| /* |
| * Kernel Probes (KProbes) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) IBM Corporation, 2002, 2004 |
| * |
| * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel |
| * Probes initial implementation ( includes contributions from |
| * Rusty Russell). |
| * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes |
| * interface to access function arguments. |
| * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port |
| * for PPC64 |
| */ |
| |
| #include <linux/kprobes.h> |
| #include <linux/ptrace.h> |
| #include <linux/preempt.h> |
| #include <linux/module.h> |
| #include <linux/kdebug.h> |
| #include <asm/cacheflush.h> |
| #include <asm/sstep.h> |
| #include <asm/uaccess.h> |
| #include <asm/system.h> |
| |
| #ifdef CONFIG_BOOKE |
| #define MSR_SINGLESTEP (MSR_DE) |
| #else |
| #define MSR_SINGLESTEP (MSR_SE) |
| #endif |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; |
| |
| int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| { |
| int ret = 0; |
| kprobe_opcode_t insn = *p->addr; |
| |
| if ((unsigned long)p->addr & 0x03) { |
| printk("Attempt to register kprobe at an unaligned address\n"); |
| ret = -EINVAL; |
| } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { |
| printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); |
| ret = -EINVAL; |
| } |
| |
| /* insn must be on a special executable page on ppc64. This is |
| * not explicitly required on ppc32 (right now), but it doesn't hurt */ |
| if (!ret) { |
| p->ainsn.insn = get_insn_slot(); |
| if (!p->ainsn.insn) |
| ret = -ENOMEM; |
| } |
| |
| if (!ret) { |
| memcpy(p->ainsn.insn, p->addr, |
| MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); |
| p->opcode = *p->addr; |
| flush_icache_range((unsigned long)p->ainsn.insn, |
| (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); |
| } |
| |
| p->ainsn.boostable = 0; |
| return ret; |
| } |
| |
| void __kprobes arch_arm_kprobe(struct kprobe *p) |
| { |
| *p->addr = BREAKPOINT_INSTRUCTION; |
| flush_icache_range((unsigned long) p->addr, |
| (unsigned long) p->addr + sizeof(kprobe_opcode_t)); |
| } |
| |
| void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| { |
| *p->addr = p->opcode; |
| flush_icache_range((unsigned long) p->addr, |
| (unsigned long) p->addr + sizeof(kprobe_opcode_t)); |
| } |
| |
| void __kprobes arch_remove_kprobe(struct kprobe *p) |
| { |
| if (p->ainsn.insn) { |
| free_insn_slot(p->ainsn.insn, 0); |
| p->ainsn.insn = NULL; |
| } |
| } |
| |
| static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) |
| { |
| /* We turn off async exceptions to ensure that the single step will |
| * be for the instruction we have the kprobe on, if we dont its |
| * possible we'd get the single step reported for an exception handler |
| * like Decrementer or External Interrupt */ |
| regs->msr &= ~MSR_EE; |
| regs->msr |= MSR_SINGLESTEP; |
| #ifdef CONFIG_BOOKE |
| regs->msr &= ~MSR_CE; |
| mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM); |
| #endif |
| |
| /* |
| * On powerpc we should single step on the original |
| * instruction even if the probed insn is a trap |
| * variant as values in regs could play a part in |
| * if the trap is taken or not |
| */ |
| regs->nip = (unsigned long)p->ainsn.insn; |
| } |
| |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; |
| } |
| |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; |
| } |
| |
| static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| __get_cpu_var(current_kprobe) = p; |
| kcb->kprobe_saved_msr = regs->msr; |
| } |
| |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| struct pt_regs *regs) |
| { |
| ri->ret_addr = (kprobe_opcode_t *)regs->link; |
| |
| /* Replace the return addr with trampoline addr */ |
| regs->link = (unsigned long)kretprobe_trampoline; |
