(int sw_control) |
| { |
| int retval; |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); |
| spin_unlock_irq(&pdc_lock); |
| return retval; |
| } |
| |
| /* |
| * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. |
| * Primarily a problem on T600 (which parisc-linux doesn't support) but |
| * who knows what other platform firmware might do with this OS "hook". |
| */ |
| void pdc_io_reset(void) |
| { |
| spin_lock_irq(&pdc_lock); |
| mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); |
| spin_unlock_irq(&pdc_lock); |
| } |
| |
| /* |
| * pdc_io_reset_devices - Hack to Stop USB controller |
| * |
| * If PDC used the usb controller, the usb controller |
| * is still running and will crash the machines during iommu |
| * setup, because of still running DMA. This PDC call |
| * stops the USB controller. |
| * Normally called after calling pdc_io_reset(). |
| */ |
| void pdc_io_reset_devices(void) |
| { |
| spin_lock_irq(&pdc_lock); |
| mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); |
| spin_unlock_irq(&pdc_lock); |
| } |
| |
| |
| /** |
| * pdc_iodc_putc - Console character print using IODC. |
| * @c: the character to output. |
| * |
| * Note that only these special chars are architected for console IODC io: |
| * BEL, BS, CR, and LF. Others are passed through. |
| * Since the HP console requires CR+LF to perform a 'newline', we translate |
| * "\n" to "\r\n". |
| */ |
| void pdc_iodc_putc(unsigned char c) |
| { |
| /* XXX Should we spinlock posx usage */ |
| static int posx; /* for simple TAB-Simulation... */ |
| static int __attribute__((aligned(8))) iodc_retbuf[32]; |
| static char __attribute__((aligned(64))) iodc_dbuf[4096]; |
| unsigned int n; |
| unsigned int flags; |
| |
| switch (c) { |
| case '\n': |
| iodc_dbuf[0] = '\r'; |
| iodc_dbuf[1] = '\n'; |
| n = 2; |
| posx = 0; |
| break; |
| case '\t': |
| pdc_iodc_putc(' '); |
| while (posx & 7) /* expand TAB */ |
| pdc_iodc_putc(' '); |
| return; /* return since IODC can't handle this */ |
| case '\b': |
| posx-=2; /* BS */ |
| default: |
| iodc_dbuf[0] = c; |
| n = 1; |
| posx++; |
| break; |
| } |
| |
| spin_lock_irqsave(&pdc_lock, flags); |
| real32_call(PAGE0->mem_cons.iodc_io, |
| (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, |
| PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), |
| __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0); |
| spin_unlock_irqrestore(&pdc_lock, flags); |
| } |
| |
| /** |
| * pdc_iodc_outc - Console character print using IODC (without conversions). |
| * @c: the character to output. |
| * |
| * Write the character directly to the IODC console. |
| */ |
| void pdc_iodc_outc(unsigned char c) |
| { |
| unsigned int n, flags; |
| |
| /* fill buffer with one caracter and print it */ |
| static int __attribute__((aligned(8))) iodc_retbuf[32]; |
| static char __attribute__((aligned(64))) iodc_dbuf[4096]; |
| |
| n = 1; |
| iodc_dbuf[0] = c; |
| |
| spin_lock_irqsave(&pdc_lock, flags); |
| real32_call(PAGE0->mem_cons.iodc_io, |
| (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, |
| PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), |
| __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0); |
| spin_unlock_irqrestore(&pdc_lock, flags); |
| } |
| |
| /** |
| * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. |
| * |
| * Read a character (non-blocking) from the PDC console, returns -1 if |
| * key is not present. |
| */ |
| int pdc_iodc_getc(void) |
| { |
| unsigned int flags; |
| static int __attribute__((aligned(8))) iodc_retbuf[32]; |
| static char __attribute__((aligned(64))) iodc_dbuf[4096]; |
| int ch; |
| int status; |
| |
| /* Bail if no console input device. */ |
| if (!PAGE0->mem_kbd.iodc_io) |
| return 0; |
| |
| /* wait for a keyboard (rs232)-input */ |
| spin_lock_irqsave(&pdc_lock, flags); |
| real32_call(PAGE0->mem_kbd.iodc_io, |
| (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, |
| PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), |
| __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0); |
| |
| ch = *iodc_dbuf; |
