blob: 4cc0b42f2acc5b9280a1235b3947ab693278f00f [file] [log] [blame]
/*
* at24.c - handle most I2C EEPROMs
*
* Copyright (C) 2005-2007 David Brownell
* Copyright (C) 2008 Wolfram Sang, Pengutronix
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/mod_devicetable.h>
#include <linux/log2.h>
#include <linux/bitops.h>
#include <linux/jiffies.h>
#include <linux/property.h>
#include <linux/acpi.h>
#include <linux/i2c.h>
#include <linux/nvmem-provider.h>
#include <linux/platform_data/at24.h>
/*
* I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
* Differences between different vendor product lines (like Atmel AT24C or
* MicroChip 24LC, etc) won't much matter for typical read/write access.
* There are also I2C RAM chips, likewise interchangeable. One example
* would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
*
* However, misconfiguration can lose data. "Set 16-bit memory address"
* to a part with 8-bit addressing will overwrite data. Writing with too
* big a page size also loses data. And it's not safe to assume that the
* conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
* uses 0x51, for just one example.
*
* Accordingly, explicit board-specific configuration data should be used
* in almost all cases. (One partial exception is an SMBus used to access
* "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
*
* So this driver uses "new style" I2C driver binding, expecting to be
* told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
* similar kernel-resident tables; or, configuration data coming from
* a bootloader.
*
* Other than binding model, current differences from "eeprom" driver are
* that this one handles write access and isn't restricted to 24c02 devices.
* It also handles larger devices (32 kbit and up) with two-byte addresses,
* which won't work on pure SMBus systems.
*/
struct at24_data {
struct at24_platform_data chip;
int use_smbus;
int use_smbus_write;
ssize_t (*read_func)(struct at24_data *, char *, unsigned int, size_t);
ssize_t (*write_func)(struct at24_data *,
const char *, unsigned int, size_t);
/*
* Lock protects against activities from other Linux tasks,
* but not from changes by other I2C masters.
*/
struct mutex lock;
u8 *writebuf;
unsigned write_max;
unsigned num_addresses;
struct nvmem_config nvmem_config;
struct nvmem_device *nvmem;
/*
* Some chips tie up multiple I2C addresses; dummy devices reserve
* them for us, and we'll use them with SMBus calls.
*/
struct i2c_client *client[];
};
/*
* This parameter is to help this driver avoid blocking other drivers out
* of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
* clock, one 256 byte read takes about 1/43 second which is excessive;
* but the 1/170 second it takes at 400 kHz may be quite reasonable; and
* at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
*
* This value is forced to be a power of two so that writes align on pages.
*/
static unsigned io_limit = 128;
module_param(io_limit, uint, 0);
MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
/*
* Specs often allow 5 msec for a page write, sometimes 20 msec;
* it's important to recover from write timeouts.
*/
static unsigned write_timeout = 25;
module_param(write_timeout, uint, 0);
MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
#define AT24_SIZE_BYTELEN 5
#define AT24_SIZE_FLAGS 8
#define AT24_BITMASK(x) (BIT(x) - 1)
/* create non-zero magic value for given eeprom parameters */
#define AT24_DEVICE_MAGIC(_len, _flags) \
((1 << AT24_SIZE_FLAGS | (_flags)) \
<< AT24_SIZE_BYTELEN | ilog2(_len))
/*
* Both reads and writes fail if the previous write didn't complete yet. This
* macro loops a few times waiting at least long enough for one entire page
* write to work while making sure that at least one iteration is run before
* checking the break condition.
*
* It takes two parameters: a variable in which the future timeout in jiffies
* will be stored and a temporary variable holding the time of the last
* iteration of processing the request. Both should be unsigned integers
* holding at least 32 bits.