| } |
| |
| static int __kprobes kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *p; |
| int ret = 0; |
| unsigned int *addr = (unsigned int *)regs->nip; |
| struct kprobe_ctlblk *kcb; |
| |
| /* |
| * We don't want to be preempted for the entire |
| * duration of kprobe processing |
| */ |
| preempt_disable(); |
| kcb = get_kprobe_ctlblk(); |
| |
| /* Check we're not actually recursing */ |
| if (kprobe_running()) { |
| p = get_kprobe(addr); |
| if (p) { |
| kprobe_opcode_t insn = *p->ainsn.insn; |
| if (kcb->kprobe_status == KPROBE_HIT_SS && |
| is_trap(insn)) { |
| /* Turn off 'trace' bits */ |
| regs->msr &= ~MSR_SINGLESTEP; |
| regs->msr |= kcb->kprobe_saved_msr; |
| goto no_kprobe; |
| } |
| /* We have reentered the kprobe_handler(), since |
| * another probe was hit while within the handler. |
| * We here save the original kprobes variables and |
| * just single step on the instruction of the new probe |
| * without calling any user handlers. |
| */ |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p, regs, kcb); |
| kcb->kprobe_saved_msr = regs->msr; |
| kprobes_inc_nmissed_count(p); |
| prepare_singlestep(p, regs); |
| kcb->kprobe_status = KPROBE_REENTER; |
| return 1; |
| } else { |
| if (*addr != BREAKPOINT_INSTRUCTION) { |
| /* If trap variant, then it belongs not to us */ |
| kprobe_opcode_t cur_insn = *addr; |
| if (is_trap(cur_insn)) |
| goto no_kprobe; |
| /* The breakpoint instruction was removed by |
| * another cpu right after we hit, no further |
| * handling of this interrupt is appropriate |
| */ |
| ret = 1; |
| goto no_kprobe; |
| } |
| p = __get_cpu_var(current_kprobe); |
| if (p->break_handler && p->break_handler(p, regs)) { |
| goto ss_probe; |
| } |
| } |
| goto no_kprobe; |
| } |
| |
| p = get_kprobe(addr); |
| if (!p) { |
| if (*addr != BREAKPOINT_INSTRUCTION) { |
| /* |
| * PowerPC has multiple variants of the "trap" |
| * instruction. If the current instruction is a |
| * trap variant, it could belong to someone else |
| */ |
| kprobe_opcode_t cur_insn = *addr; |
| if (is_trap(cur_insn)) |
| goto no_kprobe; |
| /* |
| * The breakpoint instruction was removed right |
| * after we hit it. Another cpu has removed |
| * either a probepoint or a debugger breakpoint |
| * at this address. In either case, no further |
| * handling of this interrupt is appropriate. |
| */ |
| ret = 1; |
| } |
| /* Not one of ours: let kernel handle it */ |
| goto no_kprobe; |
| } |
| |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| set_current_kprobe(p, regs, kcb); |
| if (p->pre_handler && p->pre_handler(p, regs)) |
| /* handler has already set things up, so skip ss setup */ |
| return 1; |
| |
| ss_probe: |
| if (p->ainsn.boostable >= 0) { |
| unsigned int insn = *p->ainsn.insn; |
| |
| /* regs->nip is also adjusted if emulate_step returns 1 */ |
| ret = emulate_step(regs, insn); |
| if (ret > 0) { |
| /* |
| * Once this instruction has been boosted |
| * successfully, set the boostable flag |
| */ |
| if (unlikely(p->ainsn.boostable == 0)) |
| p->ainsn.boostable = 1; |
| |
| if (p->post_handler) |
| p->post_handler(p, regs, 0); |
| |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| return 1; |
| } else if (ret < 0) { |
| /* |
| * We don't allow kprobes on mtmsr(d)/rfi(d), etc. |
| * So, we should never get here... but, its still |
| * good to catch them, just in case... |
| */ |
| printk("Can't step on instruction %x\n", insn); |
| BUG(); |
| } else if (ret == 0) |
| /* This instruction can't be boosted */ |
| p->ainsn.boostable = -1; |
| } |
| prepare_singlestep(p, regs); |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| return 1; |
| |
| no_kprobe: |
| preempt_enable_no_resched(); |
| return ret; |
| } |
| |
| /* |