| status = *iodc_retbuf; |
| spin_unlock_irqrestore(&pdc_lock, flags); |
| |
| if (status == 0) |
| return -1; |
| |
| return ch; |
| } |
| |
| int pdc_sti_call(unsigned long func, unsigned long flags, |
| unsigned long inptr, unsigned long outputr, |
| unsigned long glob_cfg) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = real32_call(func, flags, inptr, outputr, glob_cfg); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(pdc_sti_call); |
| |
| #ifdef __LP64__ |
| /** |
| * pdc_pat_cell_get_number - Returns the cell number. |
| * @cell_info: The return buffer. |
| * |
| * This PDC call returns the cell number of the cell from which the call |
| * is made. |
| */ |
| int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); |
| memcpy(cell_info, pdc_result, sizeof(*cell_info)); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_pat_cell_module - Retrieve the cell's module information. |
| * @actcnt: The number of bytes written to mem_addr. |
| * @ploc: The physical location. |
| * @mod: The module index. |
| * @view_type: The view of the address type. |
| * @mem_addr: The return buffer. |
| * |
| * This PDC call returns information about each module attached to the cell |
| * at the specified location. |
| */ |
| int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, |
| unsigned long view_type, void *mem_addr) |
| { |
| int retval; |
| static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), |
| ploc, mod, view_type, __pa(&result)); |
| if(!retval) { |
| *actcnt = pdc_result[0]; |
| memcpy(mem_addr, &result, *actcnt); |
| } |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_pat_cpu_get_number - Retrieve the cpu number. |
| * @cpu_info: The return buffer. |
| * @hpa: The Hard Physical Address of the CPU. |
| * |
| * Retrieve the cpu number for the cpu at the specified HPA. |
| */ |
| int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, |
| __pa(&pdc_result), hpa); |
| memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. |
| * @num_entries: The return value. |
| * @cell_num: The target cell. |
| * |
| * This PDC function returns the number of entries in the specified cell's |
| * interrupt table. |
| */ |
| int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, |
| __pa(pdc_result), cell_num); |
| *num_entries = pdc_result[0]; |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_pat_get_irt - Retrieve the cell's interrupt table. |
| * @r_addr: The return buffer. |
| * @cell_num: The target cell. |
| * |
| * This PDC function returns the actual interrupt table for the specified cell. |
| */ |
| int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, |
| __pa(r_addr), cell_num); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. |
| * @actlen: The return buffer. |
| * @mem_addr: Pointer to the memory buffer. |
| * @count: The number of bytes to read from the buffer. |
| * @offset: The offset with respect to the beginning of the buffer. |
| * |
| */ |
| int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, |
| unsigned long count, unsigned long offset) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), |
| __pa(pdc_result2), count, offset); |
| *actual_len = pdc_result[0]; |
| memcpy(mem_addr, pdc_result2, *actual_len); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_pat_io_pci_cfg_read - Read PCI configuration space. |
| * @pci_addr: PCI configuration space address for which the read request is being made. |
| * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. |
| * @mem_addr: Pointer to return memory buffer. |
| * |
| */ |
| int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) |
| { |
| int retval; |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, |
| __pa(pdc_result), pci_addr, pci_size); |
| switch(pci_size) { |
| case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; |
| case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; |
| case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; |
| } |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| |
| /** |
| * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. |