*/
#define loop_until_timeout(tout, op_time) \
for (tout = jiffies + msecs_to_jiffies(write_timeout), op_time = 0; \
op_time ? time_before(op_time, tout) : true; \
usleep_range(1000, 1500), op_time = jiffies)
static const struct i2c_device_id at24_ids[] = {
/* needs 8 addresses as A0-A2 are ignored */
{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
/* old variants can't be handled with this generic entry! */
{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
{ "24cs01", AT24_DEVICE_MAGIC(16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
{ "24cs02", AT24_DEVICE_MAGIC(16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
{ "24mac402", AT24_DEVICE_MAGIC(48 / 8,
AT24_FLAG_MAC | AT24_FLAG_READONLY) },
{ "24mac602", AT24_DEVICE_MAGIC(64 / 8,
AT24_FLAG_MAC | AT24_FLAG_READONLY) },
/* spd is a 24c02 in memory DIMMs */
{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
{ "24cs04", AT24_DEVICE_MAGIC(16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
/* 24rf08 quirk is handled at i2c-core */
{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
{ "24cs08", AT24_DEVICE_MAGIC(16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
{ "24cs16", AT24_DEVICE_MAGIC(16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
{ "24cs32", AT24_DEVICE_MAGIC(16,
AT24_FLAG_ADDR16 |
AT24_FLAG_SERIAL |
AT24_FLAG_READONLY) },
{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
{ "24cs64", AT24_DEVICE_MAGIC(16,
AT24_FLAG_ADDR16 |
AT24_FLAG_SERIAL |
AT24_FLAG_READONLY) },
{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
{ "at24", 0 },
{ /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(i2c, at24_ids);
static const struct acpi_device_id at24_acpi_ids[] = {
{ "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
{ }
};
MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
/*-------------------------------------------------------------------------*/
/*
* This routine supports chips which consume multiple I2C addresses. It
* computes the addressing information to be used for a given r/w request.
* Assumes that sanity checks for offset happened at sysfs-layer.
*
* Slave address and byte offset derive from the offset. Always
* set the byte address; on a multi-master board, another master
* may have changed the chip's "current" address pointer.
*
* REVISIT some multi-address chips don't rollover page reads to
* the next slave address, so we may need to truncate the count.
* Those chips might need another quirk flag.
*
* If the real hardware used four adjacent 24c02 chips and that
* were misconfigured as one 24c08, that would be a similar effect:
* one "eeprom" file not four, but larger reads would fail when
* they crossed certain pages.
*/
static struct i2c_client *at24_translate_offset(struct at24_data *at24,
unsigned int *offset)
{
unsigned i;
if (at24->chip.flags & AT24_FLAG_ADDR16) {
i = *offset >> 16;
*offset &= 0xffff;
} else {
i = *offset >> 8;
*offset &= 0xff;
}
return at24->client[i];
}
static ssize_t at24_eeprom_read_smbus(struct at24_data *at24, char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, read_time;
struct i2c_client *client;
int status;
client = at24_translate_offset(at24, &offset);
if (count > io_limit)
count = io_limit;
/* Smaller eeproms can work given some SMBus extension calls */
if (count > I2C_SMBUS_BLOCK_MAX)
count = I2C_SMBUS_BLOCK_MAX;
loop_until_timeout(timeout, read_time) {
status = i2c_smbus_read_i2c_block_data_or_emulated(client,
offset,
count, buf);
dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
}
return -ETIMEDOUT;
}
static ssize_t at24_eeprom_read_i2c(struct at24_data *at24, char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, read_time;
struct i2c_client *client;
struct i2c_msg msg[2];
int status, i;
u8 msgbuf[2];
memset(msg, 0, sizeof(msg));
client = at24_translate_offset(at24, &offset);
if (count > io_limit)
count = io_limit;
/*
* When we have a better choice than SMBus calls, use a combined I2C
* message. Write address; then read up to io_limit data bytes. Note
* that read page rollover helps us here (unlike writes). msgbuf is
* u8 and will cast to our needs.
*/
i = 0;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msgbuf[i++] = offset >> 8;
msgbuf[i++] = offset;
msg[0].addr = client->addr;
msg[0].buf = msgbuf;
msg[0].len = i;
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
loop_until_timeout(timeout, read_time) {
status = i2c_transfer(client->adapter, msg, 2);
if (status == 2)
status = count;
dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
}
return -ETIMEDOUT;
}
static ssize_t at24_eeprom_read_serial(struct at24_data *at24, char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, read_time;
struct i2c_client *client;
struct i2c_msg msg[2];
u8 addrbuf[2];
int status;
client = at24_translate_offset(at24, &offset);
memset(msg, 0, sizeof(msg));
msg[0].addr = client->addr;
msg[0].buf = addrbuf;
/*
* The address pointer of the device is shared between the regular
* EEPROM array and the serial number block. The dummy write (part of
* the sequential read protocol) ensures the address pointer is reset
* to the desired position.