| * Function return probe trampoline: |
| * - init_kprobes() establishes a probepoint here |
| * - When the probed function returns, this probe |
| * causes the handlers to fire |
| */ |
| static void __used kretprobe_trampoline_holder(void) |
| { |
| asm volatile(".global kretprobe_trampoline\n" |
| "kretprobe_trampoline:\n" |
| "nop\n"); |
| } |
| |
| /* |
| * Called when the probe at kretprobe trampoline is hit |
| */ |
| static int __kprobes trampoline_probe_handler(struct kprobe *p, |
| struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri = NULL; |
| struct hlist_head *head, empty_rp; |
| struct hlist_node *node, *tmp; |
| unsigned long flags, orig_ret_address = 0; |
| unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; |
| |
| INIT_HLIST_HEAD(&empty_rp); |
| kretprobe_hash_lock(current, &head, &flags); |
| |
| /* |
| * It is possible to have multiple instances associated with a given |
| * task either because an multiple functions in the call path |
| * have a return probe installed on them, and/or more then one return |
| * return probe was registered for a target function. |
| * |
| * We can handle this because: |
| * - instances are always inserted at the head of the list |
| * - when multiple return probes are registered for the same |
| * function, the first instance's ret_addr will point to the |
| * real return address, and all the rest will point to |
| * kretprobe_trampoline |
| */ |
| hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { |
| if (ri->task != current) |
| /* another task is sharing our hash bucket */ |
| continue; |
| |
| if (ri->rp && ri->rp->handler) |
| ri->rp->handler(ri, regs); |
| |
| orig_ret_address = (unsigned long)ri->ret_addr; |
| recycle_rp_inst(ri, &empty_rp); |
| |
| if (orig_ret_address != trampoline_address) |
| /* |
| * This is the real return address. Any other |
| * instances associated with this task are for |
| * other calls deeper on the call stack |
| */ |
| break; |
| } |
| |
| kretprobe_assert(ri, orig_ret_address, trampoline_address); |
| regs->nip = orig_ret_address; |
| |
| reset_current_kprobe(); |
| kretprobe_hash_unlock(current, &flags); |
| preempt_enable_no_resched(); |
| |
| hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { |
| hlist_del(&ri->hlist); |
| kfree(ri); |
| } |
| /* |
| * By returning a non-zero value, we are telling |
| * kprobe_handler() that we don't want the post_handler |
| * to run (and have re-enabled preemption) |
| */ |
| return 1; |
| } |
| |
| /* |
| * Called after single-stepping. p->addr is the address of the |
| * instruction whose first byte has been replaced by the "breakpoint" |
| * instruction. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. The address of this |
| * copy is p->ainsn.insn. |
| */ |
| static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) |
| { |
| int ret; |
| unsigned int insn = *p->ainsn.insn; |
| |
| regs->nip = (unsigned long)p->addr; |
| ret = emulate_step(regs, insn); |
| if (ret == 0) |
| regs->nip = (unsigned long)p->addr + 4; |
| } |
| |
| static int __kprobes post_kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| if (!cur) |
| return 0; |
| |
| /* make sure we got here for instruction we have a kprobe on */ |
| if (((unsigned long)cur->ainsn.insn + 4) != regs->nip) |
| return 0; |
| |
| if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| cur->post_handler(cur, regs, 0); |
| } |
| |
| resume_execution(cur, regs); |
| regs->msr |= kcb->kprobe_saved_msr; |
| |
| /*Restore back the original saved kprobes variables and continue. */ |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| goto out; |
| } |
| reset_current_kprobe(); |
| out: |
| preempt_enable_no_resched(); |
| |
| /* |
| * if somebody else is singlestepping across a probe point, msr |