| * @pci_addr: PCI configuration space address for which the write request is being made. |
| * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. |
| * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be |
| * written to PCI Config space. |
| * |
| */ |
| int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) |
| { |
| int retval; |
| |
| spin_lock_irq(&pdc_lock); |
| retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, |
| pci_addr, pci_size, val); |
| spin_unlock_irq(&pdc_lock); |
| |
| return retval; |
| } |
| #endif /* __LP64__ */ |
| |
| |
| /***************** 32-bit real-mode calls ***********/ |
| /* The struct below is used |
| * to overlay real_stack (real2.S), preparing a 32-bit call frame. |
| * real32_call_asm() then uses this stack in narrow real mode |
| */ |
| |
| struct narrow_stack { |
| /* use int, not long which is 64 bits */ |
| unsigned int arg13; |
| unsigned int arg12; |
| unsigned int arg11; |
| unsigned int arg10; |
| unsigned int arg9; |
| unsigned int arg8; |
| unsigned int arg7; |
| unsigned int arg6; |
| unsigned int arg5; |
| unsigned int arg4; |
| unsigned int arg3; |
| unsigned int arg2; |
| unsigned int arg1; |
| unsigned int arg0; |
| unsigned int frame_marker[8]; |
| unsigned int sp; |
| /* in reality, there's nearly 8k of stack after this */ |
| }; |
| |
| long real32_call(unsigned long fn, ...) |
| { |
| va_list args; |
| extern struct narrow_stack real_stack; |
| extern unsigned long real32_call_asm(unsigned int *, |
| unsigned int *, |
| unsigned int); |
| |
| va_start(args, fn); |
| real_stack.arg0 = va_arg(args, unsigned int); |
| real_stack.arg1 = va_arg(args, unsigned int); |
| real_stack.arg2 = va_arg(args, unsigned int); |
| real_stack.arg3 = va_arg(args, unsigned int); |
| real_stack.arg4 = va_arg(args, unsigned int); |
| real_stack.arg5 = va_arg(args, unsigned int); |
| real_stack.arg6 = va_arg(args, unsigned int); |
| real_stack.arg7 = va_arg(args, unsigned int); |
| real_stack.arg8 = va_arg(args, unsigned int); |
| real_stack.arg9 = va_arg(args, unsigned int); |
| real_stack.arg10 = va_arg(args, unsigned int); |
| real_stack.arg11 = va_arg(args, unsigned int); |
| real_stack.arg12 = va_arg(args, unsigned int); |
| real_stack.arg13 = va_arg(args, unsigned int); |
| va_end(args); |
| |
| return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); |
| } |
| |
| #ifdef __LP64__ |
| /***************** 64-bit real-mode calls ***********/ |
| |
| struct wide_stack { |
| unsigned long arg0; |
| unsigned long arg1; |
| unsigned long arg2; |
| unsigned long arg3; |
| unsigned long arg4; |
| unsigned long arg5; |
| unsigned long arg6; |
| unsigned long arg7; |
| unsigned long arg8; |
| unsigned long arg9; |
| unsigned long arg10; |
| unsigned long arg11; |
| unsigned long arg12; |
| unsigned long arg13; |
| unsigned long frame_marker[2]; /* rp, previous sp */ |
| unsigned long sp; |
| /* in reality, there's nearly 8k of stack after this */ |
| }; |
| |
| long real64_call(unsigned long fn, ...) |
| { |
| va_list args; |
| extern struct wide_stack real64_stack; |
| extern unsigned long real64_call_asm(unsigned long *, |
| unsigned long *, |
| unsigned long); |
| |
| va_start(args, fn); |
| real64_stack.arg0 = va_arg(args, unsigned long); |
| real64_stack.arg1 = va_arg(args, unsigned long); |
| real64_stack.arg2 = va_arg(args, unsigned long); |
| real64_stack.arg3 = va_arg(args, unsigned long); |
| real64_stack.arg4 = va_arg(args, unsigned long); |
| real64_stack.arg5 = va_arg(args, unsigned long); |
| real64_stack.arg6 = va_arg(args, unsigned long); |
| real64_stack.arg7 = va_arg(args, unsigned long); |
| real64_stack.arg8 = va_arg(args, unsigned long); |
| real64_stack.arg9 = va_arg(args, unsigned long); |
| real64_stack.arg10 = va_arg(args, unsigned long); |
| real64_stack.arg11 = va_arg(args, unsigned long); |
| real64_stack.arg12 = va_arg(args, unsigned long); |
| real64_stack.arg13 = va_arg(args, unsigned long); |
| va_end(args); |
| |
| return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); |
| } |
| |
| #endif /* __LP64__ */ |
| |