*/
if (at24->chip.flags & AT24_FLAG_ADDR16) {
/*
* For 16 bit address pointers, the word address must contain
* a '10' sequence in bits 11 and 10 regardless of the
* intended position of the address pointer.
*/
addrbuf[0] = 0x08;
addrbuf[1] = offset;
msg[0].len = 2;
} else {
/*
* Otherwise the word address must begin with a '10' sequence,
* regardless of the intended address.
*/
addrbuf[0] = 0x80 + offset;
msg[0].len = 1;
}
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
loop_until_timeout(timeout, read_time) {
status = i2c_transfer(client->adapter, msg, 2);
if (status == 2)
return count;
}
return -ETIMEDOUT;
}
static ssize_t at24_eeprom_read_mac(struct at24_data *at24, char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, read_time;
struct i2c_client *client;
struct i2c_msg msg[2];
u8 addrbuf[2];
int status;
client = at24_translate_offset(at24, &offset);
memset(msg, 0, sizeof(msg));
msg[0].addr = client->addr;
msg[0].buf = addrbuf;
/* EUI-48 starts from 0x9a, EUI-64 from 0x98 */
addrbuf[0] = 0xa0 - at24->chip.byte_len + offset;
msg[0].len = 1;
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
loop_until_timeout(timeout, read_time) {
status = i2c_transfer(client->adapter, msg, 2);
if (status == 2)
return count;
}
return -ETIMEDOUT;
}
/*
* Note that if the hardware write-protect pin is pulled high, the whole
* chip is normally write protected. But there are plenty of product
* variants here, including OTP fuses and partial chip protect.
*
* We only use page mode writes; the alternative is sloooow. These routines
* write at most one page.
*/
static size_t at24_adjust_write_count(struct at24_data *at24,
unsigned int offset, size_t count)
{
unsigned next_page;
/* write_max is at most a page */
if (count > at24->write_max)
count = at24->write_max;
/* Never roll over backwards, to the start of this page */
next_page = roundup(offset + 1, at24->chip.page_size);
if (offset + count > next_page)
count = next_page - offset;
return count;
}
static ssize_t at24_eeprom_write_smbus_block(struct at24_data *at24,
const char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, write_time;
struct i2c_client *client;
ssize_t status = 0;
client = at24_translate_offset(at24, &offset);
count = at24_adjust_write_count(at24, offset, count);
loop_until_timeout(timeout, write_time) {
status = i2c_smbus_write_i2c_block_data(client,
offset, count, buf);
if (status == 0)
status = count;
dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
}
return -ETIMEDOUT;
}
static ssize_t at24_eeprom_write_smbus_byte(struct at24_data *at24,
const char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, write_time;
struct i2c_client *client;
ssize_t status = 0;
client = at24_translate_offset(at24, &offset);
loop_until_timeout(timeout, write_time) {
status = i2c_smbus_write_byte_data(client, offset, buf[0]);
if (status == 0)
status = count;
dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
}
return -ETIMEDOUT;
}
static ssize_t at24_eeprom_write_i2c(struct at24_data *at24, const char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, write_time;
struct i2c_client *client;
struct i2c_msg msg;
ssize_t status = 0;
int i = 0;
client = at24_translate_offset(at24, &offset);
count = at24_adjust_write_count(at24, offset, count);
msg.addr = client->addr;
msg.flags = 0;
/* msg.buf is u8 and casts will mask the values */
msg.buf = at24->writebuf;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msg.buf[i++] = offset >> 8;
msg.buf[i++] = offset;
memcpy(&msg.buf[i], buf, count);
msg.len = i + count;
loop_until_timeout(timeout, write_time) {
status = i2c_transfer(client->adapter, &msg, 1);
if (status == 1)
status = count;
dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
}
return -ETIMEDOUT;
}
static int at24_read(void *priv, unsigned int off, void *val, size_t count)
{
struct at24_data *at24 = priv;
char *buf = val;
if (unlikely(!count))
return count;
if (off + count > at24->chip.byte_len)
return -EINVAL;
/*
* Read data from chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);
while (count) {
int status;
status = at24->read_func(at24, buf, off, count);
if (status < 0) {
mutex_unlock(&at24->lock);
return status;
}
buf += status;
off += status;
count -= status;
}
mutex_unlock(&at24->lock);
return 0;
}
static int at24_write(void *priv, unsigned int off, void *val, size_t count)
{
struct at24_data *at24 = priv;
char *buf = val;
if (unlikely(!count))
return -EINVAL;
if (off + count > at24->chip.byte_len)
return -EINVAL;
/*
* Write data to chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);
while (count) {
int status;
status = at24->write_func(at24, buf, off, count);
if (status < 0) {
mutex_unlock(&at24->lock);
return status;
}
buf += status;
off += status;
count -= status;
}
mutex_unlock(&at24->lock);
return 0;
}
static void at24_get_pdata(struct device *dev, struct at24_platform_data *chip)
{
int err;
u32 val;
if (device_property_present(dev, "read-only"))
chip->flags |= AT24_FLAG_READONLY;
err = device_property_read_u32(dev, "pagesize", &val);
if (!err) {
chip->page_size = val;
} else {
/*
* This is slow, but we can't know all eeproms, so we better
* play safe. Specifying custom eeprom-types via platform_data
* is recommended anyhow.