| * will have DE/SE set, in which case, continue the remaining processing |
| * of do_debug, as if this is not a probe hit. |
| */ |
| if (regs->msr & MSR_SINGLESTEP) |
| return 0; |
| |
| return 1; |
| } |
| |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| const struct exception_table_entry *entry; |
| |
| switch(kcb->kprobe_status) { |
| case KPROBE_HIT_SS: |
| case KPROBE_REENTER: |
| /* |
| * We are here because the instruction being single |
| * stepped caused a page fault. We reset the current |
| * kprobe and the nip points back to the probe address |
| * and allow the page fault handler to continue as a |
| * normal page fault. |
| */ |
| regs->nip = (unsigned long)cur->addr; |
| regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */ |
| regs->msr |= kcb->kprobe_saved_msr; |
| if (kcb->kprobe_status == KPROBE_REENTER) |
| restore_previous_kprobe(kcb); |
| else |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| break; |
| case KPROBE_HIT_ACTIVE: |
| case KPROBE_HIT_SSDONE: |
| /* |
| * We increment the nmissed count for accounting, |
| * we can also use npre/npostfault count for accouting |
| * these specific fault cases. |
| */ |
| kprobes_inc_nmissed_count(cur); |
| |
| /* |
| * We come here because instructions in the pre/post |
| * handler caused the page_fault, this could happen |
| * if handler tries to access user space by |
| * copy_from_user(), get_user() etc. Let the |
| * user-specified handler try to fix it first. |
| */ |
| if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) |
| return 1; |
| |
| /* |
| * In case the user-specified fault handler returned |
| * zero, try to fix up. |
| */ |
| if ((entry = search_exception_tables(regs->nip)) != NULL) { |
| regs->nip = entry->fixup; |
| return 1; |
| } |
| |
| /* |
| * fixup_exception() could not handle it, |
| * Let do_page_fault() fix it. |
| */ |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Wrapper routine to for handling exceptions. |
| */ |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| struct die_args *args = (struct die_args *)data; |
| int ret = NOTIFY_DONE; |
| |
| if (args->regs && user_mode(args->regs)) |
| return ret; |
| |
| switch (val) { |
| case DIE_BPT: |
| if (kprobe_handler(args->regs)) |
| ret = NOTIFY_STOP; |
| break; |
| case DIE_SSTEP: |
| if (post_kprobe_handler(args->regs)) |
| ret = NOTIFY_STOP; |
| break; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| #ifdef CONFIG_PPC64 |
| unsigned long arch_deref_entry_point(void *entry) |
| { |
| return ((func_descr_t *)entry)->entry; |
| } |
| #endif |
| |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); |
| |
| /* setup return addr to the jprobe handler routine */ |
| regs->nip = arch_deref_entry_point(jp->entry); |
| #ifdef CONFIG_PPC64 |
| regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); |
| #endif |
| |
| return 1; |
| } |
| |
| void __used __kprobes jprobe_return(void) |
| { |
| asm volatile("trap" ::: "memory"); |
| } |
| |
| static void __used __kprobes jprobe_return_end(void) |
| { |
| }; |
| |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| /* |
| * FIXME - we should ideally be validating that we got here 'cos |
| * of the "trap" in jprobe_return() above, before restoring the |
| * saved regs... |
| */ |
| memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| |
| static struct kprobe trampoline_p = { |
| .addr = (kprobe_opcode_t *) &kretprobe_trampoline, |
| .pre_handler = trampoline_probe_handler |
| }; |
| |
| int __init arch_init_kprobes(void) |
| { |
| return register_kprobe(&trampoline_p); |
| } |
| |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p) |
| { |
| if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) |
| return 1; |
| |
| return 0; |
| } |