*/
chip->page_size = 1;
}
}
static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct at24_platform_data chip;
kernel_ulong_t magic = 0;
bool writable;
int use_smbus = 0;
int use_smbus_write = 0;
struct at24_data *at24;
int err;
unsigned i, num_addresses;
u8 test_byte;
if (client->dev.platform_data) {
chip = *(struct at24_platform_data *)client->dev.platform_data;
} else {
if (id) {
magic = id->driver_data;
} else {
const struct acpi_device_id *aid;
aid = acpi_match_device(at24_acpi_ids, &client->dev);
if (aid)
magic = aid->driver_data;
}
if (!magic)
return -ENODEV;
chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
magic >>= AT24_SIZE_BYTELEN;
chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
at24_get_pdata(&client->dev, &chip);
chip.setup = NULL;
chip.context = NULL;
}
if (!is_power_of_2(chip.byte_len))
dev_warn(&client->dev,
"byte_len looks suspicious (no power of 2)!\n");
if (!chip.page_size) {
dev_err(&client->dev, "page_size must not be 0!\n");
return -EINVAL;
}
if (!is_power_of_2(chip.page_size))
dev_warn(&client->dev,
"page_size looks suspicious (no power of 2)!\n");
/*
* REVISIT: the size of the EUI-48 byte array is 6 in at24mac402, while
* the call to ilog2() in AT24_DEVICE_MAGIC() rounds it down to 4.
*
* Eventually we'll get rid of the magic values altoghether in favor of
* real structs, but for now just manually set the right size.
*/
if (chip.flags & AT24_FLAG_MAC && chip.byte_len == 4)
chip.byte_len = 6;
/* Use I2C operations unless we're stuck with SMBus extensions. */
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
if (chip.flags & AT24_FLAG_ADDR16)
return -EPFNOSUPPORT;
if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
} else if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_WORD_DATA)) {
use_smbus = I2C_SMBUS_WORD_DATA;
} else if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
use_smbus = I2C_SMBUS_BYTE_DATA;
} else {
return -EPFNOSUPPORT;
}
if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
} else if (i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
use_smbus_write = I2C_SMBUS_BYTE_DATA;
chip.page_size = 1;
}
}
if (chip.flags & AT24_FLAG_TAKE8ADDR)
num_addresses = 8;
else
num_addresses = DIV_ROUND_UP(chip.byte_len,
(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
if (!at24)
return -ENOMEM;
mutex_init(&at24->lock);
at24->use_smbus = use_smbus;
at24->use_smbus_write = use_smbus_write;
at24->chip = chip;
at24->num_addresses = num_addresses;
if ((chip.flags & AT24_FLAG_SERIAL) && (chip.flags & AT24_FLAG_MAC)) {
dev_err(&client->dev,
"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
return -EINVAL;
}
if (chip.flags & AT24_FLAG_SERIAL) {
at24->read_func = at24_eeprom_read_serial;
} else if (chip.flags & AT24_FLAG_MAC) {
at24->read_func = at24_eeprom_read_mac;
} else {
at24->read_func = at24->use_smbus ? at24_eeprom_read_smbus
: at24_eeprom_read_i2c;
}
if (at24->use_smbus) {
if (at24->use_smbus_write == I2C_SMBUS_I2C_BLOCK_DATA)
at24->write_func = at24_eeprom_write_smbus_block;
else
at24->write_func = at24_eeprom_write_smbus_byte;
} else {
at24->write_func = at24_eeprom_write_i2c;
}
writable = !(chip.flags & AT24_FLAG_READONLY);
if (writable) {
if (!use_smbus || use_smbus_write) {
unsigned write_max = chip.page_size;
if (write_max > io_limit)
write_max = io_limit;
if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
write_max = I2C_SMBUS_BLOCK_MAX;
at24->write_max = write_max;
/* buffer (data + address at the beginning) */
at24->writebuf = devm_kzalloc(&client->dev,
write_max + 2, GFP_KERNEL);
if (!at24->writebuf)
return -ENOMEM;
} else {
dev_warn(&client->dev,
"cannot write due to controller restrictions.");
}
}
at24->client[0] = client;
/* use dummy devices for multiple-address chips */
for (i = 1; i < num_addresses; i++) {
at24->client[i] = i2c_new_dummy(client->adapter,
client->addr + i);
if (!at24->client[i]) {
dev_err(&client->dev, "address 0x%02x unavailable\n",
client->addr + i);
err = -EADDRINUSE;
goto err_clients;
}
}
i2c_set_clientdata(client, at24);
/*
* Perform a one-byte test read to verify that the
* chip is functional.
*/
err = at24_read(at24, 0, &test_byte, 1);
if (err) {
err = -ENODEV;
goto err_clients;
}
at24->nvmem_config.name = dev_name(&client->dev);
at24->nvmem_config.dev = &client->dev;
at24->nvmem_config.read_only = !writable;
at24->nvmem_config.root_only = true;
at24->nvmem_config.owner = THIS_MODULE;
at24->nvmem_config.compat = true;
at24->nvmem_config.base_dev = &client->dev;
at24->nvmem_config.reg_read = at24_read;
at24->nvmem_config.reg_write = at24_write;
at24->nvmem_config.priv = at24;
at24->nvmem_config.stride = 1;
at24->nvmem_config.word_size = 1;
at24->nvmem_config.size = chip.byte_len;
at24->nvmem = nvmem_register(&at24->nvmem_config);
if (IS_ERR(at24->nvmem)) {
err = PTR_ERR(at24->nvmem);
goto err_clients;
}
dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
chip.byte_len, client->name,
writable ? "writable" : "read-only", at24->write_max);
if (use_smbus == I2C_SMBUS_WORD_DATA ||
use_smbus == I2C_SMBUS_BYTE_DATA) {
dev_notice(&client->dev, "Falling back to %s reads, "
"performance will suffer\n", use_smbus ==
I2C_SMBUS_WORD_DATA ? "word" : "byte");
}
/* export data to kernel code */
if (chip.setup)
chip.setup(at24->nvmem, chip.context);
return 0;
err_clients:
for (i = 1; i < num_addresses; i++)
if (at24->client[i])
i2c_unregister_device(at24->client[i]);
return err;
}
static int at24_remove(struct i2c_client *client)
{
struct at24_data *at24;
int i;
at24 = i2c_get_clientdata(client);
nvmem_unregister(at24->nvmem);
for (i = 1; i < at24->num_addresses; i++)
i2c_unregister_device(at24->client[i]);
return 0;
}
/*-------------------------------------------------------------------------*/
static struct i2c_driver at24_driver = {
.driver = {
.name = "at24",
.acpi_match_table = ACPI_PTR(at24_acpi_ids),
},
.probe = at24_probe,
.remove = at24_remove,
.id_table = at24_ids,
};
static int __init at24_init(void)
{
if (!io_limit) {
pr_err("at24: io_limit must not be 0!\n");
return -EINVAL;
}
io_limit = rounddown_pow_of_two(io_limit);
return i2c_add_driver(&at24_driver);
}
module_init(at24_init);
static void __exit at24_exit(void)
{
i2c_del_driver(&at24_driver);
}
module_exit(at24_exit);
MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
MODULE_AUTHOR("David Brownell and Wolfram Sang");
MODULE_LICENSE("GPL");